Text Size: A  A  A

Bay Blog: dissolved oxygen


Five signs of resilience in Chesapeake Bay health

Since our formation in 1983, the Chesapeake Bay Program has been leading the effort to reduce pollution and restore ecosystem health across the Chesapeake Bay region. Whether through the Chesapeake Bay Watershed Agreement, signed in 2014, or the Bay’s ‘pollution diet’—i.e., the Chesapeake Bay Total Maximum Daily Load (TMDL)—our partners have continued to work collaboratively toward our shared goal of a healthy Bay.

With decades-worth of environmental data, our scientists are able to study how the health of the nation’s largest estuary is changing over time. Below, learn about a few of the ways the Bay and its rivers have been showing signs of resilience.

A bed of underwater grasses in the Susquehanna Flats near Havre de Grace, Maryland, on July 25, 2016. Between 2014 and 2015, researchers saw the highest amount of underwater grasses ever recorded in their aerial surveys, an increase of 21 percent from the previous year.

Record acreage of underwater grasses

Underwater grasses, also called submerged aquatic vegetation or SAV, grow in the shallow waters of the Chesapeake Bay and its tributaries. They provide food and habitat to wildlife, add oxygen to the water and trap and absorb pollution. Because of their sensitivity to pollution, the abundance of underwater grasses can serve as an indicator of restoration progress.

Between 2014 and 2015, more than 92,000 acres of underwater grasses were observed in the Chesapeake Bay. An increase of 21 percent from the previous year, it marked the highest amount ever recorded in the nearly 30 years the Virginia Institute of Marine Science has conducted their aerial survey. Part of this increase was due to the expansion of widgeon grass—often referred to as a “boom or bust” species because its abundance can rise and fall from year to year—but other species like wild celery and eelgrass also saw a recovery.

A pair of blue crabs in a dip net near Kent Island, Maryland, on August 27, 2010. Last year, the population of adult female crabs in the Chesapeake Bay saw a 92 percent increase from the previous year.

Sustainable blue crab stock

The blue crab is one of the most iconic species in the Chesapeake Bay, supporting commercial and recreational fisheries in the region. But vulnerability to pollution, loss of habitat and harvest pressure have led their abundance to fluctuate over time; in 2014, adult female blue crabs were considered depleted.

Joint management between Maryland, Virginia and the Potomac River Fisheries Commission has helped maintain the Bay’s blue crab stock at sustainable levels. At the start of last year’s crabbing season, there were an estimated 194 million adult female blue crabs in the Bay—a 92 percent increase from the previous year. And according to the 2016 Chesapeake Bay Blue Crab Advisory Report, the blue crab stock was not depleted and overfishing was not occurring.

A school of alewife in the shallows where Deer Creek meets the Susquehanna River in Havre de Grace, Maryland, on April 16, 2015. Underwater animals like fish rely on dissolved oxygen in the water to survive.

Higher levels of dissolved oxygen

Just like humans, crabs, fish and other underwater animals that live in the Bay need oxygen to survive. Dissolved oxygen is a measurement of how much oxygen is present in the water; as dissolved oxygen levels decrease, it becomes more difficult for animals to get the oxygen they need.

As reported in the University of Maryland Center for Environmental Science’s most recent Chesapeake Bay report card, dissolved oxygen levels in many regions of the Bay were frequently in “good condition” (scores of 60 percent or higher) in 2015, and no regions were below “moderately good” levels. Additionally, 2016 marked the second consecutive year that there were no measured anoxic areas—or areas with no dissolved oxygen—in the main portion of the Bay.

Hard clams rest in a basket near the lower portion of the Chesapeake Bay, on March 8, 2016. Clams and other organisms that live at the bottom of the Bay and its rivers are known as "benthos."

Improvements in bottom-dwelling invertebrates

Organisms that live at the bottom of the Bay and its rivers and streams are known as “benthos.” Benthic communities are made up of worms, clams, oysters, shrimp-like crustaceans and other underwater invertebrates, and they provide food for crabs and bottom-feeding fish.

In 2015, almost two-thirds of the bottom habitat in the tidal Bay was home to a healthy community of benthic organisms, an increase from 59 percent in 2014. In addition, the area of degraded and severely degraded habitat—or areas that are home to more pollution-tolerant species, fewer species overall, fewer large organisms deep in the sediment and a lower total mass of organisms—was the lowest it has been since 1996. Scientists attributed this improvement to increases in dissolved oxygen.

David Brower from the U.S. Geological Survey conducts water sampling on a bridge over the Patuxent River near Bowie, Maryland, on April 2, 2015. In 2015, nutrient and sediment loads to the Bay were below the long-term average.

Declines in nutrient and sediment pollution

While some nutrients and sediment are a natural part of the Chesapeake Bay ecosystem, too much can be harmful to fish, shellfish and other underwater life. Excess nitrogen and phosphorus can fuel the growth of algae blooms, which can lead to low-oxygen dead zones that suffocate marine life. Sediment can cloud the water, preventing sunlight from reaching underwater plants and smothering bottom-dwelling species.

