Text Size: A  A  A

Bay Blog: water

Jun
17
2016

Evaluations show continued progress in Bay cleanup

According to evaluations released today by the U.S. Environmental Protection Agency (EPA), Chesapeake Bay Program partners are collectively on track to meet the phosphorus and sediment reduction commitments of the Chesapeake Bay Total Maximum Daily Load (TMDL), but further reductions in nitrogen are needed to meet upcoming pollution-reducing goals.

Best management practices, or "BMPs," like the buffered streams at Brubaker Farms in Lancaster, Pennsylvania, can help can help towns, cities and states lower the amount of pollution flowing into local waters.

Every two years, federal agencies and the watershed jurisdictions—which include Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia—report on the progress made toward reducing the nitrogen, phosphorus and sediment pollution entering local rivers, streams and the Chesapeake Bay. Under the TMDL, jurisdictions must have all essential pollution-reducing practices in place by 2025, with controls in place to achieve 60 percent of the needed reductions by 2017. As a whole, jurisdictions are on track to meet the upcoming phosphorus and sediment commitments, but according to EPA, they are unlikely to meet the 2017 requirements for nitrogen pollution.

The EPA will continue to oversee the watershed jurisdictions’ pollution-reducing efforts, and will offer further attention to some pollution sectors—including wastewater in Delaware and New York; agricultural runoff in Delaware, New York and Pennsylvania; and urban and suburban runoff in Maryland, Pennsylvania, Virginia and West Virginia—to ensure partners remain on track to meet their 2017 targets.

Learn more about the milestone evaluations, or read about how the wastewater sector in the Bay watershed met its 2025 goals a decade early.



Jun
14
2016

Wastewater sector meets nutrient goals of ‘pollution diet’ a decade early

According to the U.S. Environmental Protection Agency (EPA), upgrades in wastewater treatment over the last twenty years have significantly lowered the amount of nutrient pollution entering the Chesapeake Bay, effectively meeting the sector’s 2025 goals under the Chesapeake Bay Total Maximum Daily Load, or TMDL, a decade early.

The Blue Plains Advanced Wastewater Treatment Plant is operated by DC Water in Washington, D.C., on Sept. 22, 2013. Blue Plains is the largest advanced wastewater treatment plant in the world.

Since 1985, nitrogen and phosphorus pollution from wastewater in the Bay watershed have decreased by 57 percent and 75 percent, respectively—this despite an increase in both population and the volume of wastewater to be treated. Thirty years ago, wastewater accounted for 28 percent of nitrogen pollution and 39 percent of phosphorus pollution; the sector now accounts for just 16 percent of the overall loads of each pollutant.

DC Water CEO and General Manager George Hawkins describes Blue Plains' effectiveness in treating wastewater in a press conference at the plant on Tuesday.

“The wastewater sector is leading the way at this point in our efforts to restore the Bay and local waters,” said EPA Regional Administrator Shawn M. Garvin in a release.  “While we’ve reached a critical milestone in reducing pollution from wastewater plants, we need to keep up the momentum and ensure that other sectors do their share.” Garvin and other officials announced the news Tuesday at Blue Plains Advanced Wastewater Treatment Plant in Washington, D.C.

The Chesapeake Bay watershed, which includes portions of six states and D.C., is home to 472 municipal and industrial wastewater treatment plants. Over the last 30 years, improvements at the ten largest of these treatment plants have prevented 240 million pounds of nitrogen and 48 million pounds of phosphorus from flowing into the Bay.

Learn more.



Jun
13
2016

‘Sneaker index’ of 31 inches measured at Bernie Fowler Wade-In

Former Maryland State Senator Bernie Fowler saw his sneakers through 31 inches of water at the 29th annual Patuxent River Wade-In on June 12. High winds and rough waters meant this year’s “sneaker index”—the deepest point at which Fowler can still see his shoes as he wades into the water—measured far lower than 2015’s 44.5 inches.

Bernie Fowler, a former Maryland state senator and long-time advocate for a healthy Patuxent River, leads last year's 28th annual Patuxent River Wade-In on June 14, 2015.

Since 1988, the now 92-year-old Fowler—clad in his signature white sneakers—has held the wade-in on the second Sunday in June, to bring attention to the polluted waters of the Patuxent River and the Chesapeake Bay. The event moved to Jefferson Patterson Park and Museum in 2010 after decades on Broomes Island.

In his youth, Fowler could wade into the Patuxent up to his chest and still see fish, shellfish and underwater grasses. But nutrient and sediment pollution in the river have led to degraded water clarity and fueled algae blooms that block sunlight from reaching the river bottom. The 1960s sneaker index of 57 inches now serves as the benchmark for a restored Patuxent River.



May
24
2016

Report offers insights on adapting stormwater management to a changing climate

A new report from the U.S. Environmental Protection Agency (EPA) and National Oceanic and Atmospheric Administration (NOAA) looks at how local planners and decision-makers can incorporate the effects of a changing climate into their efforts to manage stormwater runoff.

Stormwater runoff, or rainfall that picks up pollutants as it flows across paved roads, parking lots, lawns and golf courses, is the fastest growing source of pollution into the Chesapeake Bay. And the effects of climate change—such as the amount and intensity of rainfall—can influence the amount of runoff that needs to be managed.

To look at how local stormwater managers can incorporate climate change adaptation practices into their work, EPA and NOAA hosted a series of workshops and community efforts throughout the Chesapeake Bay and Great Lakes regions. In the Chesapeake region, workshops were held in York County, Pennsylvania; Baltimore, Maryland; and Stafford County, Virginia.

Throughout the discussions, several common themes and challenges emerged. Uncertainty can make it difficult to incorporate climate change predictions into planning efforts. Local-level professionals may lack the resources and interagency cooperation needed to design, construct and permit projects that deal with stormwater runoff. And because the benefits of managing polluted runoff can be difficult to quantify, managers need better information on the costs and benefits of different climate adaptation strategies. Further assessing these common challenges and opportunities will help planners and decision-makers better incorporate climate change into their stormwater management efforts.

The report, Stormwater Management in Response to Climate Change Impacts: Lessons from the Chesapeake Bay and Great Lakes Regions, is available online.



May
05
2016

Uncovering beauty in Washington, D.C.

Over a hundred volunteers signed up to clean up the Anacostia River at Kenilworth Park as a part of the Anacostia Watershed Society’s Earth Day Cleanup on April 23, 2016. From left to right: Ryan Taaffe, Zubin Gadhoke, Fajr Chestnut, Ryanna Robinson, Jiffa Gborgla, and Kristin May.

It’s a gray Saturday morning in Washington, D.C. The sky is full of clouds, threatening rain, but Kenilworth Park isn’t empty. In fact, a large group of people are gathered around a tent in the park’s large, open field. But they’re not here for flag football or barbecuing; they’re here to work.

Today is the Anacostia Watershed Society (AWS) Earth Day Cleanup, and all of these people came out to Kenilworth Park to volunteer. As the overcast sky begins to shed its first drops of rain, they break off into smaller groups and head out to different sections of the park. Some begin scouring the field for trash, others head toward the Anacostia River—which cuts through the park—and some begin working on one of the river’s smaller tributaries.

While the Kenilworth group is large, they’re just a small portion of the 2,400 volunteers who signed up to take part in today’s cleanup at 31 different sites around D.C. and Montgomery and Prince George’s Counties in Maryland. Today seems like a large-scale cleanup effort—because it is—but AWS’s day of action is part of an even larger network of cleanups called Project Clean Stream, hosted by the Alliance for the Chesapeake Bay. For the past 13 years, the Alliance for the Chesapeake Bay has coordinated cleanups around the Chesapeake region. This year, cleanups ran from Sandbridge, Virginia, all the way up to Westfield, Pennsylvania.

A sampling of the trash volunteers collected along the Anacostia River at Kenilworth Park in Washington, D.C. on April 23, 2016.

Volunteers pilled all of their collected trash in the middle of the park for pickup. All total, they collected 103 bags of trash and 150 pounds of bulk trash during the cleanup.

For some of the volunteers at Kenilworth Park, this is their first time participating in a cleanup. Many were drawn to the event through Broccoli City Fest, a local concert that offered tickets to people in exchange for community service at a number of designated locations. One volunteer, Hilina Kibron, remarked, “I probably wouldn’t have done it on my own time. This actually forces me to do it.”

Yasmeen Warner: “I knew it was a Broccoli City event, and I thought it would be a cool way to help the community… It’s the heart of the city, and it’d be nice if it would be cleaned up and we could use it.”

Celine Guichardan: “[I hope this event brings] more awareness about littering and pollution, because I didn’t even realize how bad it was until I was out there picking up garbage—there’s so much of it. I probably saw more garbage covering the ground than the actual earth by the river.”

For experts and newcomers alike, the day is a learning opportunity. After just a few hours of picking up bottle after bottle and a seemingly endless stream of Styrofoam containers, volunteers reflected on personal changes they wanted to make, and hopes they had for others. After cleaning up plastic bottles and even an oil drum, William Klein said, “I hope that it will bring more awareness about littering and trying prevent that so in the future we won’t have to have days like these because people will be more sustainable.”

Despite the trash, many saw the beauty of Kenilworth Park and the Anacostia River, and wanted others to see that as well. They expressed hope about the value that a clean natural space could bring to the community and its residents. Fajr Chestnut, volunteering with her young daughter Ryanna, summed it up best: “The river means health and sustainability and economic development, and it’s the basis for the community. Once it’s to the level where it’s supposed to be, people will be able to have recreation. It’s bettering the community; it’s making it look better, making it sound better, making it feel better. So it’s important to have a clean river.”

Isaiah Thomas: “I love the environment. I want to help out and be a part of positive change.”

Matt Schoenfeld: “One thing we’ve noticed is we’re picking up a ton of bottles and Styrofoam. That’s the stuff that people can use other things for instead. So maybe people will stop using the plastic bottles and stuff like that. Because that’s 90 percent of what we’ve been picking up today.”

Ty Hodge: “My hope is that people who typically don’t come out and enjoy the river are out here this morning and understand how the way we interact with the river is important. You know that when you’re in the park and you eat and don’t dispose of your stuff appropriately that all of that ends up in the river, which is where a lot of our drinking water comes from, for some people a lot of food, et cetera. So it’s important for them to see this and how what we do impacts the health of the river and the community.”

Alysia Scofield with one of her students, Percy Kyd-Bruneau: “I think it’s really important to bring kids out here because I think the solutions that are going to need to be created are in their hands. I think the more they come out and see the problems and get really acquainted with the difficulties, the more that they’ll be able to become passionate about solving the problems.”

Naomi Hawk (left): “Sometimes we miss the point with cleanups because we forget to educate people as to why the litter is here in the first place. If we don’t tell people to ultimately stop littering, we’ll be out here every year picking up trash. As opposed to telling people, once they get back home, to put the stuff in the trash can.”
Serena Butcher (right): “I think [the Anacostia River] has so much potential… Hopefully we’ll make it cleaner, but also, I’m definitely going to make sure I don’t use plastic bottles because I’m finding a lot of those, and Styrofoam cups.”

Horus Plaza: “I’m out here to volunteer. I want to help out—help the community—and pick up the trash.”

Catherine Capotosto: “This is my first time [doing a river cleanup]. I think we’re finding a lot more stuff than everyone thought we would find and it’s definitely different [than I expected].”

Lowell George: “I live in D.C. not far from the Anacostia, so when I go for runs I go by it and see all the trash. For me, it has a lot of opportunity because it’s this great river running through a great city. But it requires some work. To me it holds a lot of promise.”

Dominique Skinner, site leader: “I want people to own the river and have appreciation for it as much as I do. Whether that’s going and recreating on the river, whether it’s walking the trails along the river or if its continuing to do cleanups once or twice or three times a year—that’s what I want people to get out of today.”


May
05
2016

Federal agencies outline progress toward restoring Chesapeake Bay

The federal agencies leading the watershed-wide effort to restore the Chesapeake Bay have released a progress report highlighting work completed in the 2015 fiscal year.

As part of the progress made last year, federal agencies and their state and local partners completed initial construction and seeding of a 350-acre oyster reef in Harris Creek. They opened miles of Maryland, Pennsylvania and Virginia streams to eels, shad and other diadromous fish, restoring habitat for some of the watershed’s most critical critters. They worked to conserve and restore forests and wetlands, protecting water and habitat resources throughout the Bay region. And they launched efforts to respond to the threat of toxic contaminants and their effects on fish and wildlife.

Since the signing of the Chesapeake Bay Executive Order in 2009, the federal agencies and their partners have helped make significant progress toward restoring the health of the Bay. In fiscal year 2015, federal agencies on the Federal Leadership Committee for the Chesapeake Bay spent more than $515 million on Bay restoration and protection.

The 2015 progress report marks the final report exclusive to the Federal Leadership Committee for the Chesapeake Bay; federal partners will continue to track their protection and restoration efforts as part of the 2014 Chesapeake Bay Watershed Agreement. The Bay Program recently released work plans outlining the short-term actions partners will take over the next two years toward achieving the goals of the Watershed Agreement.

Learn more about the 2015 progress report on the Chesapeake Bay Executive Order website.



Apr
29
2016

Bay Program releases final two-year work plans

Today, the Chesapeake Bay Program released a collection of short-term plans aimed at protecting and restoring the Bay, its rivers and streams and the surrounding lands. These twenty-seven work plans outline specific actions our partners intend to take over the next two years in their work toward achieving the goals and outcomes of the landmark Chesapeake Bay Watershed Agreement.

Alewife, above, share the shoreline with silverside while spawning in Deer Creek at Susquehanna State Park on April 19, 2016. Alewife and related species migrate upstream in spring to spawn in Chesapeake tributaries. Opening stream miles to fish passage is just one of many goals of the Chesapeake Bay Watershed Agreement.

Each two-year work plan addresses one or more of the Watershed Agreement’s thirty-one interconnected outcomes and outlines short-term actions critical to our work, integrating both new and long-held strategies to create an environmentally and economically sound Chesapeake Bay. Actions outlined in the plans will help maintain the health of local waters, sustain abundant fish and wildlife populations, restore vital habitats, foster engaged and diverse communities through increased public access and education, conserve farmland and forests and improve the climate resiliency of the region. The plans will help the Bay Program partnership track implementation, evaluate progress and manage adaptively to foster continuous improvement.

The Chesapeake Bay Watershed Agreement was signed in June 2014 by representatives from the six watershed states, the District of Columbia, the Chesapeake Bay Commission and the U.S. Environmental Protection Agency on behalf of the federal government. In July 2015, the Chesapeake Executive Council announced the release of a set of twenty-five strategies outlining our long-term approach for implementation, monitoring and assessing progress toward the Watershed Agreement’s goals. Our work plans outline the specific, short-term steps our partners plan to take over the next two years toward meeting those long-term goals, and represent the next step in a continued commitment toward a healthy and vibrant Chesapeake Bay watershed.

The work plans and a summary of participating partners can be found online on the Management Strategies and Work Plans Dashboard.



Apr
26
2016

Restoration Spotlight: From trash pit to amphibian oasis

Andy Green, right, a volunteer with The Nature Conservancy, spotlights wood frog egg masses in a vernal pool at Forest Pools Preserve in Cumberland County, Pa., on March 25. The 70-acre preserve is home to seven vernal pools supporting an array of amphibians, invertebrates and plants.

In late March, Pennsylvania’s South Mountain was already weeks into spring’s thaw, but a stinging breeze and sinking sun meant jackets and beanies for a group forming under the tall, swaying pines near Kings Gap State Park.

Devin Thomas, almost ten years old, from nearby Carlisle, showed up in shorts and sneakers but came prepared with a headlamp he made using an old pair of underwear and faithfully equipped with enthusiasm for the outdoors.

“He won’t even kill bugs,” said Ray Thomas, Devin’s father—also wearing shorts.

As more people arrived, they took turns dunking their boots in a bucket of soapy disinfectant, used to get rid of harmful microbes, seeds, and any other invasive species. It was a precaution justified by the group’s destination, the vernal pools of Forest Pools Preserve.

Wood frog embryos develop inside eggs at Forest Pools Preserve. Wood frogs will lay their eggs in the sunniest part of a pool, so that the warmer temperature will hasten development.

Vernal pools are ephemeral forest ponds, fed by snow, rain or groundwater, and blanketed in leaves from a healthy forest. They host a wealth of animals and only stay wet for about seven months, which is just long enough for a cascade of frogs and salamanders to use them as a home for their developing young.

You won’t find fish—they would eat all the eggs—but if you get the timing right, you’ll hear the clucking chatter of spawning wood frogs or the car alarm call of camouflaged spring peepers. You might see yellow spotted salamanders wriggling among the leaves, and you might see tiny fairy shrimp, the country cousins of the commercial pet Sea-Monkeys.

If you were visiting the area ten years ago, you would also see piles of trash and hear the sound of broken glass underfoot.

“I guess back in the olden days you would see these depressions in the forest, and before we had trash pickup I think that’s where a lot of people would just put their trash,” said Molly Anderson, a volunteer program manager with The Nature Conservancy. “You’d walk and you’d just hear ‘crunch crunch.’”

The Conservancy purchased the preserve’s 70 acres in 2007, and for three years it held volunteer trash cleanups and monitored the vernal pools there. A Conservancy scientist started noticing that some of the pools weren’t holding water long enough for the young amphibians to develop.

Several theories arose. One was that growing development, with people drilling wells, had lowered the water table below the groundwater-fed pools. Another was that it might be just be a naturally drier period than normal.

