Text Size: A  A  A

Bay Blog: Susquehanna River

Apr
25
2013

Bay Foundation cites nutrient pollution as big threat to smallmouth bass

Over the past decade, smallmouth bass in five Chesapeake Bay tributaries have suffered from fish kills and perplexing illnesses—and nutrient pollution could be to blame.

According to a new report from the Chesapeake Bay Foundation (CBF), excess nitrogen and phosphorous in our rivers and streams could be behind two of the leading problems affecting smallmouth bass: first, the rapid growth of fish parasites and their hosts, and second, the expansion of large algae blooms that can lead to low-oxygen conditions and spikes in pH. When paired with rising water temperatures and ever more prevalent chemical contaminants, nutrient pollution seems to have created a “perfect storm” of factors that are making smallmouth bass more susceptible to infections and death.

Image courtesy Mr. OutdoorGuy/Flickr

In a media call, CBF President Will Baker called the smallmouth bass “the canary in the coal mine for the Bay’s rivers.” Because the fish is sensitive to pollution, problems within the population could indicate problems within the Bay.

Smallmouth bass in the Susquehanna, Monocacy, Shenandoah, Cowpasture and South Branch of the Potomac rivers have seen a string of recent health problems, from open sores and wart-like growths to abnormal sexual development. In the Susquehanna, smallmouth bass populations have plummeted so far that Pennsylvania has made it illegal to catch the fish during spawning season.

“Our fish are sick, our anglers are mad and my board and I—protectors of our [smallmouth bass] fishery—are frustrated,” said John Arway, executive director of the Pennsylvania Fish and Boat Commission. “Our bass, and our grandchildren who will fish for them, are depending on us to fix the problem.”

Image courtesy CBF

While specific causes of smallmouth bass fish kills and illnesses remain unclear, CBF has called on state and local governments to accelerate their pollution-reduction efforts in hopes of improving water quality and saving the driving force behind a $630 million recreational fishing industry. The non-profit has also called on the federal government to designate a 98-mile stretch of the Susquehanna as impaired, which would commit Pennsylvania to reversing the river’s decline.

“This is the moment in time to save fishing in our streams and rivers, as well as the jobs and quality of life that are connected to it,” Baker said.

Read more about Angling for Healthier Rivers: The Link Between Smallmouth Bass Mortality and Disease and the Need to Reduce Water Pollution in Chesapeake Bay Tributaries.



Aug
30
2012

Sediment reservoirs in lower Susquehanna reach capacity, deliver more pollutants into Bay

Sediment reservoirs near the mouth of the Susquehanna River are filling up faster than researchers expected, posing a new obstacle for improving water quality in the Chesapeake Bay. 

As the holding areas behind the lower Susquehanna's three dams reach capacity, their ability to trap upriver sediment and the phosphorous that is often attached wanes, and the sediment that is held grows more and more likely to flow out of the reservoirs and into the river.

Image courtesy Jane Thomas/Integration and Application Network/University of Maryland Center for Environmental Science.

According to a report released by the U.S. Geological Survey (USGS), strong storms, severe flooding and faster-moving water have turned the one-time pollutant blockers into less effective gates.

The Susquehanna delivered more phosphorous and sediment into the Bay last year than it has in more than three decades of monitoring. The past 15 years have seen a 55 percent increase in phosphorous entering the Bay from the river and a 97 percent increase in sediment. And while nitrogen flow has dropped, it shows a jump during large storms--like Tropical Storm Lee in 2011 or Hurricane Ivan in 2004--and the flooding that follows.

Excess nutrients and sediment can harm fish, shellfish and underwater grasses. Nitrogen and phosphorous fuel the growth of algae blooms that rob water of oxygen and, with suspended sediment, cloud the water and block the sunlight that plants need to grow.