According to data from the Bay Program and U.S. Geological Survey (USGS), nitrogen, phosphorus and sediment loads to the Bay were below the long-term average in 2015. Additionally, since 1985, long-term trends in nitrogen pollution have improved at six of the nine monitoring stations located along the biggest rivers that feed into the Bay, including at stations in the region’s four largest rivers: the Susquehanna, Potomac, James and Rappahannock.


Want to learn more about our work toward achieving the goals of the Chesapeake Bay Watershed Agreement? Visit ChesapeakeProgress.

Stephanie Smith's avatar
About Stephanie Smith - Stephanie is the Web Content Manager at the Chesapeake Bay Program. A native of the Midwest, she received her Bachelor’s in Professional Writing from Purdue University and Master of Science degree from the University of Michigan. Stephanie’s lifelong love of nature motivates her to explore solutions to environmental problems and teach others what they can do to help.


Slightly smaller-than-average dead zone predicted for Chesapeake Bay

Scientists expect low river flow and reduced nutrient-rich runoff from the Susquehanna and Potomac Rivers this spring to result in an average to slightly smaller-than-average dead zone in the main stem of the Chesapeake Bay this summer.

When nutrient-fueled algae blooms die and decompose, they result in areas of little to no oxygen, known as dead zones.

Aquatic life—from blue crabs to underwater grasses—relies on dissolved oxygen to survive. When nutrient-fueled algae blooms die and decompose, the resulting areas of little to no oxygen, known as dead zones, can suffocate underwater plants and animals. The latest forecast predicts a mid-summer hypoxic, or low-oxygen, zone of 1.58 cubic miles: close to the long-term average. The anoxic, or no-oxygen, zone is expected to reach 0.28 cubic miles in early summer and grow to 0.31 cubic miles by late-summer.

This forecast, funded by the National Ocean and Atmospheric Administration (NOAA), is based on models developed at the University of Maryland Center for Environmental Science and the University of Michigan and relies on estimated nutrient loads from the U.S. Geological Survey (USGS). According to USGS, 66.2 million pounds of nitrogen entered the Chesapeake Bay in from January to May 2016, which is 17 percent lower than average nitrogen loadings.

Over the next few months, researchers with the Maryland Department of Natural Resources (DNR) and the Virginia Department of Environmental Quality (DEQ) will monitor oxygen levels in the Bay, resulting in a final measurement of the Bay’s dead zone later this year.

Learn more about the dead zone size prediction, or learn about how scientists measure oxygen in the Bay.


Scientists predict smaller than average dead zone for Chesapeake Bay

Scientists expect the Chesapeake Bay to see a slightly smaller than average dead zone this summer, due to reduced rainfall and less nutrient-rich runoff flowing into the Bay from the Susquehanna River this spring.

When excess nutrients enter the Chesapeake Bay, they can fuel the growth of algae blooms and lead to low-oxygen "dead zones" that are harmful for fish, shellfish and other underwater life. (Image by Janelle Lugge/Shutterstock)

Dead zones are areas of little to no dissolved oxygen that form when nutrient-fueled algae blooms die and decompose. Resulting low-oxygen conditions can suffocate marine life. The latest forecast predicts an early-summer no-oxygen zone of 0.27 cubic miles, a mid-summer low-oxygen zone of 1.37 cubic miles and a late-summer no-oxygen zone of 0.28 cubic miles. This forecast, funded by the National Ocean and Atmospheric Administration (NOAA), is based on models developed at the University of Maryland Center for Environmental Science and the University of Michigan.

Nutrient pollution and weather patterns influence dead zone size. According to the U.S. Geological Survey (USGS), 58 million pounds of nitrogen entered the Bay in the spring of 2015, which is 29 percent lower than last spring’s nitrogen loadings.

Researchers with the Maryland Department of Natural Resources (DNR) and the Virginia Department of Environmental Quality (DEQ) will measure oxygen levels in the Bay over the next few months. While the final dead zone measurement will not take place until October, bimonthly updates on Bay oxygen levels are available through DNR’s Eyes on the Bay.

Learn more.


By the Numbers: 3 milligrams per liter

Like animals on land, critters in the Chesapeake Bay need oxygen to survive. But persistent nutrient pollution—and the algae blooms that result—mean some fish and shellfish have a hard time finding the oxygen they need to survive and thrive.

Photo illustration by Potapov Alexander/Shutterstock

Under water, oxygen is present in dissolved form. When nutrient-fueled algae blooms die, the bacteria that arrive to decompose them use up oxygen in the water, leaving little for fish and shellfish and creating so-called “dead zones.” Increased nutrient pollution leads to larger algae blooms, which in turn create more dead zones.

Scientists measure dissolved oxygen as part of their work to determine the health of an ecosystem. Because an animal’s size and habitat determine how much oxygen it needs, scientists have set different dissolved oxygen standards for different aquatic habitats at different times of the year. An American shad, white perch or other fish found in shallow water, for instance, needs more oxygen than a worm, clam, oyster or other invertebrate found on the Bay’s bottom. While the former thrive at dissolved oxygen concentrations of 5 milligrams per liter of water, the latter need just one. The Bay’s infamous blue crabs and oysters, on the other hand, need dissolved oxygen concentrations of three milligrams per liter to thrive.