“I also heard that maybe the clay liner that was holding the water, that it was popped by all the trash that was laying in it,” Anderson said.

In 2010, with grants received by the Western Pennsylvania Conservancy, The Nature Conservancy held a workshop to restore some of the ailing pools. Volunteers Mike Bertram and Kathy King, a local married couple, were instrumental volunteers overseeing the effort, and nearby Dickinson Township provided equipment, Anderson said.

The work involved raking away leaves, setting aside mosses and other plants, using heavy machinery to remove layers of soil and carefully replacing everything above a synthetic liner placed in the depression. A season’s worth of leaf litter was the finishing touch.

“The restoration took place in the beginning of August, and we came back in the fall of the same year and it was hard to tell that anything was done there,” Anderson said.

In the years since, the restored pools hold water when the pools that weren’t restored are drying up, Anderson said. Now Forest Pools Preserve serves not only as critical habitat but as a means to raise awareness.

“One of the things that we’re concerned about is that because vernal pools are really small and kind of unnoticeable, they’re not protected really under any kind of laws protecting water,” Anderson said.

Anderson said the Conservancy is trying to educate local governments about the importance of vernal pools and address issues raised by landowners, such as the threat of mosquitos. Aiding the effort, the Pennsylvania Natural Heritage Program has a vernal pool landowner incentive program and an online registry.

“In a really healthy vernal pool, you’ll have a lot of different predators on mosquito larvae that would keep the mosquito numbers in check,” Anderson said.

A younger member of the group holds a spring peeper at the edge of a vernal pool in Kings Gap State Park.

Conservancy volunteer Andy Green helps monitor the pools and led the walk that the Thomas family attended. A retired doctor who grew up in Carlisle, Green managed remnant prairie and stormwater programs in Illinois before returning to Pennsylvania. He lives just down the road from Forest Pools Preserve.

“It’s interesting, there are none of these pools in the North Mountain, or many of these mountain ridges north of here,” Green said. “This is essentially a South Mountain phenomenon.”

Bringing the group to a pool fed by groundwater, Green pointed out the telltale masses of wood frog eggs. Wood frogs love a 40-degree night with rain, he said. The eggs were a sign that the frogs had already found a break in the cold weather, came, and left before anyone could spot them.

“They fooled everybody,” Green said.

A spring peeper’s throat swells as it makes its signature call.

Fairy shrimp swim through a vernal pool. Their eggs can survive dry periods up to a decade or more before hatching.

A spotted salamander is held at a vernal pool at Kings Gap State Park in Cumberland County, adjacent to Forest Pools Preserve.

Smaller in number were masses of eggs belonging to Jefferson and spotted salamanders, attached to sticks where the male of the species first places a sperm packet, or spermatophore.

As the adults listened to Green, the younger members of the group dispersed once they learned that they could find salamanders underneath rocks. They became the most avid explorers of the night, flipping rocks and logs, finding tiny red-backed salamanders, and replacing them as they were—at Green’s urging—before moving on to crouch low and face the water’s surface at each pool.

At the site of another pool, Green was dismayed to find nothing but a depression full of leaves. Under some of the leaves were wood frog egg masses, still moist, but the pool protecting them had dried up, and without a rain the eggs would dry up as well.

Green led the group to a final stop just over the boundary with Kings Gap State Park, which the Conservancy acquired in 1973 and transferred to the state. The sound of spring peepers became louder and louder as the group approached a pool, until the chorus seemed to be coming from every direction at once.

One of the adults held a spotted salamander she had found near the pool, showing it to the admiring group and periodically wetting her hands in the pool to keep the salamander’s skin moist—just another measure to keep the vernal pool community healthy.

The peeper’s call that had been so piercing faded quickly as the group left the low-lying bowl holding the pool, giving way to the crunching of leaves and excited recounting of what the group had just seen.

 

To view more photos, visit the Chesapeake Bay Program’s Flickr page

Photos and text by Will Parson

Will Parson's avatar
About Will Parson - Will is the Multimedia Specialist for the Chesapeake Bay Program. A native of Bakersfield, California, he acquired an interest in photojournalism while studying ecology and evolution at University of California, San Diego. He pursued stories about water and culture as a graduate student at Ohio University's School of Visual Communication, and as an intern at several newspapers in New England before landing in Maryland.



Apr
18
2016

Data show drop in estimated nutrient, sediment loads entering Chesapeake Bay

Water quality modeling experts have announced a drop in estimated nutrient and sediment loads entering the Chesapeake Bay. Computer simulations show that pollution controls put in place between 2009 and 2015 have reduced the amount of nitrogen, phosphorus and sediment entering the Bay by eight, 20 and seven percent. During the 2014 to 2015 reporting period alone, these controls reduced nitrogen, phosphorus and sediment loads by three, three and four percent. Experts attribute this drop to significant reductions of nitrogen and phosphorus in the wastewater sector, reductions in the atmospheric deposition of nitrogen as a result of the Clean Air Act and the increased implementation of agricultural conservation practices. Improved reporting and enhanced crediting of these practices have also generated a more accurate picture of the pollution entering rivers and streams from this sector.

Excess nitrogen, phosphorus and sediment impair water quality: nutrients can fuel the growth of algae blooms that lead to low-oxygen “dead zones,” while sediment can block sunlight from reaching underwater grasses and suffocate shellfish. The pollution load estimates discussed here are one in a suite of tools used to track progress toward our clean water goals, which include the pollution-reducing commitments of the Chesapeake Bay Total Maximum Daily Load.

Our partners have worked to reduce nutrient pollution in the wastewater sector. Technological upgrades at Blue Plains Wastewater Treatment Plant in Washington, D.C., accounted for a significant portion of the nitrogen reductions made in the wastewater sector between 2014 and 2015.

Nutrient reductions in the wastewater sector account for 41 percent of the estimated Bay-wide nitrogen reductions and 38 percent of the estimated Bay-wide phosphorus reductions that took place between 2014 and 2015. Indeed, many large municipal wastewater treatment plants are removing more nitrogen from effluent than it was previously thought technology would allow. 

Between 2014 and 2015, cover crops in some parts of the watershed saw improved reporting. This allows our computer simulations to show a more accurate picture of the pollution entering—or staying out of—rivers and streams from the agricultural sector.

Our picture of agricultural best management practices has also changed: cover crops have seen improved reporting, conservation tillage has seen increased implementation and nutrient management plans have become associated with increased nutrient reductions. Improved reporting and enhanced crediting allow computer simulations to show a more accurate picture of the pollution entering rivers and streams from the agricultural sector.

By incorporating the best available data into our computer simulations, we gain a more accurate picture of pollution in the watershed. This gives us a better understanding of the actions that are needed to restore water quality in our work toward an environmentally and economically sustainable watershed.

Learn more.



Apr
12
2016

Restoration Spotlight: Living Classrooms Foundation brings Baltimore to life

Alex Dixon, 10, shows off traits of the diamondback terrapin during a lesson for fourth grade students from Federal Hill Preparatory School at Masonville Cove Environmental Education Campus in Baltimore, Md., on March 23, 2016. Educators from Living Classrooms Foundation draped Dixon with terrapin lungs then added a shell and goggles representing salt glands.

Nestled squarely in the middle of a shipping terminal, a construction material company, a highway and the Patapsco River, the Masonville Cove Education Campus is a hidden gem in industrial southern Baltimore. Once the site of an illicit dump, Masonville Cove has been transformed into a place for residents to connect with nature thanks to almost a decade of restoration work funded by the Maryland Port Authority (MPA), a state agency whose goals are closely aligned with the stewardship of Maryland’s natural resources and well-being of neighboring communities.

Masonville Cove’s once-neglected waterfront is now home to more than 50 acres of conserved land, including wetlands, trails and a bird sanctuary. In the southwestern part of the property, the deceptively large “near zero, net energy” education center is powered in part by solar and geothermal energy. It contains a gathering room on its first floor, two classroom laboratories in the basement and a winding mural depicting the Port of Baltimore on the staircase between the two.

Masonville Cove is a 54-acre, formerly-neglected site that includes nature trails, a bird sanctuary and wetlands restored by the Maryland Port Administration.

It’s a cool Wednesday morning in late March, and a bus full of students pulls up outside of the campus’ environmental center. These fourth-graders from Federal Hill Preparatory School are participating in the last day of the School Leadership in Urban Runoff Reduction Project (SLURRP) with Living Classrooms Foundation, which works to inspire young people through hands-on education and job training. SLURRP was originally funded by NOAA, whose grant program supports the Chesapeake Bay Program’s commitment to give every student in the region a meaningful watershed educational experience. Today’s trip was provided at no cost to the school, with support from MPA.

As part of SLURRP, Living Classrooms instructors have been visiting the students at Federal Hill one Friday a month for the past five month, teaching them about water quality issues, stormwater runoff, watersheds and much more, focusing on the Baltimore area. Today’s field trip to Masonville Cove is the capstone event of the fourth-graders’ SLURRP education.

The students measure Masonville Cove’s water as part of the capstone field trip ending five weeks of environmental education under the School Leadership in Urban Runoff Reduction Project (SLURPP). CLOCKWISE FROM LEFT: Acid strips measure pH, a refractometer measures salinity, measurements are recorded for the group to see, and standardized ampoules determine dissolved oxygen.

In the morning, the gathering room was full of fourth-graders, but they were quickly split into two groups for activities. One group went to the laboratories to play trash-sorting games while learning about plastics in waterways, and the other headed outside to collect water data on the Patapsco River.

It’s a cool day, but clear and comfortable—great for outside learning. As the water quality group heads over to the river, they cross over a stormwater outflow pipe, and Living Classrooms instructor Michelle Koehler stops the kids. “Every time [our staff] come[s] out to classrooms, we talk about runoff and runoff pollution,” she says. “It just so happens that in this neighborhood where Masonville Cove is, any storm drain empties out right here,” she explains, gesturing toward the water flowing out from under their feet.

Koehler continues walking with the kids towards the Patapsco, where they collect a bucket of water from the river and measure its temperature, salinity and dissolved oxygen levels, trying out scientific testing kits and tools like refractometers.

LEFT: Living Classrooms educator Julian Whitley, left, lets students feel a deer antler during an outside activity. RIGHT: A female terrapin named Squirtle lives in an aquarium at the education center.

In the afternoon, the kids again spent time both outside and inside. In the laboratory, students used microscopes to identify types of plankton in samples from the river. Outside, students used iPads to observe and document evidence of animals in the area, searching for signs such as prints, fur and feathers.

For the students, this field trip may mark the end of five months of learning about the Chesapeake Bay—but it’s far from the end of their learning about the watershed and the roles they play within it. Multiple students said that their favorite part of the day was testing water. “I like to see how the scientists work,” said Abigail Bayard, while another student, Alex Dixon, commented that he wants to go home and test the water in his house. After instructors brought out a diamondback terrapin for them to observe, Henry Lentz, watching calmly but intently, remarked, “I’ve never seen a turtle that close.” From turtles to tracks, Living Classrooms brought the Chesapeake Bay watershed to life.

Students pass a mural marking Masonville Cove’s location in the Chesapeake Bay.

To view more photos, visit the Chesapeake Bay Program’s Flickr page.

Text by Joan Smedinghoff
Photos and captions by Will Parson

Joan Smedinghoff's avatar
About Joan Smedinghoff - Joan is the Communications Office Staffer at the Chesapeake Bay Program. Originally from Chicago, she was introduced to the Chesapeake Bay region through the streams of central Pennsylvania. She received her Bachelor's in Environmental Studies at Dickinson College in Carlisle, Pa., where she first discovered her passion for storytelling.



Mar
30
2016

Potomac River earns “B-” on latest report card

Declining pollution, recovering fish populations and protected lands are signs of improving health for the Potomac River, according to the Potomac Conservancy’s ninth annual State of the Nation’s River report.

The Potomac River flows past Dickerson Conservation Park in Montgomery County, Md., on Feb. 25, 2016.

In 2012, American Rivers listed the Potomac as the nation’s most endangered river. But the river’s latest grade of “B-”—up from a “C” in 2013 and a “D” in 2011—indicates slow but steady progress on the waterway’s path to recovery. Nutrient and sediment pollution has decreased, fish like shad and white perch are returning to the waterway and more than a quarter of the land in the Potomac region is protected from development.

“Not all is well with our Nation’s River, however,” the report states. The fastest growing source of pollution into both the Potomac River and Chesapeake Bay is stormwater runoff—rainfall that picks up pollutants as it flows across roads, parking lots, lawns and golf courses and carries them into rivers and streams, threatening marine life and human health. With millions expected to move to the Potomac region in the coming decades, an increase in polluted runoff threatens to offset much of the progress made so far.

According to the Conservancy, approaches like streamside forest buffers, green infrastructure, mixed-use communities and low-impact development could help support the river on its path toward recovery.

Learn more.



Mar
29
2016

Final Chesapeake Bay interpretive buoy back on the water for spring

The official start of spring may have already passed, but one of the unofficial signs of the season arrived when the National Oceanic and Atmospheric Administration (NOAA) redeployed its final Chesapeake Bay Interpretive Buoy System (CBIBS) buoy today. All ten buoys—located along the Captain John Smith Chesapeake National Historic Trail—are now collecting and transmitting real-time data about conditions in the Chesapeake Bay.

One of ten Chesapeake Bay Interpretive Buoy System (CBIBS) buoys floats after being deployed near Annapolis, Md., on March 23, 2016. (Photo courtesy Nikiforos Delatolas)

CBIBS buoys offer valuable information to sailors, kayakers and others looking for information on wind speed, currents, wave heights and local conditions before heading out on the water. In addition to water and weather conditions, the buoy data provides a snapshot into what is happening in and around the Bay, including information on water temperature, salinity and dissolved oxygen.

The crew of a coast guard vessel prepares to lower a buoy into the mouth of the Patapsco River on March 23. Technicians contracted by NOAA connect multiple sensors once the buoys are in the water. (Photo courtesy Nikiforos Delatolas)

To learn more about the buoys and the technicians that support them, watch our From the Field video:

All of the data collected by the CBIBS buoys is free to the public and can be accessed online, by phone at (877) 286-9229 and via a mobile app.



Mar
11
2016

Restoration Spotlight: Small water quality pledges turn into big motivation for homes and businesses

Sara Felker of the Elizabeth River Project consults with homeowner Pat Thrasher, who is looking into constructing a living shoreline on his property in Norfolk, Va., on Oct. 22, 2015. Felker manages the River Star Homes program and signed Thrasher up for it on the spot.

Let’s say you’re a homeowner in Norfolk, Virginia, and a storm rolls in. As the rain falls on your yard you realize that you haven’t cleaned up after your dog. You’re tempted to forget it and stay dry. Then, through your water-streaked window you see your River Star Home flag flapping furiously in the wind, and you remember that “scoop the dog poop” is at the very top of the list of seven River Star guidelines you agreed to. You grab a raincoat and a shovel.

It’s no accident that the flag—and the pledge it represents—seems to hold a certain power for the nearly 3,200 people who have signed up for Elizabeth River Project’s (ERP) River Star Homes.

Any homeowner can sign up to join the River Star Homes program. Participants commit to do seven simple things to help improve water quality and restore the Elizabeth River.

A River Star Homes flag hangs at the home of Tim Ferring, one of the first homeowners to join the program.

“There are studies that show you're more likely to carry out those behaviors because everybody knows that you made that pledge,” says Marjorie Mayfield Jackson, ERP’s executive director.

With funding from a National Fish and Wildlife Foundation grant, Jackson and her staff participated in workshops with social marketing expert Doug McKenzie-Mohr. She says the River Star Program incorporates some of the ideas from those sessions—with ERP’s own spin on them. The idea for the flag came from another marketing professional who wanted something classy that people would want to display.

“We've actually been mimicked now,” Jackson says. “But ours was the first.”

That makes homeowner Tim Ferring one of the first of the first. He signed up soon after the program launched in 2011.

“The River Star flags started popping up all over the place, and you weren’t cool unless you had one,” Ferring says, jokingly.

Tim Ferring of Norfolk, Va., displays his home's compost pile. "I'm making great dirt now," Ferring said.

Walking around his suburban property with River Star Homes program manager Sara Felker and grassroots coordinator Casey Shaw, Ferring passes his rain barrel and his sizeable compost pile and steps over the low-lying native plants that mark his rain garden. Since installing the rain garden, Ferring says his basement doesn’t leak and he doesn’t have to use a sump pump.

Jackson says another lesson that helped shape River Star Homes is that once someone agrees to something small, they are more likely to take the next step.

“And then we come back and then we ask them to consider things that are more costly and actually require them to do stuff on the ground,” Jackson says. “And we have a really good response.”

Ferring, for one, talks wistfully of installing a cistern so that he can water his lawn entirely with rainwater. As she leaves, Felker promises to email him information on solar power.

A wetland at BAE Systems in Norfolk displays a restored oyster reef on Oct. 23, 2015. (Photo courtesy Ed Ketz/BAE Systems)

ERP also runs River Star Schools and River Star Businesses. Predating River Star Homes, River Star Businesses is a program that BAE Systems Norfolk Ship Repair joined in 1998. Just two years later, the shipyard achieved model level, River Star Business’s highest recognition of accomplishments in pollution prevention and wildlife habitat.

“They were pioneers in everything—capturing the runoff, doing the [treatment for] tributyltin, oyster reefs, habitat,” says Pam Boatwright, River Star Businesses program manager.

