Text Size: A  A  A

Chesapeake Bay News

Apr
21
2014

Chesapeake Bay’s underwater grass abundance rises 24 percent in 2013

Underwater grass abundance in the Chesapeake Bay increased 24 percent between 2012 and 2013, reversing the downward trend of the last three years.

Because underwater grasses are sensitive to pollution but quick to respond to water quality improvements, their abundance is a good indicator of Bay health. Aerial surveys flown from last spring to last fall showed an almost 12,000-acre increase in grass abundance across the Bay, which scientists attribute to the rapid expansion of widgeon grass in the saltier waters of the mid-Bay and the modest recovery of eelgrass in shallow waters where the species experienced a “dieback” after the hot summers of 2005 and 2010. Scientists also observed an increase in the acreage of the Susquehanna Flats.

“The mid-Bay has seen a big rise in widgeon grass,” said Robert J. Orth, Virginia Institute of Marine Science (VIMS) professor and coordinator of the school’s Submerged Aquatic Vegetation Survey, in a media release. “In fact, the expansion of this species in the saltier waters between the Honga River and Pocomoke Sound was one of the driving factors behind the rise in bay grass abundance. While widgeongrass is a boom and bust species, notorious for being incredibly abundant one year and entirely absent the next, its growth is nevertheless great to see.”

Underwater grasses, also known as submerged aquatic vegetation, are critical to the Bay, offering food to invertebrates and waterfowl and providing shelter to fish and crabs. Like grasses on land, underwater grasses need sunlight to survive. When algae blooms or suspended sediment cloud the waters of the Bay, sunlight cannot reach the bottom habitat where grasses live. While healthy grass beds can trap and absorb some nutrient and sediment pollution—thus improving water clarity where they grow—too much pollution can cause grass beds to die. Indeed, poor water clarity remains a challenge for eelgrass growth in deeper waters.

Until this year, the Bay Program mapped underwater grasses by geographic zone. Now, abundance is mapped in four different salinity zones, each of which is home to an underwater grass community that responds differently to strong storms, drought and other adverse growing conditions. This reporting change “makes more ecological sense,” said Lee Karrh, program chief at the Maryland Department of Natural Resources (DNR) and chair of the Bay Program’s Submerged Aquatic Vegetation Workgroup.

“Reworking our historic data was hard work, but doing so makes it easier to understand patterns in grass growth,” Karrh said.

Learn more.



Apr
17
2014

Oyster aquaculture could combat Potomac River pollution

Raising oysters along the bed of the Potomac River could lower pollution and improve water quality, according to new findings that show “farm-raised” shellfish are a promising method of managing nutrients.

Image courtesy Robert Rheault/Flickr

Nutrient pollution from urban, suburban and agricultural runoff has long plagued the Potomac, whose watershed spans four states and the District of Columbia and has the highest population in the Chesapeake Bay region. Excess nutrients like nitrogen and phosphorous can fuel the growth of algae blooms, which block sunlight from reaching underwater grasses and create low-oxygen dead zones that suffocate marine life. While filter-feeding oysters were once plentiful in the river—capable of removing nutrients from the water—their numbers have dropped due to overfishing and disease.

In a report published in Aquatic Geochemistry, scientists with the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS) show that cultivating shellfish on 40 percent of the Potomac’s bottom would remove all of the nitrogen now polluting the river. While conflicting uses—think shipping lanes, buried cables and pushback from boaters and landowners—mean it is unlikely that such a large area would be devoted to aquaculture, putting even 15 to 20 percent of the riverbed under cultivation would remove almost half of the incoming nitrogen. The combination of aquaculture and restored reefs could provide even greater benefits.

Image courtesy Virginia Sea Grant/Flickr

Shellfish aquaculture could also have benefits outside the realm of water quality: the shellfish could serve as a marketable seafood product, while the practice could provide growers with additional income if accepted in a nutrient trading program. Even so, the report notes that aquaculture should be considered “a complement—not a substitute” for land-based pollution-reducing measures.

“The most expedient way to reduce eutrophication in the Potomac River estuary would be to continue reducing land-based nutrients complemented by a combination of aquaculture and restored oyster reefs,” said scientist and lead study author Suzanne Bricker in a media release. “The resulting combination could provide significant removal of nutrients… and offer innovative solutions to long-term persistent water quality problems.”

At present, there are no aquaculture leases in the Potomac’s main stem. But in 2008, Maryland passed a plan to expand aquaculture in the region, and in 2009, NOAA launched an initiative to promote aquaculture in coastal waters across the United States.

Learn more.



Apr
15
2014

Potomac River sees rise in returning shad, driving up Bay-wide abundance trend

Over the last decade, American shad abundance in the Potomac River has continued its consistent rise, driving the overall upward trend of shad abundance in the Chesapeake Bay. 

Image courtesy MTSOfan/Flickr

While shad spend most of their adult lives in the ocean, the anadromous fish migrate into freshwater rivers and streams to spawn. Since 2000, shad abundance in the Bay has increased from 9 percent of the goal to 41 percent of the goal, with the Potomac seeing the most consistent rise in returning shad. Between 2000 and 2013, shad abundance in the Potomac rose from 12.4 percent to 129.4 percent of the target. Scientists attribute this increase to a series of factors, including improvements in water quality; a resurgence in underwater grass beds; the installation of a fish passageway at Little Falls Dam; a moratorium on recreational shad harvest; stocking efforts that reprinted fish to the river and kick-started the population; and the overall suitability of the Potomac as shad habitat. 

“While there are several factors behind the shad recovery in the Potomac River, improved water quality is the cornerstone,” said Jim Cummins, director for living resources at the Interstate Commission on the Potomac River Basin (ICPRB) and co-chair of the Chesapeake Bay Program’s American Shad Indicator Action Team. “Without cleaner waters in the Potomac River, we would never have seen such a boost in returning shad. We’ve reached the sustainable fishery target for the river, but we are still working to achieve a more robust goal: to see the shad population healthy and fit, and to see the river run silver again. That’s not a ‘pristine river’ goal—that’s a goal we can achieve.”

The Bay Program tracks the abundance of shad in the James, Potomac, Rappahannock, Susquehanna and York rivers as an indicator of watershed health. Collectively, these five waterways account for about 90 percent of the Bay’s shad population, and each has its own population target.

While shad abundance is relatively high in the Rappahannock River—reaching 92.7 percent of the target in 2012 but falling to 88.9 percent of the target in 2013—abundance remains negligible in the upper James and Susquehanna and variable in the lower James and York. Some variability is natural, but the continued scarcity of shad in the upper James and Susquehanna can be attributed to large dams that block fish passage and mute some of the natural cues that send migratory fish upstream.

Once one of the most valuable fisheries in the Bay, shad populations have declined in recent decades due to pollution, historic overfishing and the construction of dams that block the fish from reaching their spawning grounds. Commercial shad harvest is now closed across most of the region, and Bay Program partners are working to remove dams, install passageways that allow shad to reach upstream habitats and restock waterways with hatchery-raised fish. In addition, students in Maryland, Virginia and the District of Columbia are raising shad and releasing them into the Potomac River, bringing public attention to the importance of the once-forgotten fish.

Overall, shad abundance in the Bay has increased from 8 percent of the goal in 2000 to 41 percent of the goal in 2013.

Learn more.



Apr
14
2014

Anglers asked to remove invasive catfish from Maryland, Virginia waters

The Maryland Department of Natural Resources (DNR) has launched a state-wide campaign to teach citizens about the impact of blue and flathead catfish and encourage anglers to remove the invasive species from local rivers and streams.

Native to the Mississippi, Missouri and Ohio river basins, blue catfish were introduced to the James, Rappahannock and York rivers in the 1970s and ‘80s as a sport fish. Flathead catfish were introduced to the James in the 1960s for the same reason. Over time, the natural movement and purposeful introduction of the fish into new waters have hastened their establishment in Chesapeake Bay tributaries.

This concerns scientists, who fear the fast-growing and long-lived blue catfish, in particular, could impact the region’s ecologic and economic resources. Because of its opportunistic feeding habits, the blue catfish has become an apex predator, disrupting the structure of the Bay ecosystem and eating up critical aquatic species.

Indeed, “gut content analyses” of the fish have found American shad, Atlantic menhaden, freshwater mussels and blue crabs in their stomachs. Peyton Robertson, director of the National Oceanic and Atmospheric Administration’s Chesapeake Bay Office and chair of the Chesapeake Bay Program’s Sustainable Fisheries Goal Implementation Team, compared the blue catfish to a Bengal tiger, noting that the fish eats “just about anything.”

“If left unchecked, [blue catfish] could, as top predators, start to impact other parts of our ecosystem,” Robertson said.

But its eradication isn’t feasible, and experts believe the invasive fish is here to stay. So managers hope to mitigate their spread and minimize their impact on native fish.

With support from the Bay Program, DNR has established more than 150 signs at water access points and kiosks around the state to help anglers identify, catch and keep the species, while Maryland Seafood has escalated its efforts to market the fish to restaurants and boost consumer demand.

“[Humans] are great at overfishing things,” said Maryland Seafood Marketing Director Steve Vilnit. “And [the blue catfish] is a species that we want to overfish.”

From the Field: Monitoring Blue Catfish in Virginia's James River from Chesapeake Bay Program on Vimeo.

In 2012, the Sustainable Fisheries Goal Implementation Team established an Invasive Catfish Task Force, which has drafted seven recommendations to help manage both blue and flathead catfish.

Learn more.



410 Severn Avenue / Suite 112
Annapolis, Maryland 21403
Tel: (800) YOUR-BAY / Fax: (410) 267-5777
Directions to the Bay Program Office
Terms of Use | Privacy Policy
©2012 Chesapeake Bay Program | All Rights Reserved