Image by dwori/Shutterstock

According to recent data, between 2011 and 2013, 24 percent of the water quality standards for dissolved oxygen were met in the deep-water habitat where bottom-feeding fish, blue crabs and oysters are found. Because the Chesapeake Bay Program has set a goal to achieve the clean water necessary to support aquatic resources and protect human health, our partners are working to reduce pollution and bring the Bay up to water quality standards. Learn how you can help.

Catherine Krikstan's avatar
About Catherine Krikstan - Catherine Krikstan is a web writer at the Chesapeake Bay Program. She began writing about the watershed as a reporter in Annapolis, Md., where she covered algae blooms and climate change and interviewed hog farmers and watermen. She lives in Washington, D.C.


Photo Essay: Finding the Chesapeake’s dead zone

The R/V Rachel Carson is docked on Solomons Island. At 81 feet long, the red and blue research vessel stands out against the deadrise workboats that share the Patuxent River marina. Her mission today is to lead researchers from the University of Maryland Center for Environmental Science (UMCES) to the Chesapeake Bay’s dead zone.

Every summer, this so-called “dead zone” forms in the main stem of the Bay. The area of low-oxygen water is created by bacteria as they feed on algae blooms growing in nutrient-rich water. The dead zone persists through the warm summer months because the Bay is stratified into two layers: a surface layer of lighter, fresher water that mixes with the atmosphere, and a bottom layer of denser, saltier water, where oxygen depletion persists. These layers won’t mix until the cooler temperatures of autumn allow the surface waters to sink.

To find the dead zone, Director of Marine Operations and Rachel Carson Captain Michael H. Hulme takes us to one of the deep troughs that run down the center of the Bay. Geologic remnants of the ancient Susquehanna River, these troughs can reach up to 174 feet deep in an estuary whose average depth is just 21 feet. Hulme anchors offshore of Calvert Cliffs State Park.

The boat is equipped with a dynamic positioning system, which holds it in place regardless of wind or waves. This allows the captain to step away from the helm and offer his hands on deck. “Being able to hover over that [specific] latitude and longitude is what makes the Rachel Carson so unique,” said Hulme. It’s also one of the reasons the vessel is so useful to scientists, who often return to the same sampling site again and again over time.

UMCES Senior Faculty Research Assistant David Loewensteiner drops a CTD overboard. The oceanography instrument takes eight measurements per second, tracking conductivity, temperature and depth as it is lowered through the water. Connected to the ship with a cable, the CTD sends data to a laptop in the boat’s dry lab. We measure 2.04 mg/L of dissolved oxygen in surface water, and just 0.33 mg/L at 98 feet deep. Critters need concentrations of 5 mg/L or more to thrive; these are “classic dead zone” conditions.

Dead zones are bad for the Bay. Like animals on land, underwater critters need oxygen to survive. In a dead zone, immobile shellfish suffocate and those fish that can swim are displaced into more hospitable waters. “If you were a self-respecting fish and oxygen was [low], what would you do?” asked Bill Dennison, Vice President for Science Applications and Professor at UMCES. “Swim away.”

First reported in the 1930s, the appearance of the dead zone in the Bay is linked to our actions on land: as we replace forests with cities, suburbs and farms, we increase the amount of nutrients entering rivers and streams. This fuels the growth of algae blooms that lead to dead zones. “Hypoxia [or low-oxygen conditions] is driven by what we do on the watershed,” said UMCES Assistant Professor Jeremy Testa. “The Bay is naturally set up to generate hypoxia because of that [stratification] feature. That said… when there were no people here, there was not much hypoxia.”

While it is our actions on land that created the dead zone, it is our actions on land that can make the dead zone go away. Research has shown that certain pollution-reducing practices—like upgrading wastewater treatment plants, lowering vehicle and power plant emissions and reducing runoff from farmland—can improve the health of local rivers and streams. Scientists have also traced a decline in the duration of the dead zone from five months to four, which suggests that conservation practices gaining traction across the watershed could have very real benefits for the entire Bay.

To view more photos, visit the Chesapeake Bay Program Flickr page

Images by E. Guy Stephens/Southern Maryland Photography. Captions by Catherine Krikstan.


Scientists predict above-average dead zone for Chesapeake Bay

Scientists expect the Chesapeake Bay to see an above-average dead zone this summer, due to the excess nitrogen that flowed into the Bay from the Potomac and Susquehanna rivers this spring.

Dead zones, or areas of little to no dissolved oxygen, form when nutrient-fueled algae blooms die and decompose. The latest dead zone forecast predicts an early-summer oxygen-free zone of 0.51 cubic miles, a mid-summer low-oxygen zone of 1.97 cubic miles and a late-summer oxygen-free zone of 0.32 cubic miles. This forecast was funded by the National Oceanic and Atmospheric Administration (NOAA) and is based on models developed at the University of Maryland Center for Environmental Science (UMCES) and the University of Michigan.