Mike Ewing, BAE Systems’ environmental programs manager, recalls when all they had to do was put straw bales down the dock to keep trash out of the river. When the copper-based paint used on ships would be blasted off, it would stain the water a blood red and flow out into the river.

“Probably one of the biggest things we were ever been able to accomplish was convincing them that they needed to spend several hundred thousand dollars to build these troughs around the end of the dry dock to collect runoff from the docks,” Ewing says. “And then we would treat it.”

Boatwright points out that the move was voluntary, not regulatory.

In addition to treating roughly 10 million gallons of wastewater every year, including about 9 million gallons from the dry docks, BAE Systems saves another million gallons of water by reusing steam condensate in their boilers. Other initiatives include the reuse of 50,000 gallons of recovered oil, the recycling of eight million pounds of materials, and the raising of 15,000 oyster spat every year. Ewing estimates their current move to LED lighting will save about 1.5 to 2 million kWh per year.

Ewing credits new ownership, a culture shift at the shipyard, and some pushing by himself and his colleague Steve Bulleigh for the striking changes.

The relationship with ERP, however, began with Ewing’s predecessor, who first reached out for help building a little wetland.

One of two wetlands at BAE Systems captures runoff from the shipyard facility in Norfolk. (Photo courtesy Ed Ketz/BAE Systems)

“He was trying to make small steps,” Boatwright says. “We made it really easy in the beginning to build trust and get people into the fold.”

The relationship between ERP and BAE Systems is now approaching two decades. Over the years, Boatwright says she has done a lot of cheerleading, as well as helping BAE Systems to identify and then support those projects.

“I think once we got the ball rolling it got better,” Ewing says. “And it got easier to do. And we've been lucky.”

Ewing says BAE Systems has won about 30 awards since 2000, including the Virginia Governor's Environmental Excellence Gold Award, without ever experiencing a lot of serious pushback from the company about rolling out new environmental programs.

“There's a lot of resistance to change,” Ewing says. “But most of these guys, they're campers and fisherman and they swim and they boat. And they like the water and they’re hunters. And so they really want to do the right thing.”

To view more photos, visit the Chesapeake Bay Program’s Flickr page

Photos and text by Will Parson
Additional photos courtesy Ed Ketz/BAE Systems

Will Parson's avatar
About Will Parson - Will is the Multimedia Specialist for the Chesapeake Bay Program. A native of Bakersfield, California, he acquired an interest in photojournalism while studying ecology and evolution at University of California, San Diego. He pursued stories about water and culture as a graduate student at Ohio University's School of Visual Communication, and as an intern at several newspapers in New England before landing in Maryland.



Mar
08
2016

Report recommends managing roadside ditches to improve health of local waters

Improved management of roadside ditches may present an underused, cost-effective opportunity for improving water quality in the Chesapeake region, according to a new report from an advisory committee of scientific experts.

Ditches that run alongside roads and highways may not be the first image that comes to mind when considering water quality. But the thousands of miles of roadside ditches in the Bay region can have a significant impact on the health of local waters—contributing to flooding, pollution, erosion and degraded habitats. In the report, experts from the Bay Program’s Scientific and Technical Advisory Committee (STAC) explore the subject and suggest potential means to improve ditch management in the region.

Enhancing the design and maintenance of roadside ditches could help Bay Program partners meet the water quality goals of the Chesapeake Bay Total Maximum Daily Load (TMDL) and the 2014 Chesapeake Bay Watershed Agreement, the report suggests. Among the report’s recommendations are the creation of a comprehensive roadside ditch management program, increased awareness through education and outreach efforts, and the targeted use of best management practices, or “BMPs.”

The report, Re-plumbing the Chesapeake Watershed: Improving Roadside Ditch Management to Meet TMDL Water Quality Goals, is available on the STAC website.



Feb
18
2016

Restoration Spotlight: A microbial brew gobbles nutrients at Brewery Ommegang

A 35,000 gallon equalizer, left, feeds wastewater from the beer-making process into a 150,000 gallon aeration basin at Brewery Ommegang in Cooperstown, N.Y., on May 21, 2015. The process removes almost all nutrients from the water before it is discharged into the Susquehanna River.

With gleaming silos and an expansive field of grass that doubles as a concert venue, Brewery Ommegang cuts a scenic profile against the lush forested hills of bucolic Cooperstown, New York. But just across the road, a nondescript concrete building is dedicated to a brew of a different sort. You can’t see it from ground level, but climbing a set of metal stairs reveals a dark amber surface calmly bubbling, releasing a pungent but recognizable aroma.

“You can smell the beer,” says Ommegang brewery manager Joe Poliseno.

Brewery Ommegang was built in 1997 on 136 acres of farmstead in Cooperstown, N.Y.

Standing directly above the 150,000-gallon aeration basin of Ommegang’s wastewater treatment plant does bring to mind the smell of skunked beer. It is the destination for a pipe that carries all the production waste from the brewery—municipal and human waste is handled differently. Like a miracle in reverse, this is where the leftovers of an alcoholic beverage are turned back into water.

Beakers show wastewater before treatment, left, and after, at Brewery Ommegang.

While yeast is fundamental to brewing beer, different microorganisms play a central role in breaking down Ommegang’s liquid waste. The process removes almost all the nitrogen and phosphorus from the water leaving the plant, keeping excess nutrients out of the Susquehanna River and the Chesapeake Bay.

“Usually it's 99.9 percent removal [of nitrogen and phosphorus],” Poliseno says. “That's pretty amazing—we meet our regulations and far pass them.”

Brewery Ommegang publicity manager Allison Capozzo, left, and brewery manager Joe Poliseno grab handfuls of dried activated sludge, the product of wastewater treatment at the brewery.

The fermentation that makes beer and other alcoholic beverages is an anaerobic process, meaning it has to occur in the absence of oxygen. The waste process, however, is aerobic. The large blowers deliver oxygen to an activated sludge made of living microorganisms. The sludge takes about eight days to cycle through the aeration basin’s membrane bioreactor that filters the wastewater.

The sludge is mostly bacteria but also tiny animals like rotifers and nematodes. As Poliseno describes it, he could be describing cattle rotated on fields of grass.

“All those hungry organisms will be brought right back to where the feed is so they can break down even faster, because they'll be super hungry at that point,” Poliseno says.

As the bacteria eat, they grow and reproduce. The excess sludge is pressed dry and harvested as a valuable biomass that farmers spread on their fields.

With all the work being done by microorganisms, most of the people power at the plant goes to lab analyses that keep the operation running smoothly.

Brewery manager Joe Poliseno conducts tests for ammonia and nitrates on a production waste sample at Brewery Ommegang in Cooperstown, N.Y., on May 21, 2015. “I think a lot of people probably think wastewater is easy. But there is a lot of science, a lot of math, a lot of thought behind it," Poliseno said.

“I was surprised once I got into it, how much science happens here,” says Ommegang publicity manager Allison Capozza. “Brewing itself is very much kind of a combination of cooking and science.”

Test plots of hops grow at Brewery Ommegang, while visitors gather for a concert by the Pixies on May 22, 2015. The site of the brewery was chosen in part because it was a hops farm roughly 100 years ago, and also because of water quality.

Capozza says that Ommegang’s location was determined in part by the fact that it is the site of a former hops farm, and also by the quality of the aquifer it sits on, which Ommegang taps with three wells.


“It’s just the most perfect water you could hope for, for beer,” Capozza says, standing on the edge of the grass. “For us, from a business standpoint it’s a no-brainer that we do everything we can to protect the water, because beer is 90 to 95 percent water.”

To view more photos, visit the Chesapeake Bay Program’s Flickr page

Photos and text by Will Parson

Will Parson's avatar
About Will Parson - Will is the Multimedia Specialist for the Chesapeake Bay Program. A native of Bakersfield, California, he acquired an interest in photojournalism while studying ecology and evolution at University of California, San Diego. He pursued stories about water and culture as a graduate student at Ohio University's School of Visual Communication, and as an intern at several newspapers in New England before landing in Maryland.



Feb
17
2016

Chesapeake Bay Program launches accountability tool

The Chesapeake Bay Program has long been committed to transparently communicating its work. But with the recent launch of ChesapeakeProgress, the partnership has for the first time built an online tool to help oversight groups hold us accountable for the environmental restoration and protection commitments we have made.

ChesapeakeProgress is a landmark accountability tool that helps oversight groups track the Chesapeake Bay Program’s progress toward the Chesapeake Bay Watershed Agreement.

In the world of uncertainty fostered by climate change, it is important that federal, public and internal oversight groups understand who is doing what to address environmental concerns. In ChesapeakeProgress, these groups will find a wealth of data and information about the Chesapeake Bay Program’s progress toward the Chesapeake Bay Watershed Agreement, in a simple and straightforward format that is clear to any user.

The Chesapeake Bay Program conducted extensive user research in order to build this landmark accountability tool. Users expressed interest in better understanding our partners’ goals and outcomes, the progress being made and the factors affecting trends over time. Up-to-date data and information meet these needs, while downloadable graphics help users share this news with others.

This site will undergo continuous updates and improvement, as we establish baselines and tracking mechanisms for new outcomes and provide further insight into how our wide-reaching work is funded.

Visit ChesapeakeProgress.



Feb
10
2016

Maryland’s wintering waterfowl population down slightly in 2016

Warm weather may have delayed waterfowl migrations to Maryland’s Chesapeake Bay shoreline and Atlantic coast, according to the results of Maryland’s 2016 Midwinter Waterfowl Survey. While experts from the Maryland Department of Natural Resources (DNR) and the U.S. Fish and Wildlife Service (USFWS) counted more diving ducks in their aerial surveys than in 2015, fewer dabbling ducks, geese and swans were observed.

According to a DNR release, abnormally warm weather in the eastern United States delayed the migration of waterfowl to the Chesapeake region, resulting in an overall waterfowl count of 663,000—lower than last year’s 855,000 birds and below the five year average of 759,460.

This year’s total included 69,800 dabbling ducks (a decrease from 90,800 in 2015) and 246,000 diving ducks (up from 192,000 in 2015). The increase in diving ducks can be attributed to teams observing more scaup and ruddy ducks, particularly along the Chester River and the Bay’s shoreline in Calvert County. Survey teams also observed dramatically smaller numbers of Canada geese: 293,800, or 42 percent fewer than were counted in 2015.

The USFWS Division of Migratory Bird Management pools these survey results with those from other states to get a sense of the distribution and population size of waterfowl wintering along the Atlantic Flyway, the migration route that follows the Atlantic coast of North America.

Learn more about the Midwinter Waterfowl Survey.



Feb
03
2016

Getting the most out of diversity work: Establishing the foundation for success

As part of the 2014 Chesapeake Bay Watershed Agreement, Chesapeake Bay Program partners committed to a goal of increasing diversity in conservation and restoration activities. Since then, certain diversity-related terms and phrases have been used more frequently. But it’s important to use these words and phrases in the proper context. Defining the meaning of words like “diversity” as they apply to an organization and integrating these principles into restoration work is an invaluable part of achieving diversity goals that last.

In our work, the Bay Program has defined diversity as follows: “Expanding the diversity of the workforce and participants in restoration and conservation activities means to include a wide range of people of all races, income levels, faiths, genders, ages, sexual orientations and disabilities, along with other diverse groups. For this effort to be successful it will require us to honor the culture, history and social concerns of local populations and communities.” Because diversity is such a broad term, it can refer to a multitude of things; when talking about diversity, it’s important to be as intentional and specific as possible about the kind of diversity you’re referring to and why.

Diversity implies balance and harmony, while recognizing the individual differences that bring about that harmony. Our goal is for those who are participating in restoration and conservation efforts to better reflect the kind of diversity that exists in our watershed. But to diversify successfully, we must also consider the meaning of terms like inclusion, cultural competency and environmental justice, and our goals related to these terms should be place-based.

In what ways can your organization include diversity and inclusion into your mission? Who is your target audience, and how can you build a relationship to achieve your mutual goals? How can your organization play a role in achieving environmental justice, and how can you include diversity within your organizational structure? Examine your organization from the inside out, beginning with your mission statement and your board of directors. Does your board represent the diverse perspectives and constituencies of the communities you serve?

When addressing stewardship and engagement opportunities, consider how you can diversify programs and projects to reach a broader audience. The public is looking for more targeted restoration engagement with traditionally underserved and underrepresented populations. And as the Bay Program ventures forward in its diversity initiative, the proper communication of diversity-related terms—and the application of these concepts in a way that responds to the needs of the public—will be critical to success.

One way to get your voice heard right now is by providing feedback on the Chesapeake Bay Program's draft two-year workplans—both for diversity and for other watershed goals—on our Management Strategies & Work Plans Dashboard, now through March 7. 

Written by Shanita Brown, Diversity Communications and Outreach Coordinator at the Chesapeake Bay Program



Jan
22
2016

Draft two-year work plans available for public feedback

The Chesapeake Bay Program is seeking public input on a collection of short-term plans aimed toward achieving the goals and outcomes of the landmark Chesapeake Bay Watershed Agreement. These twenty-eight draft work plans outline specific actions our partners intend to take over the next two years toward protecting and restoring the Bay, its rivers and streams and the surrounding lands.

Each two-year work plan addresses one or more of the Watershed Agreement’s thirty-one interconnected outcomes and outlines short-term actions critical to our work maintaining the health of local waters, sustaining abundant fish and wildlife populations, restoring vital habitats, fostering engaged and diverse communities through increased public access and education, conserving farmland and forests, and improving the climate resiliency of the region.

In June 2014, representatives from the six watershed states, the District of Columbia, the Chesapeake Bay Commission and the U.S. Environmental Protection Agency on behalf of the federal government signed the Chesapeake Bay Watershed Agreement. In July 2015, the Chesapeake Executive Council announced the release of a set of twenty-five management strategies outlining our plans for implementation, monitoring and assessing progress toward the goals of that accord. The draft two-year work plans released today represent the next step in our continued work toward a healthy and vibrant Chesapeake Bay watershed.

Drafts of the work plans are available online. The Bay Program welcomes input on these drafts between January 22 and March 7, 2016. Interested parties can offer input by completing an online form, sending an email to the Bay Program or mailing a letter to the Bay Program office.



Dec
09
2015

Urban farms offer novel approach to stormwater management

Stormwater runoff, or rainfall that picks up pollutants as it flows across paved roads and parking lots, is the fastest growing source of pollution into the Chesapeake Bay. But urban farms may offer an innovative way to manage that polluted runoff, according to a report from American Rivers.

Image by Arina P Habich/Shutterstock

Green infrastructure—such as rain gardens, green roofs and porous pavement—uses soil and vegetation to help slow the flow of runoff and manage rainwater where it falls. These projects can also offer benefits like cleaner air, reduced energy use and a boost in property values. According to the report, urban farms can offer not only the typical benefits of green infrastructure projects, but also benefits like improved nutrition and increased access to green space.

The report includes a list of ten recommendations for promoting the use of urban farms to manage stormwater runoff, such as providing training and funding opportunities for farmers, identifying vacant lots that could be converted to farms and updating city zoning codes to allow for urban agriculture.

The report, Urban Farms: A Green Infrastructure Tool for the Chesapeake Bay, is available online.



Dec
07
2015

Photo Essay: Climbing aboard the Learning Barge

Elizabeth River Project educator Ashley Shepard, left, supplies fourth grade students from Granby Elementary School in Norfolk, Va., with plastic bottle "fish" to grab after learning how herons hunt for prey on the Learning Barge, docked at Grandy Village Learning Center in Norfolk on Oct. 23, 2015. The barge features six learning stations and claims to be the world’s first floating classroom.

On a fall morning, a lot is happening on the 120-by-32-foot steel deck of the Elizabeth River Project’s Dominion Virginia Power Learning Barge. A stream of fourth grade students from Granby Elementary School follows Robin Dunbar, the Elizabeth River Project’s deputy director of education, onto the vessel via a narrow boardwalk at the Grandy Village Learning Center in Norfolk, Virginia. After splitting into groups, they measure oyster shells, they listen to osprey calls, they find periwinkles in the wetland observation pool and they make traditional mud art in a small classroom onboard. With solar panels above their heads, and captured rainwater below their feet, students on the Learning Barge get excited about their local river—and how they can impact it—in a space that is smaller than a basketball court.

Students pull up buckets of water from the Eastern Branch of the Elizabeth River before measuring water quality on the Learning Barge.

The Learning Barge launched in 2009 and has seen almost 60,000 students—about 10,000 a year—according to Dunbar. She floats from group to group as staff guide lessons on how to build a nest like an osprey or how to use buckets to collect water samples.

“All this was going to be a big wetland,” Dunbar says, standing on the partially-covered deck, which was designed by the University of Virginia School of Architecture and is organized into six indoor and outdoor learning stations for the barge’s 2015-2016 fall and spring programs. “I had a different idea and worked with U.Va. to turn it into a classroom.”

Teacher Marquita Fulford, right, leads a lesson that touches on oyster history in the Chesapeake Bay and their ability to filter water.

Before there was a barge to build on, the Elizabeth River Project had to grapple with the financial realities of owning and operating such a sizable vessel.

“The [Elizabeth River Project’s] board was very concerned about maintenance in the beginning,” says Marjorie Mayfield Jackson, executive director of ERP. “But the ship repair community, and the tug boats—the maritime community—has adopted the barge.”

It takes about $200,000 a year to operate the Learning Barge, but the cost would be significantly higher without all of the volunteers involved. For example, Jackson says the Elizabeth River Project has never paid for transporting the barge, which is not self-propelled. Last summer, Colonna’s Shipyard donated a paint job for the hull—a value of $40,000. And every winter, BAE Industries takes the barge into their shipyard and asks what projects need to be done.

