After eleven years, $40 million and more than 16,000 linear feet of pipe, West Virginia is set to bring a new wastewater treatment plant online and make huge cuts to the pollution it sends into the Chesapeake Bay.
Under construction in West Virginia’s Eastern Panhandle, the Moorefield Wastewater Treatment Plant will replace four existing plants with one new system, marking a significant milestone in the headwater state’s efforts to curb pollution and improve water quality. Expected to go into operation this fall, the plant will remove 90,000 pounds of nitrogen and 93,000 pounds of phosphorous from West Virginia wastewater each year.
Funded by a range of sources—including the West Virginia Economic Development Authority, the West Virginia Department of Environmental Protection and the U.S. Environmental Protection Agency (EPA)—the new plant is heralded as evidence that thoughtful planning and forward-thinking—especially where pollution regulations are concerned—can help a community move toward conservation and environmental change.
Restoration Spotlight: Wastewater overhaul will cut pollution in West Virginia from Chesapeake Bay Program on Vimeo.
In the 1990s, the hundreds of wastewater treatment plants that are located across the watershed could be blamed for more than a quarter of the nutrient pollution entering the Bay, as the plants pumped water laden with nitrogen and phosphorous into local rivers and streams. Such an excess of nutrients can fuel the growth of algae blooms that block sunlight from reaching underwater grasses and, during decomposition, rob the water of the oxygen that aquatic species need to survive.
But in the last decade, technological upgrades to wastewater treatment plants have surged, and the pollution cuts that result mean these plants now contribute less than 20 percent of the nutrients still entering the Bay.
According to Rich Batiuk, Associate Director for Science with the EPA, the uptick in upgrades can be attributed to a number of factors.
“Wastewater treatment plants have always been regulated,” Batiuk said. “But [until the last decade], there wasn’t the science or the political will or the … water quality standards that could drive the higher levels of wastewater treatment that result in lower levels of nitrogen and phosphorous flowing into the watershed.”
As the science behind wastewater engineering has improved and the incentives for implementing upgrades have grown, more plants have begun to make changes. Some implement a “zero discharge” plan, using nutrient-rich effluent to feed agricultural crops rather than excess algae. Others—like the Moorefield plant—expose wastewater to nutrient-hungry microbes that feed on nitrogen and phosphorous; the resulting sludge, modified without the addition of chemicals, can be turned into compost rather than fodder for the local landfill.
Such modern upgrades to otherwise aging infrastructure have been celebrated as a boon for local communities and the wider watershed. While the Moorefield plant will, in the end, curb pollution into the Bay, it will first curb pollution in the South Branch of the Potomac River, into which it sends its effluent.

"The South Branch of the Potomac is a unique place,” Batiuk said. “People fish there, they swim there. This new plant helps more than the Chesapeake Bay.”
And Moorefield residents—including the Town of Moorefield Public Works Director Lucas Gagnon—plan to witness this local change firsthand.
“The residents in this area are aware of the Chesapeake Bay and its needed [nutrient] reductions,” Gagnon said. “But the biggest benefit for the local folks will be the reduction of nutrients in local waterways.”
“There are many people that fish and boat the South Branch,” Gagnon continued. “When this plant goes online, the water quality will be greatly enhanced, and they will have a much cleaner, better river to enjoy.”
Maryland will provide more than $19 million in grants to reduce nutrient pollution to the Chesapeake Bay and its rivers by upgrading technology at four wastewater treatment plants in the state. Upgrading wastewater treatment facilities to remove more nitrogen and phosphorus from treated sewage is a critical part of meeting Bay cleanup goals.
The four facilities that will be upgraded are:
Biological nutrient removal (BNR) uses microorganisms to remove nitrogen and phosphorus from wastewater during treatment. Wastewater treated at facilities using BNR contains less than 8 milligrams per liter (mg/l) of nitrogen. Enhanced nutrient removal (ENR) improves upon the nutrient reductions achieved through BNR. Wastewater treated at facilities using ENR contains 3 mg/l of nitrogen and 0.3 mg/l of phosphorus.
Funding for the upgrades comes from Maryland’s Bay Restoration Fund – also known as the “Flush Fee.” To learn more about wastewater treatment plant upgrades in Maryland, visit the Maryland Department of the Environment’s website.
A $2.6 billion project in Washington, D.C., will nearly eliminate combined sewer overflows (CSOs) to Rock Creek and the Anacostia and Potomac rivers, helping to improve the Chesapeake Bay’s health.

The Clean Rivers Project, led by the District of Columbia Water and Sewer Authority (DC Water), is the largest construction project in the District since Metro was built.
Combined sewer overflows occur during heavy rainstorms, when the mixture of sewage and stormwater cannot fit in the sewer pipes and overflows to the nearest water body. CSOs direct about 2.5 billion gallons of sewage and stormwater into Rock Creek and the Anacostia and Potomac rivers in an average year.
The Clean Rivers Project consists of massive underground tunnels to store the combined sewage during rainstorms, releasing it to the Blue Plains wastewater treatment plant after the storms subside. The first, and largest, tunnel system will serve the Anacostia River.
Visit DC Water’s website for more information about the Clean Rivers Project.
Image courtesy Daniel Lobo/Flickr
Maryland will provide more than $29 million in grants to upgrade wastewater treatment plants and septic systems, improve sewer systems, and restore stream banks to reduce pollution to the Chesapeake Bay and its rivers.
As much as $8.9 million will go toward Bay Restoration Fund grants to upgrade septic systems with nitrogen-reducing technology. Traditional septic systems do not remove nitrogen, instead delivering about 30 pounds of the pollutant each year to groundwater. Upgraded septic systems reduce nitrogen pollution discharges by half.
The La Plata wastewater treatment plant and the Broadneck water reclamation facility will both receive Bay Restoration Fund grants to implement Enhanced Nutrient Removal. After the upgrades, the facilities will reduce their nitrogen discharge by 62.5 percent. The La Plata wastewater treatment plant will receive $8.8 million and the Broadneck water reclamation facility will receive $7.5 million.
Other funded projects include:
Maryland Gov. Martin O’Malley has signed an executive order to study septic system use in the state and find out how much pollution the on-site wastewater systems contribute to the Chesapeake Bay and its rivers.
The executive order forms a task force that includes representatives from science, business, government, agriculture and environmental advocacy communities.
The task force will review, study and make recommendations on a variety of septic and growth-related issues, including:
Approximately 411,000 Maryland households are currently on septic systems. During the next 25 years, new developments using septic systems are expected to account for 26 percent of growth in Maryland, but 76 percent of new nitrogen pollution. Maryland must reduce nitrogen pollution by 21 percent by 2020 to comply with the EPA's Bay pollution diet.”
"There's greater recognition now for the societal costs of sprawl development on septic,” said Governor O’Malley. “Continuing down the same path will undercut the progress we’ve made on restoring the health of the Chesapeake Bay and will overburden our farmers and other industries that are making changes to limit pollution in our waterways."
The task force will report its findings by December 1.
For more information about septic systems and pollution, view this presentation given by Gov. O’Malley to the Maryland General Assembly in March.
West Virginia will invest $6 million annually for 30 years toward wastewater treatment plant upgrades that will reduce nutrient pollution to the Potomac River and the Chesapeake Bay.
The money, which will come from excess state lottery funds, will fund about $85 million in bonds that will help pay for upgrades. The funding will cover about 40 percent of the expected cost for the upgrades.
The upgrades will help West Virginia meet new pollution-reduction goals that are part of the federal pollution diet for the Chesapeake Bay and its rivers. West Virginia has 13 wastewater facilities that need to be upgraded to meet nutrient limits.
Acting Gov. Earl Ray Tomblin signed the bill into law on April 6.
The Blue Plains Advanced Wastewater Treatment Facility in Washington, D.C., will discharge 3.8 million fewer pounds of nitrogen each year by 2015 as the result of a renewed operating permit issued by the U.S. Environmental Protection Agency (EPA).
The reissued permit will reduce by 45 percent the amount of nitrogen that the Blue Plains wastewater facility – the largest single point source of nitrogen pollution in the Chesapeake Bay watershed – discharges to the Potomac River and the Bay.
“These reductions are critical to protecting the health of the Chesapeake Bay as well as the Potomac River,” said Shawn Garvin, the EPA’s mid-Atlantic regional administrator. “By significantly reducing nitrogen pollution from the Blue Plains plant, we’re taking a major step on the road to restoring the Bay for future generations.”
Nitrogen is a type of nutrient that contributes to cloudy, polluted waters in the Bay and its rivers. Excess nitrogen fuels the growth of dense algae blooms that rob fish, crabs, bay grasses and other Bay life of sunlight and oxygen.