A previous USGS report cited improvements in nutrient and sediment trends as a sign of improving Bay health. The USGS has seen significant reductions in nutrient and sediment concentrations upstream of the reservoirs, which reflect the positive impacts of conservation efforts in the Susquehanna watershed. But the filling reservoirs behind the Safe Harbor and Holtwood dams in Pennsylvania and the Conowingo Dam in Maryland overshadow the pollution reduction progress that is being made.

The Lower Susquehanna River Watershed Assessment team, composed of federal, state and regional partners and administered by the U.S. Army Corps of Engineers, is exploring ways to expand the reservoirs' capacity. 

Learn more about the flow of nitrogen, phosphorous and suspended sediment from the Susquehanna River into the Bay



Jun
12
2012

Tributary Tuesday: Muddy Creek (York, Pa.)

Just north of the Mason-Dixon line, the North and South branches of the 17-mile-long Muddy Creek transverse farm lands and orchards, and in some places, wild trout flourish. The two forks meet at an old railroad village appropriately named Muddy Creek Forks. The settlement was once a bustling industrial hub along the Maryland and Pennsylvania Railroad, but today, restored general stores and railroad tracks take visitors to a time when “workin’ on the railroad” was a way of life. Take a tour of the town’s historic buildings – structures with names like “milk collection building” and “coal bins” that have escaped the modern vocabulary.

Muddy Creek watershed

(Image courtesy Bruce E. Hengst, Sr./Flickr)

As the creek flows through York County’s Peach Bottom and Lower Chanceford Township, its character shifts from an agricultural stream to that of a mountain river, decorated with huge boulders, flat pools, mountain laurel, and hemlock groves.

Locals spend hot summer days in the swimming holes along this section of Muddy Creek. Unfortunately, more of these swimming holes are being closed down each year due to illegal dumping violations and the threat this poses to human health.

Other outdoor enthusiasts choose to hike along the a section of the Mason Dixon Trail, which begins at the intersection of Muddy Creek and Paper Mill Road and goes to the Susquehanna River. Paddlers enjoy this section of the creek, particularly in the early spring, when the entire stretch is canoeable.

Trout fishermen from all over the country flock to Muddy Creek. A two-mile Delayed Harvest section between Bruce and Bridgeton is particularly poplar. Still others speak about the scenery between Woodbine and Castle Fin, a section of the creek only accessible via the old railroad bed.

Muddy Creek meets the Susquehanna River north of the Conowingo Dam, shortly before it flows into the Chesapeake Bay.

More from Muddy Creek:

Caitlin Finnerty's avatar
About Caitlin Finnerty - Caitlin Finnerty is the Communications Staffer at the Chesapeake Research Consortium and Chesapeake Bay Program. Caitlin grew up digging for dinosaur bones and making mud pies in Harrisburg, Pa. Her fine arts degree landed her environmental field work jobs everywhere from Oregon to Maryland. Now settled in Baltimore, she is eagerly expecting her first child while creating an urban garden oasis on her cement patio.



May
17
2012

Four new rivers join Captain John Smith Chesapeake Trail

The National Park Service, with support of five states, has designated four rivers – the Susquehanna, Chester, upper Nanticoke and upper James – as new sections of the Captain John Smith Chesapeake National Historic Trail.

Maryland Governor Martin O'Malley talks about the Captain John Smith Trail.

(Image courtesy Michael Land/National Park Service)

Recognition of these connecting waterways adds 841 miles to the 3,000-mile-long trail and underscores their significance to the history, cultural heritage and natural resources of the Chesapeake region.

Joel Dunn, executive director of Chesapeake Conservancy said, “These [connecting] trails provide a focus around which communities can engage in efforts to increase recreational use of the Chesapeake's great rivers and protect the river corridors and landscapes. This kind of conservation helps communities celebrate their history and culture, protect wildlife habitat, and protect lands that have unique ecological values.”

The designation comes after considerable collaboration between the National Park Service, the five states through which these rivers flow, numerous American Indian tribes and strong support of the conservation community. The National Park Service will work closely with these partners to provide technical and financial assistance, manage resources, enhance facilities, and mark and promote interpretive routes along the connecting trails.