Elizabeth River Project educator Wes Cheney, seated, leads a song during a lesson about traditional African Mali mud art.

Paint dries on recycled cloth that fourth graders from Granby Elementary School in Norfolk, Va., turned into artwork based on African Mali mud art on the Learning Barge.

The sum of the Learning Barge’s parts, which are powered entirely by solar and wind power captured onboard, contribute to a meaningful watershed educational experience for students in the Norfolk area—including several low-income school districts—who may have never really spent time on a river despite living so close to one.

“It’s all science but it touches on different grade levels and they’re able to go back to the schoolhouse and apply some of that to what they’re learning the classroom,” says Marquita Fulford, standing at the Chesapeake Gold station, where students trace and measure oysters. A second-grade teacher at Camp Young in Norfolk, Fulford is in her third year working with students on the Learning Barge.

“Hands on activities, they love those,” Fulford says. “And they remember them—more so than somebody just talking to you.”

Students get answers to questions about blue crabs at the Tidal Moon River station on the Learning Barge. Learning stations on the barge featured science lessons on topics such as water quality and wildlife.

A fourth grade student from Granby Elementary School in Norfolk, Va., absorbs a lesson on oysters on the Learning Barge.

Students emulate osprey nests with sticks at the Shore Savers learning station on the Learning Barge.

A wind turbine provides power to the Learning Barge while evacuated tubes absorb solar energy that heats water on the barge. The Learning Barge is dubbed "America's Greenest Vessel" by the Elizabeth River Project, which owns and operates it, and other sustainable features include 1,600 watts of solar panels, 1,200 gallons of rainwater collection, and composting toilets.

Elizabeth River Project educator April Orleans, right, hoists up a crab pot holding a blue crab at the Tidal Moon River learning station aboard the Learning Barge.

A fourth grade student from Granby Elementary School in Norfolk, Va., holds a periwinkle plucked from the 16-by-16-foot wetland observation pool on the Learning Barge. The Learning Barge is home to various freshwater and saltwater species.

The Learning Barge hosts fourth grade students from Granby Elementary School in Norfolk, Va., while docked at Grandy Village Learning Center in Norfolk on Oct. 23, 2015. The million-dollar Learning Barge will be moved to Elizabeth River Landing Park in Chesapeake, Va., for programs running from April to June 2016.
 

To view more photos, visit the Chesapeake Bay Program’s Flickr page

Photos and Text by Will Parson

Will Parson's avatar
About Will Parson - Will is the Multimedia Specialist for the Chesapeake Bay Program. A native of Bakersfield, California, he acquired an interest in photojournalism while studying ecology and evolution at University of California, San Diego. He pursued stories about water and culture as a graduate student at Ohio University's School of Visual Communication, and as an intern at several newspapers in New England before landing in Maryland.



Dec
01
2015

The Chesapeake Bay Watershed Agreement: A year in review

This is the time of year we reflect back on what we have accomplished over the past year and look forward to what we can do to continually improve. For those of us who are planners, we often set measurable goals at the beginning of the year to see the progress we make—and we adjust those goals in our next round of resolutions to continually improve our lives. So too, we at the Chesapeake Bay Program took a step back in 2014 and re-envisioned our direction with the new Chesapeake Bay Watershed Agreement, in which we set out ten goals and 31 outcomes to achieve our vision for the watershed, as well as the principles by which we would conduct ourselves as a partnership.

In 2015, our emphasis was on setting the stage to support the achievement of that vision. Many of you participated in the development of the 25 management strategies that identified the factors likely to affect the outcomes, recognized existing work and gaps, and outlined the partnership’s direction for meeting the outcomes of the Watershed Agreement. Public input and expert advice helped us improve each management strategy, which we adopted and delivered to the Chesapeake Executive Council in July.

Nicholas DiPasquale, Director of the Chesapeake Bay Program, delivers the Chesapeake Bay Agreement management strategies to the Chesapeake Executive Council Chair, Virginia Governor Terry McAuliffe, at the Chesapeake Bay Program 2015 Executive Council Meeting at the National Arboretum in Washington, D.C., on July 23, 2015.

These management strategies provide our overall direction for the next ten years—they focus on achieving our vision of clean water, abundant life, conserved lands and engaged communities, with an increased emphasis on expanding and diversifying our partnership and our outreach to citizens, strengthening the knowledge and capacity of our local governments, recognizing the need to adapt and find resiliency in the face of a changing climate, committing to continually improve our approaches as we learn, and increasing our emphasis on transparency and accountability.

Our next step was to develop detailed plans to guide our work toward meeting our goals. These short-term workplans include specific actions we as partners—and as individual agencies and organizations—will take over the next two years to get us jump-started in achieving the outcomes of the Watershed Agreement. Some of you are already participating in developing these workplans, and we will be seeking additional input this winter to make sure we are focusing on the right actions to help us achieve these outcomes.

In addition, we’ve been working on developing our “measuring sticks,” or indicators, so we can track not only whether we are doing what we said we would do, but whether we are getting the results we are hoping to get. We are organizing these measures in a way that will help us make better decisions, learn from our successes and our challenges, and improve our work. By developing a framework to organize these measures, we can more effectively communicate how we are doing.

As we move into 2016, we will continue to share the successes and challenges we face in our work. Early next year, our annual Bay Barometer report will give a quick but comprehensive glimpse at our progress, and our soon-to-be released ChesapeakeProgress website (part of the ChesapeakeStat suite of products) will allow you to dig more deeply into these achievements and the reasons behind the progress. Both products will allow you to be a part of our continual process of reflection and improvement, and your feedback during the public input process for the two-year workplans will help guide our path over the next two years.

Written by Carin Bisland, Associate Director for Partnerships and Accountability at the Chesapeake Bay Program



Nov
30
2015

By the Numbers: 87

With its attractive mix of forested uplands, tidal marshes and intertidal mud flats, beaches and manmade rocky shores, the Chesapeake Bay offers a wide range of habitats to waterbirds. Even in the dead of winter, the productivity and position of the nation’s largest estuary—which offers fish, grasses and aquatic invertebrates to eat and is located in the center of the Atlantic Flyway—make it a perfect place for those birds that depend on aquatic resources to take up residence. Indeed, according to a report from the Center for Conservation Biology, the Bay supports 87 species of waterbirds during winter months.

Of these wintering waterbirds, 14 species rely on the Bay to serve as habitat for more than 10 percent of their continental populations. Learn about five of these species below.

Image by Patrick Rolands/Shutterstock

1. The canvasback (Aythya valisineria) is the largest species of diving duck, with a long, sloping profile and wedge-shaped head. Because the birds keep their breeding plumage for most of the year, males are often seen with chestnut-colored heads, black breasts and white wings, sides and bellies. Canvasbacks feed on the roots, leaves and buds of underwater grasses—with wild celery a favorite winter food—as well as snails, clams and other aquatic invertebrates. In 2015, researchers with the Maryland Mid-winter Waterfowl Survey recorded 64,200 canvasbacks along the state’s Bay shoreline and Atlantic coast. This is one of the state’s highest canvasback counts since the mid-1960s, and close to the survey’s 2014 estimate of 68,400 birds.

Image by Erni/Shutterstock

2. The horned grebe (Podiceps auritus) is a small, duck-like waterbird whose plumage is black and white during winter months. During the breeding season, it has black and chestnut plumage and two golden patches of feathers behind its scarlet eyes. It can raise and lower these “horns” at will, and these give the species its common name. Horned grebes can use their straight, stubby bills to pick insects out of the air or off of the water’s surface, but most often dive into the water to hunt for aquatic invertebrates.

Image by Paul Reeves Photography/Shutterstock

3. The long-tailed duck (Clangula hyemalis) is a medium-sized diving duck that has been reported to forage for food at depths of up to 200 feet. In the Chesapeake Bay, however, the birds usually dive to depths of 25 feet to reach the plant matter, small fish and aquatic invertebrates on which it feeds. Male long-tailed ducks have two long and slender tail feathers—which give the species its common name—and often have a pink band near the tip of their black bills. The birds often swim in small groups within a large, loose gathering of several hundred individuals. In 2015, researchers with the Maryland Mid-winter Waterfowl Survey recorded 100 long-tailed ducks along the state’s Bay shoreline and Atlantic coast. This is the state’s lowest long-tailed duck count of the last five years, and continues the decline that has been recorded since 2012, when 800 birds were observed.

Image by Steve Byland/Shutterstock

4. The ruddy duck (Oxyura jamaicensis) is one of the smallest ducks of the Chesapeake Bay. The chubby bird has a long, stiff tail—which it often holds upright—and a wide, gray bill—which on males turns blue in the summer. Ruddy ducks dive into the water to search for aquatic plants and invertebrates and to seek refuge from predators, diving instead of flying when frightened. In 2015, researchers with the Maryland Mid-winter Waterfowl Survey recorded 20,000 ruddy ducks along the state’s Bay shoreline and Atlantic coast. This is just below the state’s short-term average ruddy duck count.

Image by Menno Schaefer/Shutterstock

5. The Atlantic brant (Branta bernicla) is a small goose with a small, black head; short, black bill and neck; white necklace; and light gray belly. Brants graze on land, dip their heads underwater and upend their whole bodies to feed on aquatic plants and invertebrates. Eelgrass is a favorite food and staple of their diet. In 2015, researchers with the Maryland Mid-winter Waterfowl Survey recorded 900 brants along state’s Bay shoreline and Atlantic coast. This is just below the state’s short-term average brant count.

Catherine Krikstan's avatar
About Catherine Krikstan - Catherine Krikstan is a web writer at the Chesapeake Bay Program. She began writing about the watershed as a reporter in Annapolis, Md., where she covered algae blooms and climate change and interviewed hog farmers and watermen. She lives in Washington, D.C.



Nov
17
2015

Federal agencies welcome input on water quality milestones

Federal agencies are seeking feedback on a set of short-term water quality goals, or milestones, as part of the Chesapeake Bay Executive Order and in support of the 2014 Chesapeake Bay Watershed Agreement.

The “Strategy for Protecting and Restoring the Chesapeake Bay Watershed” calls upon the federal government to join the seven Chesapeake Bay jurisdictions—Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia—in establishing two-year milestones. The draft water quality milestones for 2016-2017 were selected because they represent activities that can result in considerable environmental improvements, require significant resources or directly support the jurisdictions in meeting their Watershed Implementation Plans (WIPs).

You can provide feedback on the draft water quality milestones through December 17, 2015.

Visit the Chesapeake Bay Executive Order website to learn more about the federal strategy to protect and restore the Bay.



Oct
06
2015

$11.5 million in grant funds will restore habitat, reduce pollution in Chesapeake Bay region

From restoring forests, wetlands and streambanks to reducing pollution from urban, suburban and agricultural lands, 44 environmental projects across the Chesapeake Bay watershed have received $11.5 million in funding from the National Fish and Wildlife Foundation’s (NFWF) Chesapeake Bay Stewardship Fund.

Twenty-four projects will be funded by the Small Watershed Grants Program, which supports on-the-ground restoration, conservation and community engagement. Twenty more will be funded by the Innovative Nutrient and Sediment Reduction Grants Program, which finances the reduction of nutrient and sediment pollution in rivers, streams and the Bay. The 44 projects will leverage more than $22.2 million in matching funds to improve the health of the watershed.

In Maryland, for instance, the Parks & People Foundation will work to improve water quality and public access along Baltimore City’s Gywnns Falls. In Pennsylvania, the Lancaster Farmland Trust will implement 20 agricultural “best management practices” on four farms bordering Mill Creek. And in West Virginia, the Eastern Panhandle Planning and Development Council will transform a previous commercial site into a nursery that grows native plants for use in local green infrastructure projects.

Officials and guests announced the awards this morning at the Prince of Peace Baptist Church in Baltimore, Maryland, where a 2014 Stewardship Fund grant is supporting improvements in managing stormwater runoff.

Learn more.



Oct
01
2015

Connecting diverse communities and groups helps strengthen our collective watershed work

For ten years, individuals and groups from around the Chesapeake Bay region have been invited to connect with and learn from one another at the annual Chesapeake Watershed Forum, hosted by the Alliance for the Chesapeake Bay. This year’s Forum, held in Shepherdstown, West Virginia, focused on highlighting ten years of progress and sharing strategies to get new results for the Chesapeake Bay and its communities. The Forum was also organized in a way that allowed for new voices of the Chesapeake to be heard and new relationships to form.

Christopher Davis of the Chesapeake Conservation Corps and Al Todd, Executive Director of the Alliance for the Chesapeake Bay, participate in a group exercise in the "Breaking Through Barriers" session at the 2015 Chesapeake Watershed Forum on in Shepherdstown, W. Va., on Sept. 25, 2015.

At the registration desk, the Forum’s focus on diversity jumpstarted with the collection of attendees’ demographics to establish a baseline of data from which we can measure progress. The results have been tallied; however, the Alliance is awaiting the final attendance count to determine a true baseline of Forum demographics. Moreover, many attendees were overheard expressing positive reactions to the diversity of attendees, such as “This is the most diverse conference I’ve been to in the region,” and “This is the first time I’ve been in at a conference like this where I see more than two people that look like me.” At future events, we hope to explore including the survey in the registration form to hear from even more participants.

Two plenary presentations were given by Audrey and Frank Peterman, founders of the Diverse Environmental Leaders Speaker Bureau. Audrey’s presentation focused on perceptions versus realities. Traditionally, she explained, people have perceived non-white groups as not being active in environmentalism. She then showed us the reality: people from numerous ethnic, age and gender backgrounds are contributing to the narrative. Audrey stressed the importance of not making assumptions about levels of participation, but instead seeking out and elevating the stories and contributions of people of color and other backgrounds. Later, Frank’s presentation hit on the practice of inclusion from a personal and organizational level. “Diversity must be a line item in your budget, and it must be purposeful,” he emphasized. He also highlighted the four elements of community engagement: Mission, Message, Messenger and Method. The message we try to get across shouldn’t be too broad—it should be layered, and include everyone needed for success.

Shanita Brown, Diversity Communications and Outreach Assistant at the Chesapeake Bay Program, speaks at the 2015 Chesapeake Watershed Forum.

Diversity was interwoven throughout the Forum, and people felt it as they made personal connections and shared ideas with one another. First-time Forum attendees were vocal about how much they enjoyed the conference. Attendees and presenters in the “Bridging the Chesapeake Bay Partnership Gap” session expressed their interest in building upon the Forum through future collaboration. The session, inspired by Diversity Action Team stakeholders, brought forth new ideas and actions to consider for the implementation of our Diversity strategy. A common theme was the need for an interactive network where groups and organizations can share ideas and lessons learned, as well as connect with people throughout the watershed. Attendees expressed interest in a “bureau of Bay-related diversity consultants,” and hope that watershed organizations will submit workforce diversity data to GuideStar, a nonprofit reporting site, for a more accurate baseline of diverse engagement and employment.

The final activity of the Forum was a Privilege Walk, intended to provide participants with an opportunity to better understand personal, community and societal privilege and the role that privilege plays in our collaborative work towards healthy and flourishing watershed communities. Forty-five people attended the Walk, with an opportunity afterwards to reflect on the activity as a group. Overall, the Walk was well received. Many participants shared that while reflecting on their privilege or lack thereof was difficult or uncomfortable, it gave them an opportunity to bond with the Forum community. People continued to talk about the Walk and how it affected them long after it ended, while waiting in line for dinner and in other common areas. A video recording of the Walk and participants’ reflections will be made available in the near future.

Attendees at the 2015 Chesapeake Watershed Forum shared their vision for a healthy, flourishing and resilient watershed.

People attend conferences to learn and share stories and ideas, but they also want to make personal connections that they can build upon afterwards. The atmosphere of the Forum was welcoming, inclusive and diverse—an opportunity for genuine relationship-building that could yield meaningful results for our communities and our Bay.

To learn more about diversity and the Chesapeake Bay Program, you can read our new Diversity Management Strategy and review and provide comments on our draft Diversity Workplan.

Written by Jim Edward, Deputy Director of the Chesapeake Bay Program, and Shanita Brown, Diversity Communications and Outreach Assistant at the Chesapeake Bay Program 

Note: The opinions expressed above are those of the author and do not necessarily reflect U.S. EPA policy endorsement or action.

About Jim Edward - Jim Edward is the Deputy Director of the Chesapeake Bay Program. He plays a lead role in coordinating the U.S. EPA's activities with other federal agencies, and works with state and local authorities to improve the water quality and living resources of the Bay.



Aug
12
2015

Restoration Spotlight: Generations of conservation on a West Virginia family farm

It’s an overcast summer morning in Berkeley County, West Virginia, and Todd Butler has parked his pick-up truck atop one of the many hills that roll across his property. He points to the ridge of a nearby mountain peak, where the dense, forested tree line is broken by a small gap. “I’m sitting in my house, and I can see this mountain from there,” Butler recalls. “I never will forget the very first morning I sat there, and I saw a light on top of that mountain, and I thought, ‘What is that?’ And it turns out, they’d built a house up there.”

Butler Farms, a beef cattle farm, apple orchard and hunting preserve in Inwood, W.Va., is seen on June 25, 2015. Winner of the 2014 West Virginia Conservation Farm of the Year award, Butler Farms has been celebrated for the family's commitment to a rural lifestyle, its involvement in the community and its efforts to operate more sustainably with the surrounding land and water.

