Text Size: A  A  A

Chesapeake Bay News

May
30
2014

Photo Essay: Monitoring American eels with the U.S. Fish and Wildlife Service

A habitat is the natural environment in which plants, animals and other organisms live, feed and breed. Many habitats are shared by numerous living things, forming what is called an ecosystem. Ecosystems range in size and can be as tiny as a patch of dirt or as large as the Chesapeake Bay watershed.

Sometimes, different species within the same ecosystem are forced to compete for resources like food, water and shelter. Dominant species and environmental stressors can take their toll on lesser plants and animals.

Rapidly increasing human development contributes to this environmental stress: as our population rises, so does our demand for the same resources that many plants and animals also depend on to survive. We build dams to control stream flow and capture energy, develop wilderness into urban hubs and use our finite freshwater resources at an alarming rate.

Migratory fish are particularly sensitive to ecosystem changes because they rely on certain migration routes between connected habitats to reach their breeding grounds. Dams, road culverts and other blockages that fragment waterways can act as barriers to fish passage.

In an effort to better understand the effect that dams and other manmade structures have on fish passage, Steve Minkkinen, project leader at the U.S. Fish and Wildlife Service (USFWS) Maryland Fisheries Office, has teamed up with the U.S. Geological Survey (USGS) and the U.S. Army Corps of Engineers to conduct a 10-year survey of American eel populations in the Susquehanna River.

“We learned quite a bit in 2013. We collected 300,000 juveniles [eels] and transported them above the [Conowingo] Dam. The dam has been blocking the [eels’] migration up the Susquehanna River,” Minkkinen explained. “There has been a lot of work [to open] upstream passage for shad and river herring,” Minkkinen continued. But that work has only focused on adult fish, and as Minkkinen pointed out, the dam’s flow is too fast for younger eels to travel through.

Monitoring American eels is important: at historic levels, they made up 20 percent of the freshwater biomass along the Eastern seaboard. However, the introduction of dams and other structures has blocked eel populations from important migration routes, changing eel populations.

Researchers capture and inject chips known as passive integrated transponders, or PIT tags, into the eels. These tags can be detected in future surveys and help the team track eel populations by letting them know if they are encountering a new eel or one that was caught during a previous survey.

The American eel is the only catadromous fish in the Bay region, which means they spend most of their lives in fresh water but migrate to the ocean to spawn. Spawning takes place in late January when the fish swim out of the Bay and into the Sargasso Sea, a portion of the Atlantic Ocean east of the Bahamas.

Eel larvae drift in ocean currents for nine to 12 months before reaching fresh water and swimming upstream. Monitoring allows scientists to study the migration habits of juvenile eels and learn how to aid their upstream journey.

Minkkinen and his team believe that if fish passage to the upper Susquehanna opens, both American eels and freshwater mussels would thrive. This bivalve relies on fish to store their eggs in their gills until the mussels turn into microscopic juveniles and drop off. Mussel populations in the upper Susquehanna are, for the most part, comprised of older, larger individuals. Because mussels are natural filter feeders, Minkkinen’s team believes that a rise in freshwater mussels will lead to cleaner water and a healthier ecosystem.

“Our hopes are that we can develop passage and restore eel and mussel habitat to that [upper Susquehanna] portion of the watershed,” Minkkinen said.

To view more photos, visit the Chesapeake Bay Program Flickr page

Images by Steve Droter. Captions by Jenna Valente.



May
29
2014

Reducing agricultural runoff creates clean water in Chesapeake Bay

Reducing runoff from farmland has lowered pollution in Maryland, Virginia and Pennsylvania waters, indicating a boost in on-farm best management practices could lead to improved water quality in the Chesapeake Bay.

In a report released earlier this year, researchers with the Chesapeake Bay Program, the University of Maryland Center for Environmental Science (UMCES) and the U.S. Geological Survey (USGS) use case studies to show that planting cover crops, managing manure and excluding cattle from rivers and streams can lower nutrient concentrations and, in some cases, sediment loads in nearby waters.