Dead zone size depends on nutrient pollution and weather patterns. According to the U.S. Geological Survey (USGS), 44,000 metric tons of nitrogen entered the Bay in the spring of 2014. This is 20 percent higher than last spring’s nitrogen loadings, and will influence algae growth and dead zone formation this summer.

Researchers with the Maryland Department of Natural Resources (DNR) and the Virginia Department of Environmental Quality (DEQ) will measure oxygen levels in the Bay over the next few months. While a final dead zone measurement is not expected until October, DNR biologists measured a larger-than-average low-oxygen zone on their June monitoring cruise, confirming the dead zone forecast.

Learn more


Scientist maps changes in duration of Chesapeake Bay dead zone

The duration of the Chesapeake Bay’s annual “dead zone” has declined over time, according to research published last month in the scientific journal “Limnology and Oceanography.”

First reported in the 1930s, the Bay’s dead zone, or conditions of low dissolved oxygen also known as hypoxia, results from excess nutrients, which fuel the growth of algae blooms. As these blooms die, bacteria decompose the dead algae. This decomposition process removes oxygen from the surrounding waters faster than it can be replenished, suffocating marine life. While intensified agriculture and development continue to push nutrients into rivers and streams, research by Yuntao Zhou and others shows the duration of the Bay’s dead zone decreased from five months to four months between 1985 and 2010, and the end of the hypoxic season moved up from October to September. This could suggest that efforts to manage nutrient loads—through upgrades to wastewater treatment plants, cuts to vehicle and power plant emissions and reductions to runoff from farmland—are working.

This same research showed no change in the average onset of the Bay’s dead zone or for its average volume, whose peak has moved from late to early July. In other words, while the duration of the Bay’s dead zone has declined, its size and severity have not.

While Zhou points out that nutrient pollution is the foremost factor that fuels the development of our dead zone, his research also shows that weather patterns can act as an additional driver. Northeasterly winds, for instance, can create conditions that reinforce the separation between the Bay’s fresh and saltwater, leading to larger hypoxic volumes.

Learn more.


Chesapeake Bay dead zone measures near average in 2013

The Chesapeake Bay’s dead zone measured near average in size this past summer, coming close to scientists’ June prediction of a smaller than average hypoxic zone in the nation’s largest estuary.

Dead zones, or areas of little to no dissolved oxygen, form when nutrient-fueled algae blooms die. The bacteria that aid in algae bloom decomposition suck up oxygen from the surrounding waters. The resulting hypoxic or anoxic conditions can suffocate marine life, shrinking the habitat available for fish, crabs and other critters.

Each summer, the Maryland Department of Natural Resources (DNR) and the Virginia Department of Environmental Quality (DEQ) collect water samples to measure the hypoxic volume of the Bay. Since 1983, this number has ranged from 15.3 to 33.1 percent. In 2013, it measured 22.1 percent: 5.6 percent higher than the previous year and just above the 21.9 percent average.

According to a report from the DNR, the size of the dead zone could be due to nutrient loadings that entered the Bay during late spring and early summer rains.

Learn more.


Summertime dead zones displace Chesapeake Bay fish

Dead zones are impacting the distribution and abundance of fish that live and feed near the bottom of the Chesapeake Bay, according to new research from the Virginia Institute of Marine Science (VIMS).

Dead zones, or areas of little to no dissolved oxygen, form when nutrient-fed algae blooms die and decompose, and are most pronounced in the deep waters of the Bay’s mainstem during warm summer months. During a decade-long study of the bottom-feeding fish that inhabit this portion of the Bay’s water column, scientists noticed drastic declines in species richness, diversity and catch rate as dead zones restricted habitat and displaced the fish toward more hospitable waters.

So-called “demersal” fish—which include Atlantic croaker, white perch, spot, striped bass and summer flounder—avoid dead zones because a lack of oxygen can place stress on their respiratory and metabolic systems. While the fish often return to their former habitat when oxygen levels improve, dead zones can also wreak havoc on their forage grounds, stressing or killing the bottom-dwelling invertebrates the fish need for food.

“Once oxygen levels go up, we do see the average catch rate go up,” said Andre Buchheister, Ph.D. student and author of the VIMS study. “That’s a good sign. It indicates that once those waters are re-oxygenated, it’s possible for fish to move back in. But the availability of food is compromised, and studies have shown that the productivity of benthic biomass—or the critters that live in and on the bottom of the Bay—is stressed.”

The impact that demersal fish displacement could have on Bay fisheries is unclear, Buchheister said. Commercial fishermen who work outside of the mainstem might not be affected. But recreational anglers searching for striped bass could struggle if their forced move out of cool, deep waters is shown to contribute to poor health among the population.

In June, a forecast from researchers at the University of Maryland Center for Environmental Science (UMCES) and the University of Michigan predicted a smaller than average dead zone for the coming summer, thanks to lower than average nutrient loads that entered the Bay last spring. But to return the Bay’s mainstem to its former health, “one or two good summers won’t make that much of a difference,” said Buchheister. Instead, benthic habitat must be rebuilt, as long-term improvements boost Bay health from the bottom up.