As the fourth-generation owner of Butler Farms, Butler has been witness to plenty of changes over the years: a decline in the number of neighboring farms, a rise in residential development, a technology boom for farming equipment. And while some features have remained the same—the original farmhouse, barn and cattle gates are still standing—much of the farm’s operation is dramatically different from when Butler’s great-grandfather bought the land in 1919. Almost a century later, the 200-acre family dairy farm has grown to more than 1,000 acres, home to beef cattle, an apple orchard and a bird and deer hunting preserve.

Todd Butler poses for a portrait on his farm in Inwood, W.Va., on June 25, 2015. Todd's great-grandfather purchased the original 212-acres farm in 1919; Todd took over operating Butler Farms from his father, Bill Butler, in 2000.

Over the years, Butler and his father, Bill, have transformed their property into one of the top conservation farms in the Mountain State. A variety of practices—from streamside fencing to cover crops—help to reduce runoff and promote water quality. Cattle drink out of troughs rather than straight from streams, and their feed wagons are continuously moved to different locations to prevent a single area from getting trampled or polluted with manure. The farm’s 72 apple orchard plots are farmed in strips; the land between each row of trees is left untouched to help slow the flow of water and prevent soil from washing away.

Butler Farms, a family-owned 1000-acre beef cattle farm, apple orchard and hunting preserve in Inwood, W.Va. is seen on June 25, 2015.

Sustainable pest management practices have made the land of Butler Farms a haven for insects, birds and other wildlife. Pollinator-friendly native flowers and grasses border the fields. Patches of sorghum, an annual grass that produces bright red berries, will feed birds and deer through the winter. When Butler was younger, he remembers entire fields being sprayed with herbicides, pesticides and other chemicals. Now, he says, “we don’t use near the chemicals that we used to. Everything used to be in quarts or gallons; now we’re down to ounces.”

Rows of young apple trees line a distant hill at Butler Farms. The Butlers have operated the 72-plot orchard since 1981. Seventy tractor-trailer loads of apples are handpicked each year.

Butler credits the West Virginia Conservation Agency’s (WVCA) Eastern Panhandle District with the success of the conservation practices currently in place on the farm. “When we first started, we were putting in switchgrass and so forth, and we really didn’t know what to implement and what to put in,” Butler explains. “With their direction and their help, it’s made it very easy for us to get it done.”

And though Butler Farms won the WVCA’s Conservation Farm of the Year award in 2014, Butler doesn’t see the work his family has done as out of the ordinary—rather, it’s part of how he and other farmers can prepare for the future. “Water’s going to be the biggest natural resource that we’re going to have to contend with here very shortly. It just seems to be taken for granted,” Butler says. “More and more people are working toward [using conservation practices], as we’re being educated on what we can do to help improve.”

No matter what the future holds, Butler and his family seem ready to handle it. After all, the farm has already adapted to a multitude of changes over the past hundred years. “I heard my dad say the other day, he said his parents would roll over,” Butler laughs. “He said they’d never have any thoughts of the way things have changed.”

 

Images and captions by Keith Rutowski
Text by Stephanie Smith

Stephanie Smith's avatar
About Stephanie Smith - Stephanie is the Web Content Manager at the Chesapeake Bay Program. A native of the Midwest, she received her Bachelor’s in Professional Writing from Purdue University and Master of Science degree from the University of Michigan. Stephanie’s lifelong love of nature motivates her to explore solutions to environmental problems and teach others what they can do to help.



Aug
03
2015

Our Chesapeake Agenda

On June 16, 2014, the Chesapeake Executive Council signed the historic Chesapeake Bay Watershed Agreement, charting the future course for the multi-state and federal partnership known as the Chesapeake Bay Program.

Governor Terry McAuliffe assumed the chairmanship of the Chesapeake Executive Council, the Bay Program’s top leadership body, on January 1st of this year, and on July 23, 2015, he chaired his first meeting. This meeting focused on specific actions that will further our collective efforts to restore the Bay, from increasing the amount of forested stream corridors, excluding livestock from streams, advancing critical land conservation needs and working to increase the funding available for restoration.

Virginia Governor Terry McAuliffe chairs the 2015 Chesapeake Executive Council in Washington, D.C., on July 23, 2015.

Experts, scientists, agency staff and non-profits collaboratively developed the management strategies for meeting the goals and outcomes in the Chesapeake Bay Watershed Agreement. These strategies, presented to the Executive Council at the July 23rd meeting, go far beyond water quality improvement, addressing issues from land conservation and fisheries management to environmental literacy and climate change.

The ongoing efforts to protect and restore the Chesapeake Bay are at a critical point. The deadline called for in the Chesapeake Bay TMDL for 60 percent of nutrient and sediment reductions by 2017 is fast approaching. The more difficult task of meeting our pollution reduction commitments by 2025 will take continued progress across the entire range of nutrient and sediment sources.

Each of the six states in the Chesapeake Bay watershed, along with the District of Columbia, the Chesapeake Bay Commission and the federal government represented by EPA, are responsible for meeting our collective goals. As the “downstream” state in the watershed, we in Virginia depend on our neighbors to the north and west to achieve healthy waters and the benefits that come from a clean Bay. Our neighbors will also benefit from cleaner water and more abundant fisheries and wildlife in their rivers and streams. Whether you are in Cooperstown, New York, or in Hampton, Virginia, we are all in this together.

Kayakers paddle through wetlands on the Eastern Shore of Virginia.

Clean water, healthy stream corridors and the related habitat and ecological benefits make our counties, cities and towns more livable and more attractive to prospective employers, and they support our traditional industries such as agriculture, forestry, tourism and fishing, which in turn support jobs and serve our goals of a vibrant and sustainable economy.

All Bay Program partners are now fully engaged in the implementation of the management strategies. As partners, we will continue the progress we have made in meeting our water quality goals and seek the continued cooperation of key urban and agriculture sectors. We will work to bring new resources, including private and federal, to meet the costs of implementation and progress. We will be open and public about our science-based decisions and the rationale for making them. We will reach out to all sectors, public and private, to ensure that regulatory obligations are fulfilled and voluntary efforts are supported and valued.

Although we may face significant challenges in such a large and developing watershed, the payoff in terms of environmental health and economic prosperity will be enormous, and it will benefit ours and future generations.

Written by Molly Joseph Ward, Secretary of Natural Resources, Commonwealth of Virginia. Ward is chair of the Chesapeake Bay Program's Principals' Staff Committee.



Jul
29
2015

Four restoration, outreach projects to receive $150,000 in funding

Four partnerships in the Chesapeake Bay watershed will receive more than $150,000 through the Five Star and Urban Waters Restoration Program, which supports the restoration of urban rivers, wetlands and stream banks across the United States.

In the District of Columbia, the Earth Conservation Corps will join with several other partners to restore portions of the Anacostia River and to connect communities with hands-on urban birds programming.

In Baltimore, Outward Bound Baltimore will protect the city’s urban birds by restoring habitat, reducing collision hazards for birds and creating awareness of migratory species that travel through the city. The Living Classrooms Foundation at Masonville Cove will work with the Hispanic Access Foundation to engage local Hispanic church congregations in conservation activities focused around urban watershed issues and the Monarch butterfly.

The Alice Ferguson Foundation, Trash Free Maryland and other partners will trawl the surface of the Chesapeake Bay for samples of microplastics, to better understand and educate others about the level of plastic pollution in local waters.

Each of these projects will help support work toward achieving the goals of the recent Chesapeake Bay Watershed Agreement, in particular those outcomes related to citizen stewardship, diversity and toxic contaminants.

The Five Star and Urban Waters Restoration Program began in 1999 as a partnership between the National Fish and Wildlife Foundation (NFWF), the U.S. Environmental Protection Agency (EPA), the National Association of Counties and the Wildlife Habitat Council. In addition to the four projects inside the Bay watershed, the program will fund 60 projects in 28 other states.

Learn more about the awards, or see a full list of the 2015 winners.



Jul
23
2015

Chesapeake Executive Council releases plans to restore and protect Bay watershed

Today, the Chesapeake Executive Council announced the release of twenty-five management strategies outlining the Chesapeake Bay Program’s plans to meet the goals of the Chesapeake Bay Watershed Agreement, advancing the restoration, conservation and protection of the Bay, its tributaries and the lands that surround them.

Nicholas DiPasquale, Director of the Chesapeake Bay Program, delivers the Chesapeake Bay Agreement management strategies to the Chesapeake Executive Council Chair, Virginia Governor Terry McAuliffe, at the Chesapeake Bay Program 2015 Executive Council Meeting at the National Arboretum in Washington, D.C., on July 23, 2015.

Members of the Executive Council—which represents the seven watershed jurisdictions, a tri-state legislative commission and federal agencies—met to review the state of the Bay Program and finalize the strategies at their annual meeting, held at the National Arboretum in Washington, D.C.

In addition to announcing the strategies, the Executive Council passed two resolutions—first, endorsing the recommendations of the State Riparian Forest Buffer Task Force and committing to collaborative efforts that will increase the miles of forests on agricultural lands, and second, that the Bay Program hold a symposium on financing environmental restoration efforts. Members also agreed to two joint letters, one supporting programs to keep livestock out of streams and another supporting funding in the President’s 2016 budget for the Land and Water Conservation Fund (LWCF), which includes more than $33 million for the Rivers of the Chesapeake collaborative proposal.

“Our partnership to restore the Bay continues to move forward,” said Virginia Governor Terry McAuliffe, Executive Council Chair, in a release. “We recognize the significant challenges we face and look forward to meeting them head on to ensure the restoration of our ecologic and economic treasure, the Chesapeake Bay.”

The Chesapeake Executive Council members and representatives pose during the annual Executive Council Meeting at the National Arboretum in Washington, D.C., on July 23, 2015.

Each management strategy addresses one or more of the Watershed Agreement’s thirty-one measurable, time-bound outcomes that will help create a healthy watershed. They will reduce nutrient and sediment pollution; ensure our waters are free of the effects of toxic contaminants; sustain blue crabs, oysters and forage fish; restore wetlands, underwater grass beds and other habitats; conserve farmland and forests; foster engaged and diverse citizen stewards through increased public access and education; and increase the climate resiliency of the watershed’s resources, habitats and human communities.

L. Scott Lingamfelter, Chair of the Chesapeake Bay Commission, speaks during the 2015 Chesapeake Executive Council Meeting at the National Arboretum in Washington, D.C., on July 23, 2015.

Considerable public input was sought and received which had a substantial impact on the content of the management strategies, representing a collaborative effort between Bay Program partners, academic institutions, local governments, non-governmental organizations, businesses and citizens. Stakeholders throughout the region participated in the development of the strategies and submitted hundreds of comments during the public review period. In the continued work toward accomplishing the goals of the Watershed Agreement, Bay Program partners are currently drafting two-year work plans that summarize the specific commitments, short-term actions and resources required for success.

Prior to this year’s annual meeting, Governor McAuliffe met to discuss recommendations from the local government, citizen and scientific communities with the council’s three advisory committees—the Citizens Advisory Committee, the Local Government Advisory Committee and the Science and Technical Advisory Committee.

Learn more about the Chesapeake Bay Watershed Agreement or the 2015 Executive Council Meeting.



Jul
17
2015

How Green is Your Deen?

Faith plays an influential role in the lives of billions of people in the world, with about 84 percent identifying with a religious group. As Ramadan, a month-long ritual focused on self-purification and refocusing attention to faith, comes to an end for roughly 1.6 billion Muslims around the world, it is a good time to reflect on the intersection between conviction and nature.

Green Muslims, a Washington, D.C., based organization with the mission of helping their community live in the environmental spirit of Islam, began with a conversation between a group of friends about how to ‘green’ their Ramadan. At first they took small measures, like switching to reusable plates and having zero-trash iftars, or evening meals, when they could break their fasts. Those simple actions set off a chain reaction of stewardship within the community that led to the formal establishment of Green Muslims as a volunteer organization in 2007.

The nonprofit works with a number of different Muslim communities in the D.C. area, but serves as a national resource for those across the country that are looking to tie their faith back to the natural world. “There is really a passion and a yearning for learning more about what our tradition is amongst the Muslim community everywhere, and we hope to provide those resources and incubate that energy to take it to the next level,” said Colin Christopher, Executive Director of Green Muslims.

Participants and instructors make pinwheels while learning about wind and other renewable energy sources during the "Our Deen is Green!" program held at Peirce Mill in Washington, D.C., on April 25. Green Muslims is a D.C.-based nonprofit organization that engages communities in spiritually-inspired environmental education, reflection, and action.

With many youths spending an increasing amount of time indoors, exposure to and connections with the natural world are lost, often times leading to rises in health problems like allergies and obesity. In a push to alleviate nature deficit disorder, Green Muslims launched the ‘Our Deen is Green’ Youth Outdoor Education Program this year. The program offers a wide range of field trips to places like the Chesapeake Bay, farms and conserved lands to demonstrate real life examples of how Islam and the environment are intertwined.

Each trip offers themed lessons that cover subjects such as, water, food waste and renewable energy. The goal of the program is to reconnect the participants with outdoor spaces and encourage healthy behavior changes, like wiser food choices and increased awareness about human impacts on the planet. “In Islam, we understand that God has an amount of trust in us as Khalifas, or stewards of the Earth. We really see our responsibility as people who need to conserve and protect the natural environment; we are called to do so, it’s our responsibility,” said Christopher.

Colin Christopher is Executive Director of Green Muslims, which was founded in 2007 and recently attained status as a 501(c)3 nonprofit organization. “Our mission at Green Muslims is Muslims living in the environmental spirit of Islam,” Christopher said.

The final trip of the year was to Rock Creek Park in Washington, D.C., where the kids toured the historic Peirce Mill and learned how the Earth’s natural processes like water flow and wind create energy that can be harnessed with minimal negative impacts to the environment. Prior to touring the mill, all eight kids sat contently in a circle making windmills out of paper and pencils while discussing where their energy comes from. “Why are we always talking about water?” asks a young boy. “Because we are made of water,” replies Christopher. A look of awe falls over the children’s faces. The importance of water is a theme that weaves through all lessons taught during the program.

The Qur’an has hundreds of verses that talk about water, animals, wind and the sun, and Sharia, or Islamic law, directly translates into ‘the pathway to the water source’—meaning that protecting water is of utmost importance in the tradition of Islam. “Every part of our natural environment is integral to the greater whole. In Islam, we talk about, if you have one limb that is unhealthy then the entire body is unhealthy and sick. So, the Chesapeake Bay is a really integral part of that entire ecosystem and we can’t afford to neglect the Bay or other parts of our ecosystem," explained Christopher.

Ailya Gillani, a high school student from Sterling, Va., and a participant in Green Muslims’ “Our Deen is Green!” program, poses at home with her mother, Nighat Nasim, and father, Syed Abid Gillani. “I could say that the environment does have a big influence in our religion, and vice-versa," Gillani said.

Although the organization aims to spread awareness about the link between Islam and the environment, Christopher believes that diversity is the backbone of the Muslim community and welcomes anyone, regardless of faith, to volunteer and participate in Green Muslim events. “I think that the challenges we face relate to education. There is a lot of misinformation about Islam and what Islam is,” noted Christopher. “We are trying to bring back the teachings of our traditions within our community and explain that conservation, moderation and love for creation are core components of our tradition.”

To view more photos, visit the Chesapeake Bay Program’s Flickr page.

Images by Will Parson
Text by Jenna Valente

Jenna Valente's avatar
About Jenna Valente - Jenna developed a passion for conservation through her outdoorsy nature and upbringing in Hawaii, Washington State and Maine. A graduate of Virginia Tech's Executive Master of Natural Resources program and University of Maine's School of Communication and Journalism, she welcomes any opportunity to educate the public about the importance of caring for the environment.



Jul
15
2015

Bay Program partners welcome new Climate Change Coordinator

The effects of a changing climate are all around us. Monitoring data shows us that sea levels are rising, water temperatures are increasing and carbon levels are spiking. We can see the impacts of these changes in animal, tree and plant species as they migrate due to shifting conditions. Likewise, pests and diseases are showing up in places where they have never been seen before.

For years, members of the Chesapeake Bay Program’s Scientific and Technical Advisory Committee (STAC) have been advising us to take the effects of climate change into account as we develop plans and programs for our watershed restoration efforts. Similar recommendations and directives have been included in the President’s Chesapeake Bay Executive Order (13508) and in reports from the Government Accountability Office and the National Academy of Sciences. With the signing of the new Chesapeake Bay Watershed Agreement in 2014, the issue of climate resiliency has moved front and center. Climate Resiliency is included as one of the ten overarching goals of the accord, with two specific outcomes for adaptation and for monitoring and assessment. The Agreement also recognizes that climate change will affect progress toward the achievement of other goals, requiring Bay Program partners to cross-coordinate among their Goal Implementation Teams.

Climate change is a big deal: it threatens to render less effective or even undo many of the restoration efforts we have made over the past 30 years. Fortunately, an interagency agreement with the National Ocean and Atmospheric Administration (NOAA) has allowed for the establishment of a new position: Chesapeake Bay Program Climate Coordinator. The Bay Program has selected Zoë P. Johnson, previously the Director of Resiliency Planning and Policy for the Maryland Department of Natural Resources, to serve in this position.

Zoë has been actively involved in sea level rise and coastal resiliency planning initiatives at federal, regional, state and local levels since 1998 and is the author of various reports and publications on sea level rise and coastal policy. She served as the Co-Chair of the Chesapeake Bay Program Partnership’s Climate Resiliency Workgroup and serves as key staff to Maryland’s Coast Smart Council and the Commission on Climate Change. The state of Maryland released its Strategy for Reducing Vulnerability to Climate Change: Sea Level Rise and Coastal Storms in 2008, and its Strategy for Building Societal, Economic and Ecologic Resilience in 2011. Using these strategies as a guide, Zoë was responsible for overseeing the development of state-level policy, as well as the execution of on-the-ground projects to implement a suite of natural resource adaptation priorities.

The impacts of climate change will affect the Chesapeake Bay and its ecosystem more dramatically than many other areas of the country—but Zoë is ideally suited to take on this very significant and important task. This is an exciting moment for the Bay Program partnership, and we are incredibly fortunate to have someone with Zoë’s background and breadth and depth of experience to be leading this effort. She knows the Bay Program, she knows climate change issues, she knows the players; she will be able to hit the ground running.

 

Note: The opinions expressed above are those of the author and do not necessarily reflect U.S. EPA policy endorsement or action.

Nick DiPasquale's avatar
About Nick DiPasquale - Nick has nearly 30 years of public policy and environmental management experience in both the public and private sectors. He previously served as Deputy Secretary in the Pennsylvania Department of Environmental Protection, Director of the Environmental Management Center for the Brandywine Conservancy in Chadds Ford, Pennsylvania and as Secretary of the Delaware Department of Natural Resources and Environmental Control.



Jul
09
2015

Restoration Spotlight: Oregon Dairy Farm in Lititz, Pennsylvania

Rich soil and a mild climate have made the lands of Lancaster County, Pennsylvania, a haven for agriculture. Thousands of farms—more than any other county in the state—dot the landscape of gently rolling countryside. Traveling through the region, the fields and fences, barns and silos can begin to blur together. But venture onto the land itself, and each tract of farmland tells a unique story. For Oregon Dairy Farm in the heart of Lancaster County, the story is one of family, conservation and community.

Maria Forry and her father George Hurst, owner of Oregon Dairy Farm in Lititz, Pa., pose in one of their fields on May 2, 2015. Oregon Dairy Farm, which composts food waste and cow manure, utilizes cover crops, and powers the entire farm with a methane digester, was named as a 2015 U.S. Dairy Sustainability Award winner.

A family-run operation, Oregon Dairy Farm is managed by George Hurst, his son Chad and his daughter and son-in-law Maria and Tim Forry. Hurst also co-owns the nearby market, restaurant and ice cream parlor with his brothers. He is the second-generation owner of the land, after his father bought the farm in the early 1950s. “I grew up here and bought the farm, bought the house where I grew up,” said Hurst. “Now my daughter, Maria, is living in that same house.”

Pennsylvania is second in the nation for number of dairy farms, outranking every state except Wisconsin. And that number continues to grow: in 2014, Pennsylvania was the only state in which the number of dairy farms increased. Though this may be good news for ice cream lovers, it can sometimes be difficult to reconcile agricultural growth with the health of the Chesapeake Bay, as agriculture is the single largest source of nutrient and sediment pollution entering the estuary. But for the Hurst family, protecting the Bay is an important part of the way they run their farm.

Holstein cows rest in a pen at Oregon Dairy Farm in Lititz, Pa., on May 1, 2015.

Two decades ago, the Hurst family took a visit to the Chesapeake Bay. What they saw—polluted waters and their damaging effects on local fishermen—troubled them. “When I took that tour, I knew we had to do what we can here [at Oregon Dairy Farm] to make sure we’re not polluting the Bay,” Hurst recalled. “That’s when we became even more intentional with the practices we have in place here.”

Those practices include a variety of “best management practices,” or BMPs—conservation methods that can help curb nutrients and sediment from running off agricultural land and into rivers, streams and the Bay. To protect the health of waters running through their land, the Hurst family practices no-till farming, uses cover crops, plants trees and shrubs to prevent streambank erosion and has installed fencing to keep livestock out of waterways.

Compost piles rest at Oregon Dairy Farm in Lititz, Pa., on May 1, 2015.

As home to 500 cows, one of the farm’s biggest challenges was figuring out how to manage all the animal waste. “Because we’re a dairy, there’s lots of manure,” Hurst explained. According to estimates from the U.S. Environmental Protection Agency (EPA), livestock waste accounts for 19 percent of the nitrogen and 26 percent of the phosphorous entering the Bay. These excess nutrients can fuel the growth of algae blooms that block sunlight from reaching underwater grasses and, during decomposition, rob the water of oxygen that plants and animals need to survive.

To avoid nutrient runoff, Hurst puts as much of this waste to use as possible. A methane digester collects and heats the manure, and the resulting methane gas powers a generator that produces more than enough electricity to run the farm.

Young planted trees line a stream running through Oregon Dairy Farm in Lititz, Pa., on May 1, 2015.

After traveling through the digester, solid and liquid wastes are separated. Solid waste can be dried and used as livestock bedding or transported to the on-site composting facility. Three large hoop buildings house the compost piles, which will eventually be sold wholesale to landscapers or in Oregon Dairy’s retail lawn and garden store. Liquid waste flows to the lagoon, which holds about an eight month supply, allowing it to be applied to the land when the fields need it and will absorb it. “We make sure we aren’t putting more manure on than what will stay in place, and no more than what the soil needs or what will be taken up by the crops,” said Hurst. These innovative waste practices helped the farm win a U.S. Dairy Sustainability Award in 2015.

Aslan Umble, 4, of Lancaster, Pa., plays on a playground at Oregon Dairy Supermarket with his brother Kai Umble, 7, and father Ryan Umble on May 1, 2015.

Since the 1980s, outside dairy farmers, school field trips and other community members have been welcome to tour—and learn from—the farm. School tours bring nearly 2,000 student visitors each year, and Family Farm Days events can draw upwards of 15,000 people a year to the farm. More than just a way of life, Hurst and his family see their farm as a way to teach others about how they care for their land.

“Our passion and vision is to help people understand where their food comes from,” said Hurst. “That’s where [the farm tours] originated and that’s really why we do what we do.”

 

To view more photos, visit the Chesapeake Bay Program’s Flickr page.

Images and captions by Will Parson
Text by Stephanie Smith

Stephanie Smith's avatar
About Stephanie Smith - Stephanie is the Web Content Manager at the Chesapeake Bay Program. A native of the Midwest, she received her Bachelor’s in Professional Writing from Purdue University and Master of Science degree from the University of Michigan. Stephanie’s lifelong love of nature motivates her to explore solutions to environmental problems and teach others what they can do to help.



Jul
07
2015

From the Field: Chesapeake Bay Interpretive Buoy System

Warm weather is upon us, and that means people will be taking to the water to escape from the heat. Soon enough, the Chesapeake Bay will be dotted with bobbing watercrafts of all shapes and sizes. For those recreating on the Bay, the bright yellow Chesapeake Bay Interpretive Buoy System (CBIBS) markers may be a familiar sight, but they serve as much more than eye-catching aquatic beacons: they provide key insights into the health and safety conditions of the Bay.

The first buoys were deployed by the National Oceanic and Atmospheric Administration's (NOAA) Chesapeake Bay Office in 2007—marking 10 locations along the Captain John Smith Chesapeake Historic Trail—and have been collecting and transmitting real-time water quality and atmospheric data ever since. “It’s [the buoy system] interpretive because we work with the National Park Service as a partner to interpret John Smith’s trail, so there is a bit of a historical aspect to it,” said Katie Kirk, Senior Buoy Specialist at Earth Resources Technology, a contractor that supplies support staff and assistance to NOAA and other government agencies.

“Our main mission is to keep the 10 buoys that we have up and alive and transmitting as often as we can and deliver the data to as many users as we can,” said Kirk in reference to her and the field team’s work. Routine maintenance and repairs on the buoy fleet presents a swath of challenges that keeps the small team of CBIBS buoy technicians busy year-round.

Senior buoy specialist Katie Kirk works on buoy electronics inside a National Oceanic and Atmospheric Association (NOAA) warehouse in Annapolis, Md., on March 31. Kirk helps maintain 10 buoys that comprise the Chesapeake Bay Interpretive Buoy System (CBIBS), which collects data and marks locations on the Captain John Smith Chesapeake Historic Trail.

The life of a CBIBS buoy technician differs from day-to-day and can be a physically demanding profession. Some days are spent in their Annapolis, Md., warehouse—affectionately referred to as the ‘buoy spa’—calibrating instruments, cleaning buoys, swapping out parts and working with computer systems. Other times, the team braves the wind, waves and elements to do onsite repairs and buoy maintenance.

As the summer and fall wind down and cold weather approaches, the team removes the three northernmost buoys from the Patapsco, Susquehanna and Upper Potomac rivers before freezing conditions set in to prevent ice damage. But this winter, the southern buoys succumbed to the frigid conditions: wind gusts exceeding 50 miles-per-hour and below-freezing water temperatures caused ice from sea spray to accumulate on and topple over the buoys, something the CBIBS team had never seen before. “The buoys that were off location tipped over, cracked and no longer had power, so we couldn’t track them on the GPS to figure out where they were. That was a pretty intense time trying to figure out where the buoys had moved to and how we could get to them,” explained Kirk.

Kirk and buoy technical specialist Nikiforos Delatolas finish deploying a buoy in the mouth of the Susquehanna River in Havre de Grace, Md., on April 10.

After winter, the team’s short-term goals were to get all of the buoys repaired, online and transmitting data. With that completed, Kirk is now striving to see the data being analyzed and produced in scientific papers. “It’s been done before, but I want to get back to that and try to reach out to more teachers and researchers and see if they want more buoys or buoys in different locations,” Kirk said. “Then we can take the time and think about how our system reaches out to those users, what they need from us and what they would prefer.”

While many people accessing the data are local sailors and kayakers looking for information on the wind speed, currents, wave heights and local conditions before venturing out on the water, educators also integrate the data into their curriculum. Utilizing the data for educational purposes is of utmost importance to NOAA, so much so that they have an entire education team dedicated to reaching out to local schools to demonstrate how the CBIBS data can be used in the classroom.

A CBIBS buoy floats in the mouth of the Susquehanna River after Kirk and Delatolas finished deploying sensors on April 10.

In addition to live reporting of local water and weather conditions, the buoy data provides a snapshot into what is happening around the Bay, demonstrating in a quantitative way how each part of the ecosystem is interrelated. Information on water temperature, salinity and dissolved oxygen can help researchers uncover important linkages between water quality and blue crab stocks, fish populations, bay grass abundance and more.

Despite the many challenges that the buoy technicians face, Kirk and her team exude an air of passion and commitment to maintaining the instruments that provide the most up-to-date information about the state of the Bay, all in the name of presenting the best science. For those working to restore the estuary and those interested in learning about the issues the Bay faces, the data can serve as a useful tool.

“I think we have an amazing opportunity to protect this watershed and this bay,” said Kirk. “It goes back to resources and taking pride in where you live. This is your home, why wouldn’t you protect it?”

All of the data is free to the public and can be accessed online, by phone at (877) 286-9229 and via a mobile app

To view more photos, visit the Chesapeake Bay Program’s Flickr page.

Video and images by Will Parson
Text by Jenna Valente

Jenna Valente's avatar
About Jenna Valente - Jenna developed a passion for conservation through her outdoorsy nature and upbringing in Hawaii, Washington State and Maine. A graduate of Virginia Tech's Executive Master of Natural Resources program and University of Maine's School of Communication and Journalism, she welcomes any opportunity to educate the public about the importance of caring for the environment.



Jul
07
2015

Federal appeals court upholds Chesapeake Bay pollution limits

A federal appeals court has held that the U.S. Environmental Protection Agency (EPA) can set pollution limits for the Chesapeake Bay, upholding the Total Maximum Daily Load (TMDL) issued by the agency in 2010.

The TMDL, also known as the Bay “pollution diet,” set limits on the amount of nitrogen, phosphorous and sediment allowed to run into the Bay each year. Watershed Implementation Plans (WIPs) describe the steps each of the seven Bay jurisdictions—Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia—will take to meet these goals, and are included as commitments in the recent Chesapeake Bay Watershed Agreement.

In 2011, the American Farm Bureau Federation, the Pennsylvania Farm Bureau, the National Association of Home Builders and a number of agricultural trade associations filed suit against the EPA, claiming the federal agency lacked authority to issue the TMDL. Numerous local and national partners intervened in support of the EPA, including the Chesapeake Bay Foundation, Midshore Riverkeeper Conservancy, National Wildlife Federation and others. In 2013, Pennsylvania Federal Judge Sylvia Rambo upheld the pollution limits, leading plaintiffs to appeal. On Monday, the U.S. Third Circuit Court of Appeals in Philadelphia again upheld the TMDL as legal under the Clean Water Act.

“Water pollution in the Chesapeake Bay is a complex problem currently affecting at least 17,000,000 people (with more to come),” wrote Judge Thomas L. Ambro, part of the three-judge panel that heard the appeal, in a 60-page ruling. “Congress made a judgment in the Clean Water Act that the states and the EPA could, working together, best allocate the benefits and burdens of lowering pollution.”

Learn more about the plan to reduce pollution in the Bay on the EPA’s TMDL website.



Jul
02
2015

Connecting communities to the Chesapeake Bay

Unique among the exciting goals of the Chesapeake Bay Watershed Agreement is the commitment to establish 300 new public access sites in the region by 2025—the only goal specifically aimed at physically connecting people with the Bay and its tributaries. This goal is important for two reasons.

Image by Sheri Armstrong/Shutterstock

First, people care for the places they love and enjoy. As they interact with the Chesapeake Bay and its tributaries, they develop an appreciation for this wonderful natural resource. This leads them to become stewards and caretakers who have a vested interest in the decisions affecting local waters.

Second, there is an increasingly high demand for additional public access to the waters of the Bay and its rivers. The six watershed states—Delaware, Maryland, New York, Pennsylvania, Virginia and West Virginia—and the District of Columbia all noted a high need for additional public access in their State-wide Comprehensive Outdoor Recreation Plans, public access plans and boating infrastructure plans. Throughout the region, water-based activities—including fishing, boating, swimming and beach use—rank among the top twelve recreational activities. Wildlife observation and views from the water’s edge are also highly desirable.

The demand for water access is also affected by the region’s growing population—now nearly 18 million—and the increasing popularity of relatively new forms of water recreation, such as kayaking, paddle boarding, kite boarding and sail boarding. Unlike larger power craft, these paddle craft are relatively inexpensive, can be easily stored and transported by one person, and may not require much more than a good path to the water’s edge to launch. When you combine these with the more traditional activities of boating, fishing, sunbathing, swimming and enjoying views from the water’s edge, it is not surprising that regional residents and visitors increasingly seek opportunities to connect with the waters of the region.

To help track and implement the goal of 300 new public access sites, sites are lumped into four major categories: boating access, which includes access for all types of water craft; fishing access, which includes fishing piers or bank fishing locations; swimming access, which includes areas specifically designated for swimming; and view access, which includes sites developed at the water’s edge to provide views out over the water or of natural areas and waterfowl. In addition to sites that transition from the land to the water, there is also a need to provide access from the water to the land. This includes points of interest along water trails, campsites, restroom facilities and places where people can explore interesting environments or just stop to picnic.

Image by Wildnerdpix/Shutterstock

Meeting this demand and reaching the 300 site goal requires collaboration among multiple partners. While the National Park Service has been assigned the lead role in coordinating the effort, partnerships between local, state and federal agencies and non-profit organizations have been essential in developing new access. One major project recently completed on the James River in Virginia involved a partnership between the local government, Dominion Power, the Chesapeake Conservancy and a state agency. On the Susquehanna River, a boat dock, wildlife viewing platform and fishing access were established at the Zimmerman Center for Heritage with support from Pennsylvania’s Fish and Boat Commission, Department of Conservation and Natural Resources and Department of Transportation, with additional funding from the National Park Service and local donors. National Park Service funding for public access projects serving local communities comes through the congressionally authorized Chesapeake Bay Gateways and Watertrails Network and the Captain John Smith Chesapeake National Historic Trail. This partnership approach has been a continuing pattern throughout the watershed, and it will take this approach to continue to enhance public access opportunities.

State, federal and local governments are generally the guardians of these opportunities, providing public sites where everyone can enjoy the natural and cultural bounty of the Chesapeake Bay watershed—relaxing, learning and reflecting in direct interaction with the region’s treasured waters. Some sites provide direct access to the Bay and its rivers for boating, sunbathing and swimming. Others provide spots where visitors without watercraft can fish, observe wildlife, walk trails and camp along the water’s edge. The Watershed Agreement’s public access goal reaffirms both the need for and benefits of providing citizens access to these resources.

 

Written by John Davy, National Park Service - Chesapeake Bay Office. John Davy is chair of the Chesapeake Bay Program's Public Access Planning Team.



Jul
02
2015

Report proposes behavioral research could promote Bay restoration

For more than three decades, improvements in Chesapeake Bay health have been guided primarily by science-based policy. But the study of human behavior could have key applications for Bay restoration, according to a new report from an advisory committee of scientific experts.

A recent report suggests that the study of human behavior could boost participation in restoration activities. For example, homeowners may be more likely to implement conservation practices like planting rain gardens.

The field of behavioral economics seeks to understand how individuals interpret information and why they make certain choices. In the report, experts from the Bay Program’s Scientific and Technical Advisory Committee (STAC) explore the subject and its potential uses for the Bay region.

With a better understanding of human behavior, the report suggests, Bay Program partners could meet the goals of the Chesapeake Bay Watershed Agreement in a more effective way. Several recommendations for research are included, such as how community recognition could make homeowners more likely to implement conservation practices. The report suggests that partnerships between policymakers and social scientists could help identify additional ways to blend behavioral research with restoration work.

The report, Exploring Applications of Behavioral Economics Research to Environmental Policy-making in the Chesapeake Bay Watershed, is available on the STAC website.



Jun
22
2015

By the Numbers: 3 milligrams per liter

Like animals on land, critters in the Chesapeake Bay need oxygen to survive. But persistent nutrient pollution—and the algae blooms that result—mean some fish and shellfish have a hard time finding the oxygen they need to survive and thrive.

Photo illustration by Potapov Alexander/Shutterstock

Under water, oxygen is present in dissolved form. When nutrient-fueled algae blooms die, the bacteria that arrive to decompose them use up oxygen in the water, leaving little for fish and shellfish and creating so-called “dead zones.” Increased nutrient pollution leads to larger algae blooms, which in turn create more dead zones.

Scientists measure dissolved oxygen as part of their work to determine the health of an ecosystem. Because an animal’s size and habitat determine how much oxygen it needs, scientists have set different dissolved oxygen standards for different aquatic habitats at different times of the year. An American shad, white perch or other fish found in shallow water, for instance, needs more oxygen than a worm, clam, oyster or other invertebrate found on the Bay’s bottom. While the former thrive at dissolved oxygen concentrations of 5 milligrams per liter of water, the latter need just one. The Bay’s infamous blue crabs and oysters, on the other hand, need dissolved oxygen concentrations of three milligrams per liter to thrive.

Image by dwori/Shutterstock

According to recent data, between 2011 and 2013, 24 percent of the water quality standards for dissolved oxygen were met in the deep-water habitat where bottom-feeding fish, blue crabs and oysters are found. Because the Chesapeake Bay Program has set a goal to achieve the clean water necessary to support aquatic resources and protect human health, our partners are working to reduce pollution and bring the Bay up to water quality standards. Learn how you can help.

Catherine Krikstan's avatar
About Catherine Krikstan - Catherine Krikstan is a web writer at the Chesapeake Bay Program. She began writing about the watershed as a reporter in Annapolis, Md., where she covered algae blooms and climate change and interviewed hog farmers and watermen. She lives in Washington, D.C.



Jun
17
2015

EPA releases environmental justice mapping tool

The U.S. Environmental Protection Agency (EPA) recently released EJSCREEN, an environmental justice mapping tool that combines demographic and environmental data to help identify communities who may face a higher risk of environmental harm.

The tool allows users to select a region by drawing on a map, searching by city or selecting a census area. Reports on the selected area relate environmental hazards—including air pollution, lead paint and toxic waste sites—to demographic factors, such as the percentage of the population that is low-income or minority.

Environmental justice supports equal access to a clean and healthy environment. EJSCREEN could help target programs, policies and funding toward communities in need of increased environmental protection, access to health care, improved infrastructure and climate resilience. Promoting environmental justice is one of the guiding principles of the Chesapeake Bay Watershed Agreement. The tool will help guide the Chesapeake Bay Program’s work under the Agreement in engaging diverse communities and mitigating toxic contaminants.

The EPA is looking for feedback on the tool from users, and plans to release a revised edition next year.

Learn more.



Jun
16
2015

Bernie Fowler measures a sneaker index of 44.5 inches at annual wade-in

Former Maryland State Senator Bernie Fowler saw his sneakers through 44.5 inches of water at this year’s 28th annual Patuxent River Wade-In on June 14. This marks the deepest measurement of the “sneaker index”—the deepest point at which Fowler can still see his shoes as he wades into the water—since 1997.

Bernie Fowler, center, looks down at his great-grandson Carter Dailey, 5, while holding hands with his grandaughter Lauren Fowler at the 28th annual Patuxent River Wade-In at Jefferson Patterson Park in St. Leonard, Md., on June 14, 2015. A former Maryland state senator and long-time advocate for a healthy Patuxent River, Fowler draws attention to the health of the river by wading into the water and measuring the depth at which he can longer see the top of his white sneakers. This year the official measurement was 44.5 inches.

Fowler holds the wade-in each year on the second Sunday in June to bring attention to the polluted waters of the Patuxent River and the Chesapeake Bay. After decades on Broomes Island, the event moved to Jefferson Patterson Park and Museum in 2010.

In his youth, Fowler could wade into the Patuxent up to his chest and still see fish, shellfish and underwater grasses. But nutrient and sediment pollution in the river have led to degraded water clarity and fueled algae blooms that block sunlight from reaching the river bottom. The 1960s sneaker index of 57 inches now serves as the benchmark for a restored Patuxent River. While still well below this target, this year’s measurement is close to double last year’s depth of 23 inches.

To view more photos, visit the Chesapeake Bay Program's Flickr page.



Jun
09
2015

Going green at the Gunston School

On a verdant spring morning, tie-dye clad students of the Gunston School, a private high school of about 160 students in Centreville on Maryland’s Eastern Shore, gather on the dew-covered front lawn to participate in a team-building exercise. Giggling teens in conga line formations scramble around in an attempt to follow directions shouted through a megaphone by Emily Beck, the sustainability coordinator for the school. It’s Earth Day; there’s an electric energy in the air.

A one-mile access road offers the tranquility of hundreds of lush acres of farm fields, all placed under permanent conservation easement, leading up to 32 acres of campus that are nestled into the nape of the Corsica River. The rural expansiveness sets the tone for a core message that is threaded throughout everything the Gunston School does: sustainability.

Out of the 2,220 schools in Maryland, only 20 percent—or 450—of them, including the Gunston School, are certified through the Maryland Association for Environmental & Outdoor Education (MAEOE) as Green Schools. Certified schools must meet a stringent set of criteria that includes benchmarks such as school-wide environmental behavior changes, water conservation, pollution reduction, instruction on environmental issues and many more.

Gunston teacher and sustainability coordinator Emily Beck, center, directs students during a seining workshop that was part of the school's Earth Day celebration on April 22, 2015. Gunston was recently certified as a 2015 Green School by the Maryland Association of Environmental and Outdoor Education.

Certified green schools are also required to hold an annual celebration of green practices; for the Gunston School, that materializes in the form of a daylong Earth Day celebration planned and organized by the students. Instead of attending class, students participate in a morning of workshops conducted by students, faculty and outside presenters and an afternoon film session and green fair. This year’s celebration focused on the intersection of land, livestock and wildlife and offered programs such as poetry in nature; oyster restoration through the Chesapeake Environmental Center; community supported, organic and sustainable farming practices; and a number of road, campus and shoreline cleanups.

Students write from the perspective of animals during a poetry workshop that was part of Gunston's Earth Day celebration.

Being a green school is embedded in the core of the Gunston School’s identity. “The Gunston School has embraced being a green school; we first applied in 2011 and we reapplied this year,” said Beck. “That has really helped to inform the students, teachers, faculty and administration about what a school can be in terms of a role model in the community.” 

The Gunston School’s overarching mission is to help students grow and thrive in a way that way that will prepare them for not only college, but also to be lifelong leaders. The curriculum takes a personalized approach, with instructors working closely with each student to help them develop their leadership skills and academic strengths with a special emphasis on global awareness and sustainable living. In that focus, the school is able to harness their location and pair it with lessons through their Chesapeake Bay Studies program, an integral part of the curriculum that has been in existence for more than 20 years.

Although the Bay Studies program is weaved into lesson plans throughout the year, it culminates in an annual weeklong series of experiential seminars designed to get the students in and on the Bay. By partnering with organizations such as the Chesapeake Bay Foundation, Outward Bound and the Sultana Project, students are directly exposed to and informed about the ecological problems surrounding the Bay and its watershed.

Maryland Parks Service volunteers show two eastern screech owls to Gunston students during a workshop on Earth Day. Green schools such as Gunston are required to hold an annual celebration of green practices.

“Students learn in many different ways; we have students who are classic book learners for whom getting into the Bay helps to bring that book learning alive, and we have students who are more hands on learners and they transfer that knowledge that they got during their hands on experience back into the classroom,” said John Lewis, Headmaster of the Gunston School.  “I think that if the students aren’t ever really in the Bay or immersed in the watershed, they’re sort of just abstract environmentalists—they’re not actually seeing the impacts and the dynamics of the Bay system and that goes for not just kids, but also the teachers.”

Patience and adaptation are the name of the game when it comes to taking students outdoors for lessons. “The biggest fear [for teachers] of taking students outside is that they will run wild, and it’s a downside of our current education system is that the only time that kids get to go outside is for recess. So, the times that you take them outside, their mentality is recess,” said Beck.

At the Gunston School, pairing lessons with the natural world means students have learned over the years that being outside means learning, and they remain engaged. If a distraction happens, like an eagle flying by, teachers are content with taking a moment to appreciate the sighting and even adapting their lesson to their surroundings if need be, because, like many things in life, it’s important to expect the unexpected and go with the flow.

Gunston’s 32-acre campus in Centerville, Md., offers students direct access to the Corsica River.

Although outdoors learning is an ideal opportunity for both teachers and students, some challenges can come along with it. Not all schools have the ample space and natural resources that the Gunston School is fortunate enough to have access to. “There are opportunities to create teaching environments in the barest amount of space or make use of your indoor environment if it is not possible to get out of doors,” said Beck. “The natural world is all around us, it’s just changing your focus a little bit to see the learning opportunities.”

To view more photos, visit the Chesapeake Bay Program's Flickr page.

Images by Will Parson

Jenna Valente's avatar
About Jenna Valente - Jenna developed a passion for conservation through her outdoorsy nature and upbringing in Hawaii, Washington State and Maine. A graduate of Virginia Tech's Executive Master of Natural Resources program and University of Maine's School of Communication and Journalism, she welcomes any opportunity to educate the public about the importance of caring for the environment.



May
28
2015

Clean Water Rule clarifies protections for streams, wetlands

The U.S. Environmental Protection Agency (EPA) and U.S. Army Corps of Engineers released their final Clean Water Rule this week, clarifying which streams and wetlands are protected from pollution and development under the Clean Water Act.

Image by Volga/Shutterstock 

Included under the new rule are seasonal and rain-dependent streams that may only flow during certain times of the year, but which have a significant connection to downstream waters that were previously protected. Wetlands and waterways that border larger waterbodies will also be covered. According to the EPA, the rule will help protect the drinking water of nearly 117 million people.

“For the water in the rivers and lakes in our communities that flow to our drinking water to be clean, the streams and wetlands that feed them need to be clean too,” said EPA Administrator Gina McCarthy in a release.

Two complex Supreme Court decisions led to nearly a decade of confusion over just which waters are covered by the Clean Water Act. While the new rule clarifies which waterways are now protected, it does not expand the scope of the Clean Water Act, and it preserves existing exemptions for irrigation ponds, drainage ditches and other agricultural activities.

Learn more.



May
07
2015

Streamside fencing could improve water quality, livestock health

Preventing livestock from entering streams could improve the health of both local waterways and the animals themselves, according to a new report from the Chesapeake Bay Commission.

Image by Cloud Mine Amsterdam/Shutterstock.com

When hoofed farm animals—such as cattle, horses, pigs, sheep and goats—have clear access to streams, they trample and erode the banks and bottoms of waterways, freeing sediment and nutrients to flow downstream to the Bay. Animal waste contributes additional nutrient pollution, as well as bacteria that can cause human health concerns.

“Livestock exclusion” is an agricultural best management practice (BMP) that uses fences, streamside buffers and alternative water sources to draw animals away from streams and wetlands. The practice benefits not only water quality but the health of the animals themselves: in operations that have installed fences along streams, farmers have reported decreases in injuries and disease in their herds. In the report, the Bay Commission details the benefits of livestock exclusion; describes current efforts throughout its member states of Maryland, Pennsylvania and Virginia; and looks at factors affecting the widespread implementation of these practices.

By lowering the amount of sediment and nutrients flowing to the Bay, practices like livestock exclusion help meet the clean water goals of the Chesapeake Bay Watershed Agreement, which encompasses the Chesapeake Bay Total Maximum Daily Load (TMDL).

The report, Healthy Livestock, Healthy Streams: Policy Actions to Promote Livestock Stream Exclusion, is available through the Chesapeake Bay Commission website.



Apr
30
2015

How six Chesapeake species are responding to a changing climate

As one of the most vulnerable regions in the nation to the effects of climate change, all aspects of life in the Chesapeake Bay watershed—from people and critters, to habitat and infrastructure—are at risk from its effects. Warming air and water temperatures, sea level rise and extreme weather events are expected to have a significant influence on the Bay region in the coming years, but many changes are already being documented. With recent record-breaking high temperatures, including last year and the first quarter of this year, some species are feeling the heat.

Image courtesy U.S. Department of Agriculture/Flickr

1. Cherry blossoms. Thousands of iconic cherry trees surround the Tidal Basin and national monuments of Washington, D.C., and their blossoms bring countless visitors to the area. Over the past 90 years, cherry blossoms have been blooming earlier, due in part to increasing average seasonal temperatures. Since 1921, Washington’s average March temperatures have warmed more than two degrees Fahrenheit, leading “peak bloom” for the cherry blossoms to shift five days earlier.

2. Chickadees. Two strikingly similar types of chickadees are common in backyards through the United States: in the Southeast, the Carolina chickadee is most common, while the black-capped chickadee dominates the northern states. A narrow band of overlap, called the “hybrid zone,” is where the two chickadees meet and interbreed—and it has been steadily moving northward as temperatures rise. According to one study, the zone has been shifting nearly 0.7 miles each year, moving a total of 7 miles in the past ten years.

Image courtesy Dominic Sherony/Flickr

3. Migratory waterfowl. The Bay region is a key stop for millions of migratory waterfowl during their seasonal flights. But milder winters have caused several bird species to visit in smaller numbers. Many canvasbacks have been stopping short along their migrations due to warming temperatures; one report shows the number of wintering canvasbacks in the Bay region declined from nearly 250,000 in the 1950s to 30,000 in recent years. Some tundra swans have been wintering on open rivers in Canada rather than the shallow waters of the Bay. These changes in waterfowl migrations can take a particular toll on recreational hunters, who are seeing fewer birds migrate through the region later in the season.

4. Fish. Nearly 350 species of finfish swim through the rivers, streams and open waters of the Bay region, and many of these species are particularly sensitive to changes in water temperature. Research suggests that the temperature at which native and migratory fish begin to spawn or migrate (typically 15 degrees Celsius) is occurring nearly three weeks earlier than it did in 1960. In particular, the black sea bass has been rapidly moving its range northward; communities in North Carolina who have typically caught a majority of the black sea bass catch have recently been traveling as far north as New Jersey to meet their quotas.

5. Bay grasses. Underwater grasses are a critical part of the Bay ecosystem, providing food and shelter for some of the Bay’s most iconic species, including young blue crabs. Bay grasses are particularly sensitive to excess rainfall and changes in temperature, meaning warming temperatures and more frequent, more extreme weather events are impacting their health. High temperatures during a 2005 heat wave are blamed for a massive die-off of eelgrass in the Bay, and while many areas have rebounded from the collapse, some eelgrass beds have not yet recovered.

6. Pine beetles. A changing climate doesn’t just affect the iconic, treasured species of the Bay region—it also make it easier for invasive species and pests, like the southern pine beetle, to move in. No bigger than a grain of rice, these beetles burrow under a tree’s bark and consume a layer of the tree, which disrupts the flow of nutrients and typically kills the tree in less than four months. Historically, the beetles were unable to survive north of Delaware. But warming temperatures, especially in the winter months, have allowed the pest to migrate northward along the East Coast, reaching as far as New York.

As environmental conditions continue to change, even more species will be threatened by rising seas, warming temperatures, extreme weather and habitat loss. Under the Chesapeake Bay Watershed Agreement, Bay Program partners are committed to building the climate resiliency of the animals, plants, habitats, infrastructure and communities throughout the region.

For more on what you can do, Take Action.

Stephanie Smith's avatar
About Stephanie Smith - Stephanie is the Web Content Manager at the Chesapeake Bay Program. A native of the Midwest, she received her Bachelor’s in Professional Writing from Purdue University and Master of Science degree from the University of Michigan. Stephanie’s lifelong love of nature motivates her to explore solutions to environmental problems and teach others what they can do to help.



Apr
23
2015

Data sharing arrangement could lead to reduced pollution from onsite wastewater systems

Representatives from states across the Bay region recently signed a cooperative accord that will help reduce the amount of nitrogen flowing from onsite wastewater systems into local waterways.

Representatives from Delaware, Maryland, Pennsylvania, Virginia and West Virginia signed a Memorandum of Cooperation at the Chesapeake Bay Program office in Annapolis, Md., on April 16, 2015. Also in attendance were representatives from the Chesapeake Bay Program, the U.S. Environmental Protection Agency (EPA), the National Onsite Wastewater Recycling Association (NOWRA) and the Horsley Witten Group. (Image courtesy Gemma Kite/Horsley Witten Group)

At the Chesapeake Bay Program office last week, representatives from Delaware, Maryland, Pennsylvania, Virginia and West Virginia signed a Memorandum of Cooperation to share data related to the performance of advanced pretreatment technologies for “onsite wastewater treatment systems,” often called septic systems. Pretreatment of wastewater allows for the removal of potentially harmful pollutants such as nitrogen—but these technologies are often costly, and their approval takes time. Under the arrangement, information-sharing across states will help expedite the approval and deployment of these technologies, as well as offer cost savings to manufacturers and consumers.