Excess nutrients and sediment have long impaired the Bay: nitrogen and phosphorous can fuel the growth of algae blooms and lead to low-oxygen dead zones that suffocate marine life, while sediment can cloud the water and suffocate shellfish. In New Insights: Science-based evidence of water quality improvements, challenges and opportunities in the Chesapeake, scientists make clear that putting nutrient- and sediment-reducing practices in place on farms can improve water quality and aquatic habitat in as little as one to six years.

Planting winter cover crops on farm fields in the Wye River basin, for instance, lowered the amount of nutrients leaching into local groundwater, while planting cover crops and exporting nutrient-rich rich poultry litter in the upper Pocomoke River watershed lowered the amount of nitrogen and phosphorous in the Eastern Shore waterway. In addition, several studies in Maryland, Virginia and Pennsylvania showed that when cattle were excluded from streams, plant growth rebounded, nutrient and sediment levels declined and stream habitat and bank stability improved.

Image courtesy Chiot's Run/Flickr

Earlier this week, U.S. Department of Agriculture Secretary Tom Vilsack named the Bay watershed one of eight “critical conservation areas” under the new Farm Bill’s Regional Conservation Partnership Program, which will bring farmers and watershed organizations together to earn funds for soil and water conservation.

Learn more.



May
23
2014

University of Maryland report card measures minimal changes in Chesapeake Bay health

Researchers at the University of Maryland Center for Environmental Science (UMCES) measured minimal changes in Chesapeake Bay health in 2013, once again giving the estuary a “C” in their annual Chesapeake Bay Report Card.

This grade was the same in 2012, up from a “D+” in 2011. The Bay Health Index was reached using several indicators of Bay health, including water clarity and dissolved oxygen, the amount of algae and nutrients in the water, the abundance of underwater grasses, and the strength of certain fish stocks, including blue crab and striped bass. Introduced in this year’s report card, the Climate Change Resilience Index will measure the Bay’s ability to withstand rising sea levels, rising water temperatures and other impacts of climate change.

UMCES Vice President for Science Applications and Professor Bill Dennison attributed the Bay’s steady course to local management actions. While pollution-reducing technologies installed at wastewater treatment plants have improved the health of some rivers along the Bay’s Western Shore, continued fertilizer applications and agricultural runoff have stalled improvements along the Eastern Shore, Dennison said in a media release.

Learn more.



May
22
2014

Thirty-six access sites open along Chesapeake rivers and streams in 2013

Last year, Chesapeake Bay Program partners opened 36 new public access sites along rivers and streams in the watershed, bringing the total number of access sites in the region to 1,208. In fact, more public access sites were opened in 2013 than in previously tracked years, as states work to meet the public’s high demand for ways to get on the water.

State, federal and local governments are often the guardians of public access sites, providing opportunities for people to swim, fish and launch their boats into the Bay. But because physical access to the Bay and its tributaries remains limited—with real consequences for quality of life, the economy and long-term conservation—Bay Program partners set a goal in 2010 to add 300 new public access sites to the watershed by 2025. As of 2013, partners have added 69 sites, meeting 23 percent of this goal.

From floating canoe launches to bank fishing opportunities, increasing public access to open space and waterways can strengthen the bond between people and place, boosting local tourism economies and creating citizen stewards who are engaged in conservation efforts.

“Having public access to enjoy and learn about the value of nature is important,” said Bay Program Director Nick DiPasquale in a media release. “I believe that you value what you know, and you are motivated to protect what you value. Whether it’s a relaxing trip along a shoreline or a paddle on a pond or stream, when more people get to know and value the Chesapeake Bay and its rivers and streams, more people will be driven to protect it.”

Learn more.



410 Severn Avenue / Suite 112
Annapolis, Maryland 21403
Tel: (800) YOUR-BAY / Fax: (410) 267-5777
Directions to the Bay Program Office
Terms of Use | Privacy Policy
©2012 Chesapeake Bay Program | All Rights Reserved