Text Size: A  A  A

Chesapeake Bay News

Archives: February 2014

Feb
25
2014

Science shows restoration work can improve local water quality

Pollution-reducing practices can improve water quality in the Chesapeake Bay and have already improved the health of local rivers and streams, according to new research from the Chesapeake Bay Program partnership.

In a report released today, several case studies from across the watershed show that so-called “best management practices”—including upgrading wastewater treatment technologies, lowering vehicle and power plant emissions, and reducing runoff from farmland—have lowered nutrients and sediment in local waterways. In other words, the environmental practices supported under the Clean Water Act, the Clean Air Act and the Farm Bill are working.

Excess nutrients and sediment have long impaired local water quality: nitrogen and phosphorous can fuel the growth of algae blooms and lead to low-oxygen “dead zones” that suffocate marine life, while sediment can block sunlight from reaching underwater grasses and suffocate shellfish. Best management practices used in backyards, in cities and on farms can lower the flow of these pollutants into waterways.

Data collected and analyzed by the Bay Program, the University of Maryland Center for Environmental Science (UMCES) and the U.S. Geological Survey (USGS) have traced a number of local improvements in air, land and water to best management practices: a drop in power plant emissions across the mid-Atlantic has led to improvements in nine Appalachian watersheds, upgrades to the District of Columbia's Blue Plains Wastewater Treatment Plant have lowered the discharge of nutrients into the Potomac River and planting cover crops on Eastern Shore farms has lowered the amount of nutrients leaching into the earth and reduced nitrate concentrations in groundwater.

“In New Insights, we find the scientific evidence to support what we’ve said before: we are rebuilding nature’s resilience back into the Chesapeake Bay ecosystem, and the watershed can and will recover when our communities support clean local waters,” said Bay Program Director Nick DiPasquale in a media release.

But scientists have also noted that while we have improved water quality, our progress can be overwhelmed by intensified agriculture and unsustainable development, and our patience can be tested by the “lag-times” that delay the full benefits of restoration work.

“This report shows that long-term efforts to reduce pollution are working, but we need to remain patient and diligent in making sure we are putting the right practices in place at the right locations in Chesapeake Bay watershed,” said UMCES President Donald Boesch in a media release. “Science has and will continue to play a critical role informing us about what is working and what still needs to be done.”

UMCES Vice President for Science Applications Bill Dennison echoed Boesch’s support for patience and persistence, but added a third P to the list: perspiration. “We’ve got to do more to maintain the health of this magnificent Chesapeake Bay,” he said.

“We’ve learned that we can fix the Bay,” Dennison continued. “We can see this progress… and it’s not going to be hopeless. In fact, it’s quite hopeful. This report makes a good case for optimism about the Chesapeake Bay.”

You can view an Executive Summary of the report here. Learn more.



Feb
18
2014

Wetland restoration could offset impacts of climate change

Restoring tidal wetlands could lower the greenhouse gases in our atmosphere and offset the impacts of climate change, according to research released this month by Restore America’s Estuaries (RAE).

In a report on research conducted in Washington’s Puget Sound, scientists show that the 1,353 hectares—or 3,300+ acres—of wetlands that are planned or under construction in the sound’s Snohomish Estuary will help remove at least 2.55 million tons of carbon dioxide from the atmosphere over the next century. This is equal to the annual emissions of 500,000 average-sized cars.

Carbon dioxide is a greenhouse gas that can trap heat in our atmosphere and contribute to climate change. It is the top greenhouse gas emitted by human activities, but it can be removed from the atmosphere by plants, which need it to create food.

When wetlands take in carbon dioxide, excess carbon is stored in organic-rich soils. When wetlands are drained and developed, however, carbon is released back into the atmosphere. Restoring wetlands can reactivate this carbon sequestration process.

“This report is a call to action,” said Steve Emmett-Mattox, senior director at RAE and co-author of the study, in a media release. “We need to invest more substantially in coastal restoration nationwide and in science to increase our understanding of the climate benefits which accrue from coastal restoration and protection efforts.”

In addition to climate benefits, wetlands can improve water quality, support fisheries and reduce flood risks. But according to a 2013 report, the United States is losing wetlands at a rate of 80,000 acres per year, and the rising seas of climate change threaten to turn wetlands into shallow bays.

Related research from the Smithsonian Environmental Research Center has shown that high levels of carbon dioxide can help wetlands create new soil faster, which could help the habitats move to higher elevations ahead of rising seas.

Learn more.



Feb
10
2014

Report recommends Virginia strengthen chemical contaminant regulations

A new report from the University of Richmond School of Law calls on Virginia to better protect its residents from chemical contaminants, millions of pounds of which are released into the environment each year by industries across the state.

Image courtesy gac/Flickr

The report, authored in part by Noah M. Sachs, director of the law school’s Center for Environmental Studies, examines the sources of chemical contaminants in Virginia and concludes that the Commonwealth should expand its existing toxic chemicals program, empower the Department of Environmental Quality (DEQ) to clean up more contaminated sites and enact legislation and permit conditions more stringent than federal standards.

According to the report, Virginia’s industries released almost 40 million pounds of toxic chemicals into the air, water and land in 2011. While this represents a drop in releases compared to 2010, the discharge of chemicals into rivers and streams remains significant and, in some cases, could impact in the Chesapeake Bay.

The report notes that more than 250 facilities are allowed to send toxic chemicals into Virginia waters, and the state’s tributaries rank the second worst in the nation as measured by the amount of contaminants discharged into them. While some of the worst-ranking tributaries—like the New and Roanoke Rivers or Sandy Bottom Branch—do not drain into the Bay, the James River ranks forty-fifth in the nation for total toxic discharges and ninth in the nation for the discharge of toxics that affect human development.

Contaminants on the state’s land have also had an effect on water: a number of the 31 sites listed as contaminated under the federal Superfund program involve contaminated drinking water, surface water and groundwater.

Virginia is not the sole watershed state that faces contaminated rivers and streams. According to 2012 assessments, 74 percent of the Bay’s tidal tributaries were partially or fully impaired by chemical contaminants.

In a January 2014 editorial published in the Richmond Times-Dispatch, Sachs recommended putting toxic chemical regulation “at the forefront of Virginia’s environmental agenda.” He wrote, “Our report recommends a comprehensive program to protect Virginians, beginning with strict permitting, increased inspections, new state authority to remediate contaminated sites and more funding and personnel.”

Learn more.



410 Severn Avenue / Suite 112
Annapolis, Maryland 21403
Tel: (800) YOUR-BAY / Fax: (410) 267-5777
Directions to the Bay Program Office
Terms of Use | Privacy Policy
©2012 Chesapeake Bay Program | All Rights Reserved