Visit the Chesapeake Conservancy’s website to learn more about these new rivers and the entire Smith Trail.



Apr
25
2012

Watershed Wednesday: Upper Susquehanna Coalition (New York and Pennsylvania)

Once bustling with flour mills, furniture factories and dye shops, Towanda, Pennsylvania’s industrial feel differs from the quaint, historic atmosphere of Annapolis, Maryland. And with 246 miles between the two cities, it’s easy to forget they’re both part of the same Chesapeake Bay watershed.

Towanda, Pennsylvania

(Image courtesy Slideshow Bruce/Flickr)

Towanda, located in northeastern Pennsylvania, is considered the southernmost point of the upper Susquehanna watershed, an area that drains into the headwaters of the Susquehanna River. The 7,500-square-mile region between Towanda and Morrisville, New York, contains more miles of streams than roads.

This is the region where the Upper Susquehanna Coalition (USC) works to enhance water quality and protect natural resources. The 19 soil and conservation districts that make up USC understand that enhancing the Susquehanna’s headwaters (where a stream or river begins) is critical to restoring the Chesapeake Bay. If the water flowing into the Susquehanna River is not clean from the start, it certainly won’t get cleaner as it passes through riverside towns including Binghamton, Scranton, Wilkes-Barre, Harrisburg and Havre de Grace.

What does USC do?

Agriculture

USC is developing environmentally and economically sustainable agriculture projects that empower family farmers while implementing conservation practices such as agricultural fencing that prevents animal waste from entering streams.

Stream corridor rehabilitation

Stream rehabilitation projects improve a stream’s health and habitat potential. Forest buffer plantings along stream banks hold soil in place, keep streams cool and reduce flooding. Stream bank erosion prevention measures reduce the amount of sediment that flows into a stream and eventually the Bay.

Wetland restoration

Because wetland plants can retain water during heavy rainstorms, restoring and enhancing wetlands is an important step to reduce flooding. Wetlands also provide wildlife habitat and reduce pollution by absorbing and filtering out harmful sediment and nutrients.

Upper Susquehanna watershed

(Image courtesy AllianceForTheBay/Flickr)

More from the upper Susquehanna basin:

  • The Finger Lakes Land Trust owns the Sweedler Preserve, a 128-acre property thick with eastern hemlocks and white pines. The Finger Lakes/North Country trail crosses through the Sweedler Preserve, transversing scenic waterfalls.
  • Graze NY helps farm families adopt grazing management systems that enhance financial, environmental and social well-being.
  • The Susquehanna Sojourn is a four-day, 60-mile paddling and camping trip from Cooperstown, New York to Sidney, Pennsylvania.
Caitlin Finnerty's avatar
About Caitlin Finnerty - Caitlin Finnerty is the Communications Staffer at the Chesapeake Research Consortium and Chesapeake Bay Program. Caitlin grew up digging for dinosaur bones and making mud pies in Harrisburg, Pa. Her fine arts degree landed her environmental field work jobs everywhere from Oregon to Maryland. Now settled in Baltimore, she is eagerly expecting her first child while creating an urban garden oasis on her cement patio.



Dec
15
2011

Susquehanna Flats bay grass beds survive late summer hurricanes, rain storms

Though the final figures on the overall health of the Bay’s underwater grasses won’t be available for a few months, in late November, scientists with the Chesapeake Bay Program’s (CBP’s) team that monitors the abundance of the Bay’s grasses had a pleasant surprise.  Aerial survey images of the vast grass-filled Susquehanna Flats, the circular area where the Susquehanna River meets the Bay, were not pictures of devastation as was feared, but pictures of health, showing that these valuable Bay habitats survived the fall’s deluge of runoff and sediment better than expected.