Images courtesy Virginia Institute of Marine Science (VIMS)


Scientists predict smaller than average dead zone for Chesapeake Bay

Scientists expect the Chesapeake Bay to see a smaller than average dead zone this summer, according to a news release from the National Oceanic and Atmospheric Administration (NOAA).

Dead zones, or areas of little to no dissolved oxygen, form when nutrient-fueled algae blooms die. As bacteria help these blooms decompose, they suck up oxygen from the surrounding waters. The resulting hypoxic or anoxic conditions can suffocate marine life.

The Chesapeake Bay Program tracks dissolved oxygen as an indicator of water quality and Bay health.

The latest NOAA-funded forecast from researchers at the University of Maryland Center for Environmental Science (UMCES) and the University of Michigan predicts an average summer hypoxic zone of 1.108 cubic miles, lower than last year’s mid-summer hypoxic zone of 1.45 cubic miles.

This predicted improvement should result from the lower than average nutrient loads that entered the Bay this spring. According to the U.S. Geological Survey (USGS), 36,600 metric tons of nutrients entered the estuary from the Potomac and Susquehanna rivers, which is 30 percent lower than average.

Bay 101: Dissolved Oxygen from Chesapeake Bay Program on Vimeo.

The Bay’s dead zones are measured at regular intervals each year by the Maryland Department of Natural Resources (DNR) and the Virginia Department of Environmental Quality. While the final dead zone measurement will not take place until October, DNR biologists measured better than average dissolved oxygen on its June monitoring cruise, confirming the dead zone forecast.

Learn how biologists monitor water quality or read more about the dead zone forecast for the Chesapeake Bay.


Report recommends use of multiple models to simulate conditions in Bay’s shallow waters

An advisory committee of scientific experts has released a report recommending that Chesapeake Bay Program partners use multiple models to simulate conditions in the shallow waters of the Chesapeake Bay.

According to the report, improving shallow water simulations of dissolved oxygen and water clarity could improve the Chesapeake Bay Program’s understanding of the impacts that on-land conservation practices can have on the living resources found in shallow, tidal waters.

In the report, experts from the Scientific and Technical Advisory Committee (STAC) note that shallow water conditions are the most difficult to simulate, due in large part to interactions between shallow waters, open waters and land.

This report shows that the comparison of data produced by multiple shallow-water simulation tools could increase our confidence in the strategies managers choose to reduce pollution loads into the Bay. Dissolved oxygen and water clarity, in particular, are two water quality criteria that must be met to “delist” the Bay as impaired.

STAC’s findings encourage the Chesapeake Bay Program to set up a pilot alternative or complementary shallow-water models as soon as possible.

Learn more about the use of multiple models in the management of the Bay.


2011 dissolved oxygen levels lowest in four years

In 2011, monitoring data collected by the Bay jurisdictions and other partners showed that dissolved oxygen concentrations in the Chesapeake fell to their lowest level in the last four years with 34 percent of the waters meeting the established DO standards for the summer months.  This represents a decrease of 4 percent from the 2010 figures according to the Chesapeake Bay Program (CBP) partnership and is almost half of the higher DO values recorded a decade ago.

In spite of lower levels and in the face of many weather challenges, various Bay habitats and creatures that have been the target of restoration efforts showed resilience last year.  In CBP news this March, scientists from Virginia Institute of Marine Sciences (VIMS) reported that despite a decrease in Bay grasses overall, the restored, healthy grass beds at Susquehanna Flats remained intact, widgeon grass beds grew (likely due to seed germination stimulated by lower salinities) and new grass beds were found in Virginia’s James River.  In terms of fisheries, preliminary data by oyster scientists from Maryland Department of Natural Resources and NOAA showed good news, too.  Experts estimate last year’s oyster survival rate was at its highest since 1985, oyster biomass increased 44 percent and oyster disease was at an all time low. 

“Last year’s heavy rains and even this year’s early algae blooms and fish kills reinforce the critical importance of controlling polluted runoff reaching the Bay’s waters,” said Nick DiPasquale, Director of the Chesapeake Bay Program. “The survival rates of some oyster and grass beds in 2011 shows us that our efforts are working.  By actively restoring and protecting valuable resources we can build a stronger, healthier Bay ecosystem that can withstand the forces of nature.  Clearly, while we can’t control the weather, we can restore the watershed’s ability to survive its more extreme events.   We know what works; we just need to do more of it.”

Experts were not terribly surprised by the final information on the Bay’s 2011 “dead zones” given the extreme weather.  Between the very wet spring that sent excessive nutrients downstream, a hot, dry, early summer and more heavy rains accompanying Tropical Storm Lee and Hurricane Irene, conditions in the Chesapeake were bound to be affected. 

Peter Tango, CBP Monitoring Coordinator and U.S. Geological Survey scientists explains, “The Bay ecosystem functions most effectively when fresh and salt water can mix, just like oil and vinegar need to mix to form salad dressing.  A large fresh water influx such as that in 2011, along with intense heat, can result in vast differences in quantities of warm fresh and cool salt water in the Bay.  These variables make it more difficult for water to mix vertically in the water column.”