Blue Plains is the largest advanced wastewater treatment facility in the world, treating wastewater for approximately 1.6 million people in Washington, D.C., Montgomery and Prince Georges counties in Maryland, and Fairfax and Loudoun counties in Virginia.
Under the permit renewal, DC Water will reduce nitrogen discharges from 8.5 million to 4.7 million pounds each year by upgrading the Blue Plains facility. Modifications are to be completed by July 2014 so that pollution reductions can be fully achieved in 2015.
This action is part of a larger effort by the EPA and the Bay states to control nitrogen and phosphorus discharges from more than 483 significant wastewater facilities across the Bay watershed. By 2015, most of these facilities will be upgraded to meet more stringent permits that will reduce an additional 11 million pounds of nitrogen and 100,000 pounds of phosphorus to the Bay.
During the past 25 years, Bay Program partners have made significant progress reducing nutrient pollution from wastewater facilities. Pollution from wastewater has dropped 55 percent since 1985.
In comparison, agricultural pollution has decreased 31 percent and pollution from cities and suburbs has increased 15 percent since 1985.
For more information about the Blue Plains upgrade, visit the EPA’s website.
Welcome to the latest installment of the BayBlog Question of the Week. Each week we take a question submitted through the Chesapeake Bay Program website and answer it here for all to read.
This week’s question comes from Matt:
“How are limits at wastewater treatment plants set? Is it based on water quality standards or limit of technology?”
Ultimately, nutrient discharge limits for wastewater treatment plants in the Chesapeake Bay watershed are set to improve water quality, but many plants face limitations because of technological capabilities. Nutrient discharge from wastewater treatment facilities is one of the biggest causes of poor water quality in the Bay. Because of this, the Chesapeake Bay Program has been working to reduce nutrient pollution from these sources since 1985.
In 2005, the Chesapeake Bay jurisdictions introduced a new permitting process limiting the amount of nitrogen and phosphorous that the watershed’s 483 major wastewater treatment plants could discharge. These limits meant that most facilities had to make major renovations and upgrades to include biological nutrient removal and enhanced nutrient removal technologies.
In the biological nutrient removal (BNR) process, microorganisms remove nitrogen and phosphorous from wastewater during treatment. The wastewater treated in this process contains less than 8 milligrams per liter (mg/l) of nitrogen. Enhanced nutrient removal improves upon the BNR process, with wastewater treated at these plants containing 3 mg/l of nitrogen and 0.3 mg/l of phosphorous.
Some of those facilities that are required to meet stricter limits but cannot afford more advanced upgrades still have options. Nutrient trading programs have been implemented in Pennsylvania and Virginia for precisely that reason. These programs encourage facilities to invest in upgrades with greater nutrient reductions and then sell their excess nutrient credits to other facilities. This provides plants a cost-effective way to meet the limits imposed on them to improve water quality if they are lacking the technological advances.
And remember, you can do your part to help wastewater treatment plants reduce nutrient discharge too. Two easy steps are conserving your water so the facilities have less water to treat and switching to low- or no-phosphorous dish detergents. For more information, check out our Wastewater Treatment page.
Do you have a question about the Chesapeake Bay? Please send it to us through our web comment form. Your question might be chosen for our next BayBlog Question of the Week!
Virginia has received $80.2 million through the American Recovery and Reinvestment Act to upgrade and improve wastewater treatment facilities throughout the state, which will help lessen a major source of nutrient pollution to the Chesapeake Bay and its rivers.
The funding will help Virginia and its local governments install nutrient-reducing technology at many wastewater treatment plants, as well as eliminate overflows of raw sewage to local rivers throughout the state, including from Combined Sewer Overflow (CSO) systems in Lynchburg and Richmond.
Approximately one-fifth of nutrient pollution to the Bay comes from wastewater. All seven jurisdictions in the Bay watershed – Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia – are currently working to reduce pollution from wastewater by installing nutrient-reducing technology at major wastewater treatment facilities.
“We have worked hard to restore the health of the Chesapeake and all Virginia waters, but also we know that we have much more to do,” said Virginia Gov. Timothy Kaine. “These funds will significantly help us advance our work to reduce pollution from sewage treatment plants.”
The funding will also be used to implement wastewater reuse projects, alternative energy use at wastewater treatment plants, and address public health problems in areas not currently served by centralized sewage systems.