During Hurricane Irene and Tropical Storm Lee, experts out monitoring the effects of these storms noted large tangles of all varieties of uprooted Bay grasses floating downstream.  Based on these visual accounts and their knowledge of the devastation that events such as Tropical Storm Agnes wrought on the Bay’s grass beds almost forty years ago, hopes among scientists were not high for these habitats, which are a critical food source for over-wintering waterfowl at this time of year and that are vital as shelter for juvenile Bay creatures in the spring.

“We were incredibly surprised at how much of the grass bed remained on the Flats,” says Robert Orth of Virginia Institute of Marine Sciences (VIMS) and leader of the team that conducts the annual survey of Bay grasses.  “While we did see some declines along the flanks and edges of that big bed, my gut feeling says next year should be ok for grass beds up there.  And the fact that we are now seeing overwintering waterfowl in our photographs is a good sign that lots of food is available.”

CBP’s Associate Director for Science Rich Batiuk commented, “Back on those days of Tropical Storm Lee, looking at the deluge of water over the Conowingo Dam, I would’ve bet that we had lost the Flats grasses entirely. Their survival is a good example of how large, dense beds can survive extreme conditions and another indicator of the Bay’s resilience.” 

-------------------

Compare the underwater grass beds on the Susquehanna Flats in VIMS aerial photographs in 2010 and 2011 at http://thumper-web.vims.edu/bio/sav/wordpress/archives/1458



Dec
13
2011

Tributary Tuesday: Cayuta Lake and Cayuta Creek (New York and Pennsylvania)

The story of upstate New York's Cayuta Creek begins as all good stories do: once upon a time, when – according to local folklore – a young and talented princess named Kayutah was born into a local Seneca tribe. Kayutah was so extraordinary that one of the neighboring tribes kidnapped her. Her devastated mother cried so many tears that they filled the entire valley, creating what is now known as Cayuta Lake.

Cayuta Creek

(Image courtesy Chris Waits/Flickr)

Cayuta Lake, known locally as Little Lake, drains north to south instead of south to north, just like the nearby Finger Lakes. It empties into the 40-mile-long Cayuta Creek, which meanders south before emptying into the Susquehanna River. Cayuta Lake’s waters, or “Kayuta's tears," travel some 300 miles south before reaching the Chesapeake Bay!

Although the aforementioned legend affirms that the lake was born out of sadness, the surrounding region is now a favorite of outdoor enthusiasts and vacationers alike. Like most of the region’s small lakes, Cayuta Lake completely freezes during the winter, offering opportunities for ice skating, cross-country skiing and snowshoeing. There have even been reports of people racing their cars on the lake – although we don’t endorse that idea!

Cayuta Lake and the surrounding areas provide a pristine habitat for rare plants and animals. The best example is a freshwater sponge (Spongilla) that is so sensitive to pollution and human disturbances that the only other place in the world it can be found is Siberia! The sponge lives in the Cayuta Inlet, an area known as the James W. and Helene D. Allen Preserve that’s a favorite study spot of Cornell University students. These sponges are the only food source for the Spongilla fly, a rare insect.

And where there are insects, there are also...fly fishermen! Freshwater trout are abundant in Cayuta Lake and Cayuta Creek. But if you don't want to get in the water, the Finger Lakes Trail provides the perfect opportunity to view this scenic stream. The trail runs from Watkins Glen State Park over State Route 228, and follows Cayuta Creek for miles south. Rumor has it that spring is the best time for hikers, as Watkins Glen is home to rare native flowers and ferns. Not to mention the park's magnificent gorge, rapids and waterfalls, formed by glaciers during the last Ice Age.