In addition to vertical mixing, the dissolved oxygen levels in the Bay are also affected by what happens at the edges.  Tango continues: “By the fall of last year, the Upper Bay became mostly fresh water due to rain. The Lower Bay became a hot tub due to heat,” illustrates Tango.  “While the initial effects of the Tropical Storm Lee’s arrival was to mix the Bay more than usual in late summer, this combination of salinity and temperature conditions resulted in minimal levels of oxygen in bottom waters that  lasted well into the fall. The delay in autumn vertical mixing and the persistent summer-like water quality conditions at the northern and southern boundaries pushed on the mid-Bay waters, resulting in what we scientists call a dissolved oxygen or ‘DO squeeze.’” 

All of the Bay's living creatures – from the fish and crabs that swim through its waters to the worms that bury themselves in its muddy bottom – need  oxygen to survive, although the amounts needed vary by species, season and location in the Bay.  A DO squeeze challenges the health of fish, crabs, and other Bay creatures since they become compacted together – predator and prey, from north to south and bottom to top – in significantly smaller sections of water where and conditions are less-than-ideal for their survival.


Impact of Hurricane Irene on the Health of Chesapeake Bay? Only Time (and Monitoring) Will Tell!

When it became clear that Hurricane Irene would move through the Bay region, the Chesapeake Bay Program’s (CBP) monitoring program coordinators, like Bruce Michael at Maryland’s Department of Natural Resources, adjusted the Bay water quality monitoring cruise schedules to get data just following the hurricane. 

Now in the days since the hurricane, recent data from Maryland’s Eyes on the Bay program is showing that the Bay received a short term water quality boost from the hurricane.  This is a result of the physical mixing of the Bay’s waters by extreme winds and waves that sent oxygen-rich surface waters into the deeper channels that are normally lacking oxygen at this time of year.

It’s all in the timing

When it comes to hurricanes and their impact on the Bay, it’s the timing that makes the big difference in terms of whether there is a short term (weeks to a month) or a long lasting (months to years) impact on the Bay ecosystem.

In this case, timing is made up of two important components: the point during the hurricane season when the hurricane moves through Bay country and how long the hurricane lingers over the Bay and its surrounding watershed.

When hurricanes strike during important growing seasons for fish, oysters and underwater bay grasses, the results can over longer lasting effects. Hurricane Agnes back in 1972 (a tropical storm by the time it hit the Bay), hit in June at the peak of the underwater Bay grasses growing season, tipping an already declining Bay ecosystem into a tailspin lasting into the early 1980s.

Also, when a hurricane stalls and hangs around the Bay and its watershed for days, the amount of rain and resultant flooding can increase dramatically compared to the effects of Irene who moved all the way through the region over in less than a 24-hour period.

And it’s good to be “late” sometimes

Fortunately in the case of Hurricane Irene, we are at the tail end of the peak growing season for bay grasses, so the clouded water and increased amounts of sediments entering the Bay’s tidal waters via runoff will not have as big of an impact compared to if the hurricane hit us in June or July. 

We are also not in prime oyster spawning season (later in the fall to early winter) nor are we in any critical fish spawning period (late winter to late spring) so we missed those opportunities for a bigger, more direct impacts on our fish, crabs, oysters and grasses.

To surge or not to surge

Unlike Hurricane Isabel, Irene’s track and, therefore, wind directions meant that we did not experience a devastating storm surge that resulted in the extreme shoreline erosion the region witnessed in the fall of 2003.

The flood waters will continue to bring in extra nutrient and sediment pollution loads into the Bay for days and even weeks to come. But again, timing is on our side. With cooler temperatures and shorter days coming, those excess nutrients will not feed algal blooms which love hot, sunny, calm days.

Lingering effects

Some of the excess nutrients that flowed downstream during the storm will remain in the Bay’s tidal waters and will support next year’s algal growth.  However their impact is likely less than if the hurricane had struck later in October or November when the nutrients have a greater opportunity to hang around until the next year.

All about the wait

The bottom line on Hurricane Irene’s impact is that we will have to wait for weeks (mixing up of the water column with good oxygen levels; short term algal blooms), and really months (impact on the next spring’s algal blooms, early summer’s re-growth of underwater Bay grasses, and mid-summer’s dissolved oxygen conditions years), to fully answer the question, “What was the impact of Hurricane Irene (and even the fall 2011 hurricane season) on the Bay?”

Fortunately, the CBP partnership has an extensive monitoring program in place which continues to measure various indicators of the Bay’s health — in this case, prior to the hurricane and in the weeks and months following the storm.

In a nutshell?

Given the timing of this storm, the Bay likely dodged a potentially serious bullet thanks to Irene’s timing, rapid movement through the region, and track.

