What comes to mind when you hear the words “Chesapeake Bay?” Maybe you remember childhood summers spent mostly under water, on the shore making mud pies or even on the dock, catching crabs. Maybe you think of long days of crabbing with your grandfather, a recent kayaking adventure or something less glamorous, like the trash in Baltimore’s Inner Harbor.
Each of the watershed’s 17 million residents has a different relationship with the Bay, and a different reason for protecting it. We rarely share these reasons in everyday conversation, but hearing why our friends and neighbors value this tremendous resource will help us realize the multiple reasons for Bay restoration.

Image courtesy Beth Filar Williams/Flickr
Hear what water quality in the Bay means to poultry farmers, watermen, developers and more Eastern Shore residents in a series of video interviews, part of “Let’s Be Shore,” a project recently launched by Maryland Humanities Council.
Get a glimpse of what it’s really like to be a farmer, read about the family legacy of Maryland’s Eastern Shore and learn how your county’s plan to reduce water pollution affects you.
For more information, visit the Chesapeake Bay Trust’s Blog.
American eel numbers are up in the headwater streams of Shenandoah National Park, following the 2004 removal of a large downstream dam.
Significant increases in upstream American eel populations began two years after the Rappahannock River's Embrey Dam was removed and have continued nearly every year since, according to a report released last week by the U.S. Geological Survey (USGS), U.S. Fish and Wildlife Service (USFWS) and National Park Service (NPS) researchers.
.jpg)
Image courtesy EricksonSmith/Flickr.
Dams can act as travel barriers to American eels, which undertake long-distance migrations from their ocean spawning grounds to freshwater streams along the Atlantic coast. While American eels can surpass substantial natural barriers--like the rapids of the Potomac River's Great Falls, for instance--dams pose a more difficult obstacle and have contributed to the widespread decline in American eel populations. Dam removal, therefore, could have long-term benefits for eel conservation.
"Our study shows that the benefits of dam removal can extend far upstream," said USGS biologist Nathanial Hitt. "American eels have been in decline for decades and so we're delighted to see them begin to return in abundance to their native streams."
Embrey Dam, which once provided hydroelectric power to Fredericksburg, Va., was breached in 2004 following years of work by nonprofit organizations and city, state and federal government agencies. Its removal was intended to benefit more than the American eel, however, as dams can impact a number of fish that must migrate up rivers to spawn.
"Shad, herring and striped bass are also using reopened habitat on the Rappahannock River," said Alan Weaver, fish passage coordinator for the Virginia Department of Game and Inland Fisheries. "It's exciting to see a growing number of species benefiting from dam removal in Virginia."
Learn more about American eel abundance in Shenandoah National Park.
Nutrient and sediment levels at a number of Chesapeake Bay monitoring sites have improved since 1985, according to a report released by the U.S. Geological Survey (USGS). These improvements in long-term trends indicate pollution-reduction efforts are working.
By measuring nutrient and sediment trends and by tracking changes in water clarity, underwater grasses and other indicators of river and Bay health, the USGS and Chesapeake Bay Program partners can make a more accurate assessment of changes in our waters. This kind of on-the-water monitoring is an integral part of ensuring Bay states and the District of Columbia are meeting "pollution diet" goals.
Excess nutrients and sediment can harm fish, shellfish and underwater grasses. Nitrogen and phosphorous fuel the growth of algae blooms that later rob water of the oxygen that aquatic species need to survive; sediment clouds the water, blocking the sunlight that plants need to grow. But a number of practices, from upgrading wastewater treatment plants to reducing agricultural, urban and suburban runoff, can stop or slow nutrients and sediment from entering the Bay.