Watkins Glen State Park

(Image courtesy She Who Shall Not Be Named/Flickr)

There are plenty of other natural areas surrounding Cayuta Lake and Cayuta Creek. Here are some of my favorites:

Caitlin Finnerty's avatar
About Caitlin Finnerty - Caitlin Finnerty is the Communications Staffer at the Chesapeake Research Consortium and Chesapeake Bay Program. Caitlin grew up digging for dinosaur bones and making mud pies in Harrisburg, Pa. Her fine arts degree landed her environmental field work jobs everywhere from Oregon to Maryland. Now settled in Baltimore, she is eagerly expecting her first child while creating an urban garden oasis on her cement patio.



Nov
23
2011

Watershed Wednesday: Paxton Creek Watershed and Education Association (Dauphin County, Pennsylvania)

Every summer of my childhood, I dug for crayfish, collected rocks and even searched for treasure in Paxton Creek, a stream that ran through my neighborhood park in Harrisburg, Pennsylvania. Little did I know that this stream flowed into the Susquehanna River, a tributary of the nation’s largest estuary. Reflecting on these childhood experiences, I realize that Paxton Creek may have been where I first cultivated my affection for the natural world.

Paxton Creek

(Image courtesy Artman1122/Flickr)

Soon after beginning at the Bay Program, I discovered the Paxton Creek Watershed and Education Association (PCWEA), a volunteer organization that’s working to restore this stream and cultivate a new generation of environmentalists as they comb its waters for crayfish.

As its name suggests, PCWEA’s mission is more than “science”; the organization places just as much emphasis on creating environmental education opportunities and fostering community relationships.

PWCEA’s projects range from a community-wide Crayfish Crawl to control the invasive rusty crayfish to a tour of stormwater best management practices that neighborhoods, schools and localities have adopted to help reduce pollution.  Because Paxton Creek flows from rural areas in the headwaters (near Blue Mountain) to the city of Harrisburg, PCWEA volunteers have the opportunity to work at the interface of urban, suburban and rural environments.

Paxton Creek’s biggest threat is pressures from development, which has inundated the upper portion of the watershed since PCWEA was established in 2001. The creek’s upland portions flow through Harrisburg’s suburbs – areas that were once farms and woodlands. Even since I left the area in 2005, abandoned fields and wooded lots have been converted into gas stations, housing developments and shopping centers. Sure, this means that many of the secret hideouts of my childhood have disappeared, but it also means that there are more roads, parking lots and buildings. These paved, or impervious, surfaces do not allow stormwater to soak into the ground; instead, it flows into storm drains, carrying oil, pet waste and other pollutants along with it.

But just because PCWEA doesn’t like impervious surfaces doesn’t mean that the group is against development. Instead, it views the changing land use patterns and rapidly increasing population as an opportunity to promote sustainable growth and influence new residents to install beneficial landscaping techniques.

“There are modes of development that can achieve satisfactory runoff infiltration with less impervious surface,” E. Drannon Buskirk writes in PCWEA’s latest newsletter.

PCWEA has partnered with the Susquehanna River Basin Commission to showcase best management practices already implemented in the creek’s 27-square-mile watershed. Residents can view rain gardens, rain barrels and conservation landscaping examples, or they can take an online tour of the sites.

In case you’d rather see the other end of the spectrum, PCWEA has compiled a driving and online tour of “hot spots”: streamside areas that are eroding and contributing sediment pollution to the creek.

PCWEA seeks to reduce impervious surfaces and sediment pollution, but it is also interested in involving the community’s 60,000 stakeholders in community greening projects.

My favorite PCWEA project: A streamside tree nursery

PCWEA has a streamside tree nursery in my old neighborhood park, Shutt Mill Park. Community members work together to maintain the nursery.

Paxton Creek tree nursery

These trees keep the soil in place, preventing sediment pollution from clouding the creek. Also, their roots absorb rainwater, which reduces flooding and stormwater runoff. And as these trees mature, they will provide habitat for wildlife and shade the creek, keeping water temperatures cool.

Do you live near Paxton Creek? Get involved today!

There are plenty of opportunities for people to help restore and protect Paxton Creek, such as tabling at the Dauphin County Wetlands Festival, leading youngsters in creek explorations, and implementing sustainable landscaping practices on your own property.