For more information about the effects of Hurricane Irene on the Chesapeake Bay, visit these links from our partners:

Alicia Pimental's avatar
About Alicia Pimental - Alicia is the Chesapeake Bay Program's online communications manager. She manages the Bay Program's web content and social media channels. Alicia discovered her love for nature and the environment while growing up along Buzzards Bay in Massachusetts. When she's not at work, Alicia enjoys cooking, traveling, photography and playing with her chocolate lab, Tess.


Scientists predict moderate to poor oxygen levels in Chesapeake Bay

The Chesapeake Bay is expected to have moderate to poor dissolved oxygen conditions during the early part of the summer, according to a team of scientists with Chesapeake Eco-Check.

The early summer dissolved oxygen forecast (called an “anoxia forecast”) is based on nitrogen loads to the Bay during winter and spring, as well as high river flow in May due to heavy rainfall. According to scientists, the Bay’s 2011 low-oxygen area – commonly called the “dead zone” – could be the fourth-largest since 1985.

The annual summer ecological forecast uses data such as nitrogen loads, wind direction and sea level to predict dissolved oxygen levels in the Bay’s mainstem. The forecast is split into early summer (June to mid-July) and late summer (mid-July to September) because scientists have observed a significant change in oxygen levels following early summer wind events.

The forecast is supported through research at the Chesapeake Bay Program, Johns Hopkins University, Old Dominion University, and the University of Maryland Center for Environmental Science Horn Point Lab.

For more information about the dissolved oxygen forecast, visit Chesapeake Eco-Check’s website.


Magothy River health continues to be poor, according to latest report card

The Magothy River in Anne Arundel County, Md., received a D-minus on its latest health report card, the same grade as last year but a significant decline from several years ago, according to the Magothy River Association’s latest Magothy River Index.

The index assesses the river’s health according to three indicators: water clarity, dissolved oxygen and bay grasses. Bay grass acreage in the river decreased in 2007 and water clarity diminished in 2008. Scores for both have remained low ever since.

Low dissolved oxygen at the surface of several creeks is also a problem in the river. Upper Mill and Dividing creeks had the worst surface dissolved oxygen, suggesting that pollution problems that lead to low oxygen levels are worse in those areas.

Despite the low scores, the Magothy River Association is looking to the future to help restore the river. The group is working with scientists to explore if any native species of bivalves other than oysters could be used to help clean up the river. Bivalves can help filter algae out of the water as they feed, but oysters can’t live in many parts of the Magothy because the water is too fresh. One species that may help is dark false mussels, which helped improve water clarity and bay grass acreage in one Magothy River creek in 2005 when they were abundant.

The Magothy River Association also encourages its members and area residents to take small steps to help reduce pollution to the river. Planting more native trees and flowers, installing rain gardens, reducing use of lawn fertilizer and maintaining septic systems are a few of the tips the group suggests. These practices will help reduce pollution no matter where you live.

The Magothy River Index is an annual health report developed by Dr. Peter Bergstrom, a NOAA scientist and Magothy River Association member. The index uses scientific data from state agencies and volunteer water quality monitors. The Magothy River Association has released the index each year since 2003.

For more information, visit the Magothy River Association’s website.


Chesapeake Bay's Health Better than Normal This Summer, According to Scientists

There was a smaller low-oxygen “dead zone” and fewer fish kills and sea nettles in the Chesapeake Bay this summer, according to an annual review of summer conditions by scientists with Chesapeake Eco-Check.

The Bay’s summer health is influenced by the amount of water that flows from streams and rivers in winter and spring. This fresh water carries nutrient pollution, which fuels the growth of algae blooms that eventually break down in a process that robs the water of oxygen.

River flow was above average in winter and early spring but below average in late spring and summer. This shifted the intensity of low-oxygen conditions to earlier in the summer. A large, dense algae bloom in the upper to middle Bay in March combined with high temperatures early in summer led to the worst low-oxygen conditions of the summer appearing in late June. After that, below-average flows combined with favorable winds allowed conditions to improve.

Some algae blooms can be toxic to fish, causing large numbers of fish to die in events called “fish kills.” There was only one recorded fish kill linked to toxins from a harmful algae bloom. Three fish kills were the result of low oxygen caused by algae blooms, and seven fish kills were due to low oxygen alone.

The summer review was developed through Chesapeake Eco-Check by scientists with the Chesapeake Bay Program, University of Maryland Center for Environmental Science, Johns Hopkins University, Old Dominion University, University of Michigan and Maryland Department of the Environment.

For more information about the summer review, visit the Chesapeake Eco-Check website.


Question of the Week: Are there any real-time monitoring stations on the Bay?

Welcome once again to the BayBlog Question of the Week! Each week we'll take a question submitted through the Chesapeake Bay Program website and answer it here for all to read.

This week’s question comes from Michael, who asked: Are there any real-time or near real-time monitoring stations on the Chesapeake Bay? How can I access that data?

Maryland and Virginia have real-time, near-time and fixed monitoring stations throughout the Chesapeake Bay and its tributaries. These stations collect data on salinity, water temperature, dissolved oxygen and a host of other indicators. Data for stations in Maryland are available at www.eyesonthebay.net, which is run by the Department of Natural Resources, and data for stations in Virginia are available through the Virginia Estuarine and Coastal Observing System, part of the Virginia Institute of Marine Science.