According to the USGS report, one-third of monitoring sites have shown improvement in sediment concentrations since 1985. Within the same time period, two-thirds of these sites have shown improvement in nitrogen concentrations and almost all have shown improvement in phosphorous concentrations. However, in the past decade, the majority of sites surveyed showed no significant change in nitrogen or phosphorous levels, and only a handful showed improvement in sediment trends.
This doesn't mean that pollution-reduction efforts have been in vain. Long-term trends show us that pollution-reduction efforts do have an impact; findings from the last 10 years illustrate the lag time that can exist between restoration efforts and firm evidence of restoration success.
While upgrades to wastewater treatment plants, for instance, can yield relatively quick results, the effects of consistent reduced fertilizer on farms or suburban lawns may not be visible for years.
"While we see long-term improvements in many areas of the Bay watershed, there is a lag time between implementing water-quality practices and seeing the full benefit in rivers," said USGS scientist Scott Phillips. "Which is one reason why scientists see less improvement over the past 10 years."
"Long-term trends indicate that pollution-reduction efforts are improvement water-quality conditions in many areas of the watershed," Phillips said. "However, nutrients, sediment and contaminants will need to be further reduced to achieve a healthier Bay."
Learn more about Monitoring the Chesapeake Bay Watershed.
Luke Brubaker lives in the house his father bought in 1929. His grandchildren play in the same creeks he played in as a child, and he farms the same land that his father farmed. But Luke's land in Lancaster County, Pennsylvania, has changed drastically since the days of his father; it is under pressure from higher rates of development (the large housing development at the edge of his property is one example); there is an increased use of pesticides, auto exhaust, and other chemicals that can leak into his groundwater; and a decrease in the amount of forested land allows nutrients from soil and bacteria from animal manure to easily run off into waterways instead of being absorbed by trees.
As Brubaker's land has changed, so has the agriculture industry; soaring energy and production costs and a plethora of environmental regulations mean that selling a gallon of milk isn't as easy as it used to be.
Nevertheless, Luke treats his land in a way that recognizes its vulnerability, farming it in a way that ensures it will be fertile in the future. His mindful practices have awarded him with productive land and healthy cattle, as well as a U.S. Dairy Sustainability Award, a Center for Advanced Energy Studies/Idaho National Laboratory Award for “Outstanding Achievement in Energy," and recognition as 2011 Innovative Dairy Farmer of the Year.
"I hope that this land will not only be preserved for farming," explains Luke, "but that the soils will be preserved on the land so that my grandkids can farm this, so that this can be food for the future."
Luke has grown his father's 18-cow dairy farm to a 900-cow operation, and hopes to keep the business in the family. Because he cares about the longevity of his land, he is concerned less with the quantity of milk he produces, and is instead concentrated on the reuse of energy and the quality of his products.
And while many farmers say that new regulations threaten their financial stability, Luke insists that following and exceeding these guidelines have helped him save money and keep his land in good health for future generations.
"It's an economic value to keep the water on the field, and keep the nutrients on the field, so it only makes sense to do good conservation practices," explains Luke. "This is what’s so important: that farmers realize the economic value of conservation practices, rather than doing it because they have to do it. And sometimes over the years, it has taken me time to realize that some of the old ways that we used to have aren’t the best ways."
On my tour of Brubaker Farm, the relationship between Luke's conservation ethic and economic good sense becomes obvious; the farm reuses everything and anything possible, especially cow manure!

"The more land that we can preserve and farm properly, the more soil we're going to have; we're going to be able to grow the food of our nation. That's very important to me," says Luke. "There's a great livelihood that can be achieved from good agricultural practices."
But what are "good" agricultural practices? Here are a few that are being implemented on Brubaker Farm:
Power in poop
At Brubaker Farm, the cows are kept in an open-air, temperature-controlled, shelter where they are able to roam from building to building. Their bedding is replaced regularly to keep them comfortable, and their feed, most of which is grown on the farm, is calculated to the tee.
"Our cows are fed probably better than some of our families are fed because we measure and weigh every bit of feed so they get the right nutrition," says Luke.
The cow's manure is swept away from the shelter every few hours. This differs from "free range" farms, where cattle are permitted to roam (and even sometimes, poop) where they please. The advantage of keeping the cattle in a controlled environment is that cows can remain cool in the summertime (they prefer cooler temperatures), and their manure is not laying around somewhere in the grass, or even worse, in a stream.
In fact, Brubaker understands his cow's manure to be just as valuable as the milk they produce. After an automatic cleaner collects manure from the cattle shelters, the manure goes into a machine called a "digester," which converts manure into methane gas that can be used (and sold) as an energy source.
On the Brubaker Farm, the solid manure wastes are converted into bedding for the cows. After it goes through the digester, it is pathogen free, making it the perfect, safe option for keeping cows comfortable.