Paxton Creek volunteers

(Image courtesy Paxton Creek Watershed and Education Association)

Contact PCWEA for more information on how you can help Paxton Creek.

Caitlin Finnerty's avatar
About Caitlin Finnerty - Caitlin Finnerty is the Communications Staffer at the Chesapeake Research Consortium and Chesapeake Bay Program. Caitlin grew up digging for dinosaur bones and making mud pies in Harrisburg, Pa. Her fine arts degree landed her environmental field work jobs everywhere from Oregon to Maryland. Now settled in Baltimore, she is eagerly expecting her first child while creating an urban garden oasis on her cement patio.



Sep
14
2011

Satellite image shows sediment pollution flowing into Chesapeake Bay

Plumes of sediment were observed flowing down the Susquehanna River into the Chesapeake Bay this week after the remnants of Tropical Storm Lee brought heavy rainfall to Pennsylvania and Maryland.

Chesapeake Bay satellite image

The large rainfall totals caused rivers to swell, washing dirt and pollution off the land and carrying it downstream to the Bay. Record flooding and water levels were recorded at Conowingo Dam on the Susquehanna River last week.

Image courtesy NASA/GSFC/MODIS



Feb
04
2011

Four river monitoring programs show mixed results for Susquehanna River water quality

Four monitoring reports by the Susquehanna River Basin Commission (SRBC) show both good and poor results for the health of the Susquehanna River and its tributaries. The reports focus on the Susquehanna River and other large rivers; the West Branch Susquehanna Subbasin; the Lackawanna River; and streams that cross the New York-Pennsylvania and Pennsylvania-Maryland state lines.

Researchers with the Susquehanna Large River Assessment Project found fairly good water quality at the eight stations they assessed in the upper and middle Susquehanna subbasins and the Chemung River, located between Sidney, N.Y., and Towanda, Pa. Four of the sites were designated as “non-impaired,” while three sites were slightly impaired and one site was moderately impaired. Only 4.5 percent of the water quality values exceeded their respective limits.

During the Middle Susquehanna Subbasin Year-2 Survey, researchers studied water quality in the Middle Susquehanna Subbasin, focusing on the Lackawanna River watershed. In particular, SRBC examined the effects of stormwater runoff and combined sewer overflows on the health of the Lackawanna River and its tributaries. Researchers found that during storms, nutrients and suspended solids often exceeded water quality standards. Some of this pollution was likely due to the introduction of human sewage from combined sewer overflows.

Abandoned mine drainage, followed by pollution from air deposition, was the most prevalent pollution issue found during the West Branch Susquehanna Subbasin Year-1 Survey. Researchers collected samples at 141 sites and found that the percentage of impaired streams in this subbasin continued to be higher than in other parts of the Susquehanna River basin.

During the Assessment of Interstate Streams in the Susquehanna River Basin, researchers found that streams crossing the New York-Pennsylvania state line most frequently exceeded aluminum and iron standards. Many Pennsylvania-Maryland state line streams, which are located in a heavily agricultural region, had high nutrient concentrations.

The monitoring results are included in four technical reports, which are available on SRBC's website.



Oct
26
2010

First State of the Susquehanna Report Details Successes, Opportunities

The Susquehanna River Basin Commission (SRBC) has released the first-ever State of the Susquehanna report, which details successes, partnerships, threats and opportunities for seven key indicators influencing the Susquehanna River basin’s health.

The State of the Susquehanna includes data, maps, feature stories and other information that tells the story of the Susquehanna River basin. The report also highlights how the seven indicators relate to the health of the Chesapeake Bay.

The seven indicators in the State of the Susquehanna are:

  • Water use and development draws attention to new water uses being driven by increased activity in the energy sector.
  • Floods and droughts showcases the Susquehanna Flood Forecast and Warning System and drought response activities throughout the Susquehanna River basin, which is one of the most flood-prone watersheds in the United States.
  • Stormwater includes data that show increases of stormwater runoff and projected urban development pressure in the basin.
  • Abandoned mine drainage has impaired about 1,940 stream miles in the basin, making it the second largest and the most severe contributor to stream impairment.
  • Sediment and nutrients are the two largest contributors to stream impairment, polluting about 3,800 stream miles in the basin.
  • Human health and drinking water protection lists impaired streams, fish consumption advisories and contaminants that are regulated by federal and state standards.
  • Habitat and aquatic resources lists the benefits of and threats to healthy aquatic resources in the basin.

“Despite gradual improvements, the Susquehanna will continue to experience enormous pressure, calling for additional research, including on potential impacts from the development of natural gas reserves in the Marcellus Shale on the watershed, especially in its headwaters areas,” said Dr. Benjamin Hayes, director of the Susquehanna River Initiative, Bucknell Environmental Center.

Along with Bucknell University, other partners in the State of the Susquehanna include the U.S. EPA Region 3 and the Susquehanna River Heartland Coalition for Environmental Studies.

Visit SRBC’s website for more information about the State of the Susquehanna report.



Oct
29
2009

After search, status of elusive Maryland darter still unknown

The Search for the Maryland Darter from Chesapeake Bay Program on Vimeo.

A crew of about a dozen biologists from the Maryland Department of Natural Resources (DNR), Frostburg University and Marshall University spent an October afternoon searching for the Maryland darter, a fish that was last seen in 1988 and is feared to be extinct. Though their search proved unsuccessful, biologists are not giving up hope.

The Maryland darter, a 2- to 3-inch long fish, was last seen by Dr. Richard Raesly of Frostburg University in 1988. The fish has historically been found in just three Maryland streams near the mouth of the Susquehanna River. Using new technology, Dr. Raesly worked with Tom Jones of Marshall University to sample the river bottom at Susquehanna State Park.

The crew of biologists divided into two teams that worked with two large seine nets to try to catch the darter. One person on each team wore a backpack with an electric shocker that could send a current into the water in a 3-foot radius. The electric current does not harm fish; it only stuns them so biologists can easily gather them in the seine net for an accurate sample of the stream.

Pulling up the net, the team members sifted through leaves, sediment and other creatures in search of the Maryland darter. But no luck. Once an area had been sampled, the team moved downstream to continue the search.

Scientists involved with the project all gave the same answer as to why it is important to find the darter, particularly now: biodiversity.

DNR biologist Scott Stranko explained that just as the entire world is becoming more socially homogenized, the environment is undergoing the same kind of transformation, with just a few species that are found everywhere.

“All the streams are looking very much the same and we’re losing that specialness,” Stranko said. “While Maryland has been losing native stream species, we’ve gained widespread non-native species like carp and snakeheads that can be found all over the world. If this trend continues, no streams will be special like the Maryland darter streams once were.”

The livelihood of small species such as the darter also speaks volumes about the health of the tributaries that lead to the Chesapeake Bay. Since the Maryland darter was last seen in 1988, development has boomed in the areas surrounding Susquehanna State Park. In this landscape of overdevelopment, just a small amount of concrete or asphalt near the river’s freshwater streams is all it takes to create enough polluted runoff to harm underwater life. Biologists believe this is the main cause of the disappearance of the darter.

The fear that the Maryland darter is extinct still looms in the biologists’ minds. But they are hopeful that new technology and the largest search effort in decades will help them rediscover this rare fish.

The team will trawl the Susquehanna River once again on November 6-8 to continue the search. For more information about the Maryland darter, visit DNR’s website.



410 Severn Avenue / Suite 112
Annapolis, Maryland 21403
Tel: (800) YOUR-BAY / Fax: (410) 267-5777
Directions to the Bay Program Office
Terms of Use | Privacy Policy
©2012 Chesapeake Bay Program | All Rights Reserved