You can also visit the Bay Program’s Water Quality Database for a map of monitoring stations, metadata, schedules of monitoring cruises and other links related to monitoring in the Bay.

In addition to these monitoring stations, the National Oceanic and Atmospheric Administration (NOAA) has deployed seven “smart buoys” at various locations throughout the Bay. These buoys, known formally as the Chesapeake Bay Interpretive Buoy System or CBIBS, collect data on wind, air and water temperature, dissolved oxygen, turbidity and other environmental indicators every 10 to 60 minutes. The data is distributed to the public via the web at www.buoybay.org and by phone at 1-877-BUOY-BAY.

The seven buoys are located at:

  • The mouth of the Severn River in Annapolis, Md.
  • The James River in Jamestown, Va.
  • The Elizabeth River in Norfolk, Va.
  • The mouth of the Patapsco River
  • The mouth of the Potomac River
  • Stingray Point at the mouth of the Rappahannock River
  • The mouth of the Susquehanna River in Havre de Grace, Md.

Do you have a question about the Chesapeake Bay? Ask us and your question might be chosen for our next Question of the Week!


High Temperatures, Excess Nutrients Add Up to Summer "Dead Zones" in Bay

We've all read the stories about the Bay's “dead zones”—areas of the Bay that become devoid of oxygen during the Chesapeake's hot summer months and cannot support most forms of life. But how do parts of the Bay get that way?

Dissolved oxygen, or DO, refers to the amount of oxygen that is present in a given quantity of water. We measure it as a concentration using units of mg/l (i.e., the milligrams of oxygen dissolved in a liter of water). Keeping track of the Bay's oxygen levels is important because everything that swims or crawls in the Bay—from prized striped bass to the worms crawling at the bottom—requires oxygen to live.

Temperature determines the amount of dissolved oxygen that water can hold. Yet, even at the warmest temperatures that we typically see in the Bay—around 91 degrees Fahrenheit—the water is still capable of having DO concentrations of about 6 to 7 mg/l, which is enough oxygen for striped bass and most other Bay species to survive.

On average, the Bay area experiences the warmest weather of the year between mid-July and early August. But high temperatures are only a small part of the reason why oxygen levels drop in parts of the Bay's mainstem each summer.

The causes of the Bay's low DO begin on the land and in the air.

  • Excess nutrients (nitrogen and phosphorus) from agriculture, air deposition, septic systems and sewage treatment plants, and runoff from lawns, gardens and paved surfaces reach the Bay and fuel the growth of phytoplankton, or algae.
  • While phytoplankton form the base of the Bay's food chain, the amount of nutrients now entering the Bay is overwhelming the system. Oysters and other filter feeders can't consume all the phytoplankton in the water.
  • Unconsumed phytoplankton sink to the bottom of the Bay and are decomposed by bacteria in a process that depletes the water of oxygen.
  • The decomposing phytoplankton, combined with higher water temperatures, can cause large swaths of the deepest parts of the Bay's mainstem to have little or no oxygen to support marine life.

Residents of the Bay watershed can help give the Bay's crabs, fish and other critters some relief from low DO by taking simple actions to reduce nutrient pollution, including driving less, picking up pet waste and reducing the use of lawn fertilizers.


The Heat Is On

A hot, steamy summer has settled on the Bay watershed, bringing scorching temperatures and high electric bills. The news has been filled with reports of poor air quality and power outages, and we still have over a month of summer left.

But high temperatures affect a lot more than our sweat glands and wallets; they impact the Chesapeake as well. Although it is America's largest estuary, the Bay is surprisingly shallow, with an average depth of about 21 feet. (In contrast, Lake Michigan has an average depth of 279 feet.) Because of its shallow nature, the Bay suffers large seasonal fluctuations in temperature.

As summer water temperatures rise, it lessens the water's capacity to hold dissolved oxygen, which is vital to a host of creatures, from blue crabs to striped bass. The warmer the water gets, the less oxygen it contains. When combined with tons of nutrients and sediments, the heat spells trouble for the Bay in the form of numerous anoxic “dead zones.” These areas are becoming an annual summer problem in the Bay's deep channels.

High water temperatures may also affect underwater grass beds. Last year, warmer than average water temperatures may have caused the large scale loss of eelgrass in Tangier Sound. And while high temperatures can negatively affect SAV, they aid in the growth of something not so desirable: algae. These tiny plants flourish in the hot summer sun, soaking up rays and nutrients, but often multiplying to unhealthy proportions. These harmful algae blooms can block out sunlight needed by SAV, or produce toxins that kill fish and sicken humans.

If you are interest in ways to combat the problems facing the Bay, check out our list of ways you can help. Maryland DNR also offers the latest information on harmful algae blooms.

410 Severn Avenue / Suite 112
Annapolis, Maryland 21403
Tel: (800) YOUR-BAY / Fax: (410) 267-5777
Directions to the Bay Program Office
Terms of Use | Privacy Policy
©2012 Chesapeake Bay Program | All Rights Reserved