The liquid manure is converted into electricity. Luke sells enough electricity to power 200 homes. The rest he reclaims as energy to fuel his farm's operations; the electricity is used to heat and pasteurize the milk before it is taken off the property, and to clean the cows’ towels (each cow gets his or her own cleaning towel!)
Luke is in the process is making a solar hot water system so he can make his own hot water from the farm's solar panels, which now provide electricity to 100 homes at peak sun.
The Brubaker's creative use of excess poop/energy has opened a whole new market to the family; in a recent year, they generated more profit from selling electricity than from selling milk!
No till farming
In his 1943 book, Plowman's Folly, Edward H. Faulkner said, "the truth is that no one has ever advanced a scientific reasoning for plowing." Yet, tilling soil is still protocol for many farms.
Traditionally, soil is loosened by a plow, or tilled, so that oxygen, water, and nutrients can reach the area where a crop's roots grow. Today, tilling requires the use of heavy machinery, which requires both fuel and labor to operate.
When heavy rain falls on a tilled field, loose soil is conveyed into nearby waterways, polluting the water with large amounts of nutrients and sediment.
When the soil is left in place, it is able to maintain its structure and better hold water. Not tilling the soil cuts back on fuel and labor costs. It also means that the soil is not loosened, and is therefore not as prone to erosion.
"After you no till for a couple of years, your soil gets roots," explains Luke. "It’s kind of like a sponge, and it allows the water to permeate into that sponge and holds it there. If you have a dry year, you’re going to have a better crop, because it holds that moisture there just like a sponge."

Cover crops
"Cover crops" are vegetation that holds the soil in place with its roots, preventing erosion even when a commercial crop is not being grown.
Cover crops shade the soil, preventing sunlight from fueling fast-growing weeds, and keeping the soil cool. Cover crops also discharge excess organic materials into the soil through their roots. These materials provide food for soil microbes and replenish nutrients that a future commercial crop, will benefit from.
If a field is fertilized heavily, cover crops can take up any excess fertilizer that was not used by a commercial crop; this will decrease the amount of nutrient pollution leaching into the groundwater and nearby streams.
Protecting streams
A stream on Brubaker's property is a favorite swimming hole for his grandchildren, and a favorite habitat for brook trout. Luke usually keeps his cattle in a controlled environment because keeping cattle away from this stream minimizes the sediment and bacteria pollution going into the waterway.
"One of the best things that small farms can do is to keep their cattle out of the streams," says Luke. "If the cattle have access to the whole stream and banks, they have a tendency to break the shores down, and that’s what causes sediment (pollution). We have fences to keep the cattle out so they aren’t breaking the banks of the stream."
Stream bank fencing also prevents rainwater, and the nutrients it carries, from ending up in waterways. Keeping these products on the field, instead of in the waterways, is not only beneficial to wildlife and plants, but to the farmer himself- it means more nutrients and water stay in place to fuel crop growth!
On Brubaker's farms, streamside trees (known as forest buffers) shade the stream, keeping it cool enough for trout. The tree's roots that stabilize stream banks and absorb any nutrients before they end up in the stream.
"It’s important for somebody else that the streams are clean, but it’s important for us (farmers) that our nutrients and water are on our fields," says Luke. "We know that when we have a clean stream, we know that our nutrients and our water are staying on our fields like they’re supposed to.

Learn more about sustainable agriculture in the Chesapeake Bay watershed: