Text Size: A  A  A

Bay Blog: climate resiliency


Reports outline climate change impacts in Bay region and beyond

A recent report from the U.S. Environmental Protection Agency outlines trends related to climate change in the United States, with data related to 37 climate indicators such as air and water temperatures, river and coastal flooding, ocean acidity and sea level rise.

Motorists drive through a flooded section of Llewelyn Avenue near the Lafayette River in Norfolk, Virginia. The frequency of high-tide or nuisance flooding is expected to increase in part due to climate change and sea level rise.

New to the fourth edition of Climate Change Indicators in the United States is information on stream temperatures in the Chesapeake Bay region. After studying more than 50 years’ worth of data from 129 stream monitoring sites, experts found that stream temperatures are increasing throughout the watershed—across Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia—but the largest increases have occurred in the southern portions of the region. Water temperatures increased by an average of 1.2 degrees Fahrenheit (F) across all sites and by 2.2 degrees F at sites with trends considered statistically significant (to a 95-percent level).

Other effects of climate change throughout the Chesapeake Bay region are highlighted in the report. Washington, D.C., for example, has seen peak cherry blossom bloom dates shift approximately five days earlier since 1921. And from 2010 to 2015, Annapolis, Maryland, saw the second highest average number of coastal flood days: 46 days per year. The city has also experienced one of the most dramatic increases in overall frequency of flooding, where floods are at least 10 times more common than in the 1950s.

Also released in August is the National Ocean and Atmospheric Administration’s (NOAA) State of the Climate report, which confirmed that 2015 surpassed 2014 as the warmest year on record since the mid-to-late 19th century. The report, which is based on contributions from more than 450 scientists from 62 countries, found that land and ocean temperatures, sea level rise and greenhouse gases all broke previously-held records.

Learn more about Climate Change Indicators in the United States or the State of the Climate.


Using “green infrastructure” to build climate resiliency

Almost daily, the local media is reporting stories about climate change and the likely impacts to the Chesapeake Bay region, its resources and our way of life. All in all, the short story is that the Chesapeake region is facing a warmer and wetter future: one that will very likely be characterized by higher sea levels, an increase in coastal and river flooding and more intense extreme weather events, such as Nor’Easters or tropical storms.

Natural and green infrastructure techniques, like this living shorelines project at the Virginia Institute of Marine Science (VIMS), help promote climate resiliency in the Chesapeake region.

Recognizing the need to gain a better understanding of the likely impacts as well as potential management solutions for the watershed, a new goal was added to the 2014 Chesapeake Bay Watershed Agreement, committing the Chesapeake Bay Program partnership to take action to: “increase the resiliency of the Chesapeake Bay watershed, including its living resources, habitats, public infrastructure and communities, to withstand adverse impacts from changing environmental and climate conditions.” To achieve this goal, Bay Program partners are now working together to formulate plans and undertake targeted efforts to monitor and assess the trends and likely impacts of a changing climate, and to implement restoration and protection projects to enhance the resiliency of the larger ecosystem.

You might be asking yourself, what does “resiliency” mean, particularly in the context of climate change planning in the Chesapeake Bay? Although it is not a new word per se, resiliency is a fairly recent term in fields of hazard and disaster planning, as well as climate change preparedness. Building off one of the more common definitions of “resilience” from the National Research Council, it essentially means to plan and prepare for, reduce and absorb the impacts of, recover from, and more successfully adapt to adverse effects of changing environmental, economic and social conditions.

The management strategy for Climate Resiliency, released in June 2015, serves as the climate planning and preparedness guide for the Chesapeake Bay Program partnership. The strategy is founded upon a number of the resiliency principles listed above, particularly with respect to pursuing specific actions to successfully adapt to anticipated future adverse changes. A growing interest among the partnership in this regard is the promotion of natural or “green infrastructure” solutions to protect coastal communities from impacts associated with sea level rise and coastal storms.

The use of natural and other green infrastructure techniques, including living shorelines, beach nourishment, forested buffers, bay islands and tidal wetlands, is a move away from the use of more traditional structural shore protection practices such as groins, breakwaters, seawalls and bulkheads. Natural solutions such as these can dampen and absorb wave energy and attenuate coastal flood waters, increasing the resiliency of a coastal community while also offering valuable ecosystem benefits, such as nursery grounds and habitat for near shore species. It’s a win-win solution for coastal communities as well as the Bay.

To learn more about climate change in the Chesapeake Bay region, visit our Learn the Issues: Climate Change page. To find more information on the Chesapeake Bay Program’s climate resiliency planning efforts or to sign up for our topical newsletter, Chesapeake Resiliency, visit the Climate Change Workgroup page.


Written by Zoe Johnson, Climate Change Coordinator for the Chesapeake Bay Program.


Study suggests salt marshes could persist despite rising sea levels

Salt marshes may be more resilient to the effects of rising sea levels than previously thought, according to a recent study from the Virginia Institute of Marine Science (VIMS).

Climate change is expected to bring a multitude of changes to the Chesapeake Bay region, including a rise in sea levels. As waters rise, marshes and wetlands are predicted to be overcome by water and disappear faster than wetland plants can move to higher ground, meaning a loss of important habitat that traps pollution and provides food and shelter to fish, shellfish and birds.

But the VIMS study suggests that salt marshes—coastal wetlands that are flooded and drained by salt water brought in by tides—may be able to persist through processes that allow the marshes to grow vertically and migrate inland. According to the report, more frequent flooding brings more mud into the salt marsh, raising the soil and encouraging the growth of common marsh plants.

“Predictions of marsh loss appear alarming, but they stem from simple models that don’t simulate the dynamic feedbacks that allow marshes to adapt,” said lead author Matt Kirwan in a release. “Marsh soils actually build much faster as marshes become more flooded.”

The researchers emphasize, however, the importance of allowing salt marshes to migrate inland—and that marshes are unable to migrate into areas blocked by coastal cliffs or hardened shorelines. Nearly 20 percent of the Chesapeake Bay’s shoreline is hardened by riprap, seawalls and other structures.

The study, “Overestimation of marsh vulnerability to sea level rise,” is published in Nature Climate Change.


Bay Program partners welcome new Climate Change Coordinator

The effects of a changing climate are all around us. Monitoring data shows us that sea levels are rising, water temperatures are increasing and carbon levels are spiking. We can see the impacts of these changes in animal, tree and plant species as they migrate due to shifting conditions. Likewise, pests and diseases are showing up in places where they have never been seen before.

For years, members of the Chesapeake Bay Program’s Scientific and Technical Advisory Committee (STAC) have been advising us to take the effects of climate change into account as we develop plans and programs for our watershed restoration efforts. Similar recommendations and directives have been included in the President’s Chesapeake Bay Executive Order (13508) and in reports from the Government Accountability Office and the National Academy of Sciences. With the signing of the new Chesapeake Bay Watershed Agreement in 2014, the issue of climate resiliency has moved front and center. Climate Resiliency is included as one of the ten overarching goals of the accord, with two specific outcomes for adaptation and for monitoring and assessment. The Agreement also recognizes that climate change will affect progress toward the achievement of other goals, requiring Bay Program partners to cross-coordinate among their Goal Implementation Teams.

Climate change is a big deal: it threatens to render less effective or even undo many of the restoration efforts we have made over the past 30 years. Fortunately, an interagency agreement with the National Ocean and Atmospheric Administration (NOAA) has allowed for the establishment of a new position: Chesapeake Bay Program Climate Coordinator. The Bay Program has selected Zoë P. Johnson, previously the Director of Resiliency Planning and Policy for the Maryland Department of Natural Resources, to serve in this position.

Zoë has been actively involved in sea level rise and coastal resiliency planning initiatives at federal, regional, state and local levels since 1998 and is the author of various reports and publications on sea level rise and coastal policy. She served as the Co-Chair of the Chesapeake Bay Program Partnership’s Climate Resiliency Workgroup and serves as key staff to Maryland’s Coast Smart Council and the Commission on Climate Change. The state of Maryland released its Strategy for Reducing Vulnerability to Climate Change: Sea Level Rise and Coastal Storms in 2008, and its Strategy for Building Societal, Economic and Ecologic Resilience in 2011. Using these strategies as a guide, Zoë was responsible for overseeing the development of state-level policy, as well as the execution of on-the-ground projects to implement a suite of natural resource adaptation priorities.

The impacts of climate change will affect the Chesapeake Bay and its ecosystem more dramatically than many other areas of the country—but Zoë is ideally suited to take on this very significant and important task. This is an exciting moment for the Bay Program partnership, and we are incredibly fortunate to have someone with Zoë’s background and breadth and depth of experience to be leading this effort. She knows the Bay Program, she knows climate change issues, she knows the players; she will be able to hit the ground running.


Note: The opinions expressed above are those of the author and do not necessarily reflect U.S. EPA policy endorsement or action.

Nick DiPasquale's avatar
About Nick DiPasquale - Nick has nearly 30 years of public policy and environmental management experience in both the public and private sectors. He previously served as Deputy Secretary in the Pennsylvania Department of Environmental Protection, Director of the Environmental Management Center for the Brandywine Conservancy in Chadds Ford, Pennsylvania and as Secretary of the Delaware Department of Natural Resources and Environmental Control.


East Coast to experience more ‘nuisance floods’ as sea levels rise

Eight of the top 10 U.S. cities that have seen an increase in “nuisance flooding” alongside rising seas are on the East Coast, according to a new report from the National Oceanic and Atmospheric Administration (NOAA).

Four of the top 10 cities are in the Chesapeake Bay watershed. Annapolis and Baltimore lead the list with a 925 and 920 percent increase in their average number of nuisance floods since 1960. Washington, D.C., has seen a 373 percent increase, while Norfolk has seen a 325 percent increase.

According to the report, nuisance flooding—or minor flooding that closes roads, overwhelms storm drains and compromises infrastructure never designed to withstand inundation or saltwater exposure—will worsen as sea level rise accelerates. Indeed, nuisance flooding has become “more noticeable and widespread” because of rising seas, sinking land and the loss of natural flood barriers.

“As relative sea level increases, it no longer takes a strong storm or a hurricane to cause flooding,” said William Sweet, oceanographer and lead author of the report, in a media release. “Flooding now occurs with high tides.”

Image courtesy rwillia533/Flickr

The study was conducted by scientists at the Center for Operational Oceanographic Products and Services, who compared data from 45 tide gauges with reports of nuisance floods; whether or not a nuisance flood has taken place is determined at the local level by a National Weather Service threshold. It is hoped the findings will “heighten awareness of a growing problem” and “encourage resiliency efforts in response to” sea level rise.

An understanding of where floods are occurring is integral to building climate resiliency. Once coastal communities know where environmental threats and vulnerabilities lie, they can take steps to move growth and development away from the coast, enhance preparedness efforts to protect human health and protect and restore wetlands, buffers and barrier islands that might shield the shoreline from strong wind and waves.

The Chesapeake Bay Program has set a goal to increase the climate resiliency of the watershed’s living resources and public infrastructure, using monitoring, assessment and adaptation to ensure the region withstands the impacts of a changing climate.

Learn more.

410 Severn Avenue / Suite 112
Annapolis, Maryland 21403
Tel: (800) YOUR-BAY / Fax: (410) 267-5777
Directions to the Bay Program Office
Terms of Use | Privacy Policy
©2012 Chesapeake Bay Program | All Rights Reserved