Onsite septic systems account for less than five percent of the nutrients flowing to the Bay; advanced pretreatment technologies are expected to reduce nitrogen from these systems by at least 50 percent, as compared to conventional systems. Improvements in wastewater treatment will help achieve the clean water goals of the new Chesapeake Bay Watershed Agreement, which encompasses the Chesapeake Bay Total Maximum Daily Load (TMDL).

Learn more.



Apr
15
2015

Photo Essay: Microplastics in the Chesapeake Bay

If you’ve ever watched a solitary ant explore your countertop, you might have marveled at its tiny size. You also might have questioned how something seemingly insignificant can be such a nuisance in your aspiringly sterile kitchen. Then you remember what your tiny pioneer heralds — the impending arrival of thousands of her sisters — and she suddenly seems like a more formidable adversary.

Microplastics from the Magothy River are pictured at the laboratory of Dr. Lance Yonkos in the Department of Environmental Science & Technology at the University of Maryland in College Park, Md., on Feb. 6, 2015. The National Oceanic and Atmospheric Association Marine Debris Program collected sixty samples in 2011 in four tributaries feeding into the Chesapeake Bay, and microplastics were found in all but one.

At a few millimeters short of a typical carpenter ant, microplastics are another case of both extreme smallness and overwhelming magnitude. Microplastics are the fragments, pellets, sheets, fibers, microbeads and polystyrene that begin as improperly discarded plastic bottles and trash that get washed into our waterways. At less than five millimeters in length, they are nearly imperceptible. But plastic doesn’t degrade like most organic material, meaning the total amount of plastic in the environment doesn’t really change as it breaks down, allowing microplastics to persist in most surface waters around the globe, including the Chesapeake Bay.

A sample from the Patapsco River.

University of Maryland Professor Dr. Lance Yonkos is the primary author on a study of microplastics collected from four tributaries of the Chesapeake Bay — the Patapsco, Magothy, Rhode, and Corsica Rivers. Of the 60 samples taken by the National Oceanic and Atmospheric Association (NOAA) Marine Debris Program, all but one contained microplastics.

To Yonkos, it’s not really a surprise there are microplastics in the Bay.

“We have many of the prime sources for creating and introducing microplastics to aquatic environments,” Yonkos said. Roads are a main contributor because they promote physical degradation of plastics and provide easy transport via storm drains to Bay tributaries. Yonkos listed wastewater treatment plant effluent and substantial shipping traffic.

A piece of polystyrene from the Patapsco River. Types of microplastics also include small and large fragments, pellets, fibers, sheets, and other objects smaller than five millimeters.

As plastic fragments become smaller, a greater number of animals are able to swallow them—as exemplified by the recent case of a whale killed by a shard from a DVD case. When these materials break down enough reach the level of microplastics, even filter feeders like oysters can consume them.

Smaller pieces also mean more surface area, Yonkos said, which could mean more leaching, either of chemicals from the plastic itself or of the environmental contaminants that cling to its surface.

Assistant Professor Lance Yonkos poses in his laboratory workspace at the University of Maryland in College Park, Md., on Feb. 6, 2015.

“In this way, microplastics might serve as a vehicle for introducing bioaccumulative contaminants to the food chain,” Yonkos said. The concentration of such toxic contaminants can become magnified at higher levels of the food web.

But, the science isn’t clear yet on whether microplastics represent a serious environmental or human health concern.

“Since we don’t really know yet, it is a little disconcerting to think that most of the plastics we have created over the past 70 years are still in the environment,” Yonkos said.

And microplastics are here to stay. With no feasible method for removing microplastics that are already in the environment, measures like improved recycling and decreased use of offending products — like those that include microbeads, which would be banned by the state of Maryland according to legislation passed recently — could improve the situation going forward.

“The take home message is prevention,” Yonkos said. “If we want to reduce microplastics in the oceans we need to limit their release at the source.”

A large fragment from a Patapsco River sample.

A spherical piece of microplastic from the Patapsco River.

Fibers peel from a larger piece collected in the Patapsco River.

Pellets are formed from lengths of plastic chopped into small sections for various uses.

A sample from the Patapsco River.

A sample from the Rhode River.

A sample from the Patapsco River contains a large amount of foil.

A sample from the Corsica River.

A colorful sheet from the Patapsco River.

A small fragment from the Patapsco River.

A sheet from the Rhode River.

An almost-perfectly round piece from the Patapsco River.

A translucent pellet from the Patapsco River.
 

To view more photos, visit the Chesapeake Bay Program's Flickr page.

Will Parson's avatar
About Will Parson - Will is the Multimedia Specialist for the Chesapeake Bay Program. A native of Bakersfield, California, he acquired an interest in photojournalism while studying ecology and evolution at University of California, San Diego. He pursued stories about water and culture as a graduate student at Ohio University's School of Visual Communication, and as an intern at several newspapers in New England before landing in Maryland.



Apr
10
2015

Report recommends model better account for influence of urban streams, trees on nutrient pollution

A new report from an advisory committee of scientific experts recommends the Chesapeake Bay Program’s Watershed Model be adjusted to better account for the influence of stream corridors and tree canopy on pollution from urban areas.

Image courtesy Bill Dickinson/Flickr

In the report, experts from the Bay Program’s Scientific and Technical Advisory Committee (STAC) suggest accounting for the effects of stream corridors and urban trees to improve the model’s accuracy and allow managers to better target pollution-reducing best management practices.

Trees and stream corridors interact with nutrient and sediment pollution in ways that are unique compared to other urban land covers, the study suggests. The erosion of stream channels can significantly increase the amount of sediment pollution associated with an urban area, while trees can help reduce the volume of polluted runoff.

The Watershed Model is used by Bay Program partners and stakeholders to estimate the amount of nutrients and sediment reaching the Bay. The model currently includes three urban land use categories: impervious (paved) surfaces like buildings, roads or parking lots; pervious (porous) surfaces like lawns or landscaping; and construction sites.

Learn more about The Peculiarities of Pervious Cover: A Research Synthesis on Allocating Pollutant Loads to Urban Land Uses in the Chesapeake Bay.



Apr
06
2015

Runoff has sent more nitrogen, sediment into Bay than anticipated

While pollution controls put in place over the last five years have lowered the amount of nutrients and sediment entering the nation’s largest estuary, new data show that agricultural sources have sent more nitrogen and sediment into the Bay since 2007 than previously thought.

Excess nitrogen, phosphorus and sediment can impair water quality: nitrogen and phosphorus can fuel the growth of harmful algae blooms, while sediment can suffocate shellfish and block sunlight from reaching underwater plants.

Each year, the seven watershed jurisdictions report the steps they have taken to lower the nutrients and sediment entering rivers and streams. Bay Program experts run this information through a suite of computer simulations, which generate pollution load estimates that show us how far our partners have come toward meeting the Bay’s “pollution diet.” When bolstered with new data on population size, land use and agricultural commodities, these simulations show a drop in pollution since 2009—including a six percent drop in nitrogen, an 18 percent drop in phosphorus and a 4 percent drop in sediment—but a two percent rise in nitrogen and sediment loads between 2013 and 2014.

A shift in agricultural commodities could explain this rise in nitrogen and sediment loads. According to data from the U.S. Department of Agriculture’s Census of Agriculture, several states have seen a surge in corn plantings since 2007. Because corn requires nitrogen-rich fertilizer that can leach off the ground and into local waterways, more corn plantings led to more nitrogen loadings than anticipated when pollution targets and reduction milestones were set.

The Bay Program uses the best possible data and information to track our progress toward restoring water quality. By incorporating new data into our computer simulations and pollution load estimates, we are allowed a more accurate picture of pollution in the watershed and a better understanding of the actions that are needed to reach our clean water goals. Because these computer simulations generate pollution load estimates using long-term average weather conditions, it’s possible for these estimates to differ from those that are based on water quality monitoring data; the latter can vary with the amount of rainfall in a given year.

“Each year, we employ the most current data and up-to-date science [to] offer the highest quality information to the public on pollution reductions resulting from Chesapeake Bay Program partners’ continued efforts. While we… have a lot of work to do… we are making steady progress toward meeting water quality goals,” said Bay Program Director Nick DiPasquale in a media release.

These pollution load estimates are just one in a suite of tools the U.S. Environmental Protection Agency (EPA) uses to evaluate whether jurisdictions are on track to meet the Total Maximum Daily Load (TMDL) and its two-year milestone commitments. The EPA also considers data and information on best management practice implementation, best management practice effectiveness and jurisdictions’ progress toward putting programs in place to achieve pollution cuts. It is expected to release interim assessments of jurisdictions’ work in May and conduct the next full two-year assessment in 2016.

Learn more about reducing nitrogen, phosphorus and sediment pollution to the Chesapeake Bay.



Mar
16
2015

Draft management strategies available for public feedback

Nine months after the signing of the Chesapeake Bay Watershed Agreement, the Chesapeake Bay Program is seeking public input on our plans to achieve the goals and outcomes of that landmark accord. These twenty-five draft management strategies address the thirty-one outcomes of the Watershed Agreement and outline our plans for the implementation, monitoring and assessment of our work toward the protection and restoration of the Bay, its rivers and streams and the lands that surround them.

“These plans are the detailed outlines of what may be the most extensive collaboration in the nation,” said Molly Ward, Virginia Secretary of Natural Resources and Chair of the Bay Program’s Principals’ Staff Committee. “Each one is connected to every other, just like our lands, river, streams and the Bay. As we move forward, we welcome people’s input so that we can strengthen those bonds, becoming even more focused, intentional and unified in our vision of a healthy Bay ecosystem.”

Our efforts toward achieving the Agreement’s thirty-one interconnected outcomes will benefit communities throughout the watershed—across Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and Washington, D.C.—as we work to maintain the health of local waters, sustain abundant fish and wildlife populations, restore critical habitats, foster engaged and diverse communities through increased public access and education, conserve farmland and forests, and improve the climate resiliency of the region.

“Resiliency in nature comes from diversity. Like the natural ecosystem, our work draws strength from increasing the diversity of our partnerships, increasing local actions for watershed-wide results,” said Bay Program Director Nick DiPasquale. “When people from distinct communities across the region – from citizens to communities to local governments – join in the overall effort, everyone benefits.”

In June 2014, representatives from the six watershed states, the District of Columbia, the Chesapeake Bay Commission and the U.S. Environmental Protection Agency signed the landmark Chesapeake Bay Watershed Agreement. This agreement marks the first time representatives from every jurisdiction in the watershed committed to full partnership in the Bay Program and our collaborative restoration efforts.

Drafts of the management strategies are available online. The Bay Program welcomes comments on these drafts between March 16 and April 30, 2015. Interested parties can offer input by submitting an online comment or sending an email to the Bay Program.

Learn more.



Jan
28
2015

Bay Backpack helps educators inspire students to protect, restore Chesapeake Bay

Bay Backpack, a website for environmental educators in the Chesapeake Bay region, was recently relaunched with a new design, making it even easier for teachers to find resources that bring the Bay and its surrounding lands into their classrooms.

Image courtesy woodleywonderworks/Flickr

Teachers and educators can use the site’s updated design to find more than 750 lesson plans, books, curriculum guides and other teaching resources that are grouped into themed collections–including Bay animals and habitats, people and culture, Earth system science, land use and water quality. An interactive map of nearly 350 field studies allows teachers to search by location, grade level and subject matter to find hands-on learning opportunities outside the classroom. Bay Backpack also continues to provide a catalog of professional development and funding opportunities that support environmental education efforts, and the new responsive design means users can easily access resources on both desktop and mobile devices, such as smartphones and tablets.

Image courtesy woodleywonderworks/Flickr

In the recent Chesapeake Bay Watershed Agreement, representatives from each of the six watershed states and Washington, D.C., committed to providing every student in the region with at least one meaningful watershed educational experience, or MWEE, in elementary, middle and high school. Meaningful watershed educational experiences are investigative projects that allow students the opportunity to interact directly with their environment and learn about how the Bay, its rivers and streams and its surrounding lands function as a system. Resources provided through Bay Backpack help teachers from across the Bay area engage students in these educational experiences.

“Bay Backpack is a great tool to help meet the commitments of the new Watershed Agreement,” said Shannon Sprague, Chair of the Chesapeake Bay Program Education Workgroup. “It directly supports our efforts to get every student outdoors and learning about their environment.”

To learn more about what the Bay Program is doing to provide each student in the region with the skills to protect and restore local waters and lands, explore the Environmental Literacy goal of the Watershed Agreement.

Learn more about Bay Backpack and the educational resources it provides.



Jan
23
2015

Pollution levels in nine rivers remain below long-term average in 2013

The amount of nutrient and sediment pollution that flowed from nine major rivers into the Chesapeake Bay remained below the 25-year average in 2013. While scientists expect this to have a positive impact on the long-term health of the nation’s largest estuary, much of the Bay’s tidal waters remain impaired: between 2011 and 2013, just 29 percent of the water quality standards necessary to support underwater plants and animals were achieved.

Excess nutrients and sediment are among the leading causes of the Bay’s poor health. Nitrogen and phosphorus can fuel the growth of harmful algae blooms that lead to low-oxygen “dead zones” that suffocate marine life. Sediment can block sunlight from reaching underwater grasses and suffocate shellfish. Lowering the amount of nutrients and sediment moving from our streets, lawns and farm fields into the water is a critical step in the restoration of the Bay, and scientists have attributed the below-average pollution loads of 2013 to below-average river flow and the pollution-reducing practices our partners have put in place on the land.

Because pollution in our rivers has a direct impact on water quality in the Bay, the Chesapeake Bay Program tracks both environmental indicators to gain a wider picture of watershed health.

Pollution loads and trends

Our partners at the U.S. Geological Survey (USGS) monitor nutrient and suspended sediment loads delivered from the large watersheds located upstream of nine river monitoring stations to the Chesapeake Bay. Together, these stations—which are located on the Appomattox, Choptank, James, Mattaponi, Pamunkey, Patuxent, Potomac, Rappahannock and Susquehanna rivers—reflect loads delivered to the Bay from 78 percent of its watershed. Data show that nutrient and sediment loads measured in water year 2013 were below the long-term average.

  • About 160 million pounds of nitrogen reached the Bay during the 2013 water year, which is below the long-term average of 212 million pounds. Between 1985 and 2013, trends in total nitrogen concentrations improved at five out of nine sites, including the James, Patuxent, Potomac, Rappahannock and Susquehanna rivers. Over the past decade, trends in total nitrogen concentrations have improved at three sites and degraded at one site.
  • About 10 million pounds of phosphorus reached the Bay during the 2013 water year, which is below the long-term average of 14.6 million pounds. Between 1985 and 2013, trends in total phosphorus concentrations improved at three sites, including the James, Patuxent and Potomac rivers. Over the past decade, trends in total phosphorus concentrations have degraded at two sites. Other sites experienced no significant change.
  • About 2.71 million tons of sediment reached the Bay during the 2013 water year, which is below the long-term average of 5.2 million tons. Between 1985 and 2013, trends in suspended sediment concentrations have improved at three sites, including the Choptank, Patuxent and Potomac rivers. Over the past decade, trends in total sediment concentrations have degraded at four sites. Other sites experienced no significant change.

Water quality standards achievement 

The Chesapeake Bay Program measures progress toward the achievement of water quality standards in the Bay and its tidal tributaries using three environmental factors: dissolved oxygen, water clarity or underwater grass abundance, and chlorophyll a. Data are assessed in three-year periods. After more than a decade of steady improvement between 1989 and 2002, the attainment of water quality standards has seen mixed results. Changes seen in the past 10 years have not been statistically significant, and it is likely that the slow recovery of underwater grasses in the Upper Bay has stalled some water quality improvements.

Underwater grasses offer important habitat to underwater species and have a direct impact on water quality: healthy bay grass beds add oxygen to the water, absorb nutrient pollution, reduce wave energy and help suspended and potentially light-blocking particles like sediment settle to the bottom. Between 2009 and 2012, unfavorable growing conditions caused bay grasses to decline across the region. In 2011, for instance, heavy rains and the resulting runoff clouded the water during the spring growing season. That fall, Hurricane Irene and Tropical Storm Lee muddied the water again. Because water quality is reported in three-year assessment periods—and the most recent assessment period spanned 2011, 2012 and 2013—it is likely this drop in bay grass abundance influenced water quality results. But bay grasses have shown resilience: a dense bed on the Susquehanna Flats persisted through the storms of 2011, and showed how resilient such grass beds can be to disturbances in water quality. If bay grasses continue the recovery that took place in 2013, there could be positive effects across the wider Bay ecosystem.

Learn more about trends in nitrogen, phosphorus and sediment in rivers or about water quality standards achievement.



Jan
06
2015

Letter from Leadership: Ten steps to a healthy Chesapeake Bay

Andy, my next-door neighbor, is a fisherman. We talk from time to time across our backyard decks. Andy has never asked me about the Chesapeake Bay Watershed Agreement signed in June 2014. But if he did, how would I explain it? Are the ten goals of the Agreement connected?

Of course they are. Think fish, think Chesapeake Bay, and the mind conjures rockfish, crabs and oysters - restored and protected. That’s Goal 1, Sustainable Fisheries. What do fish, wildlife and other living things need to survive? Vital Habitats made up of restored underwater grasses, streams, forest buffers and tree canopy (Goal 2). Habitats require good Water Quality, which means reducing pollutant loads flowing into the Bay (Goal 3). But is water quality alone enough? Nope: Toxic Contaminants, such as mercury and PCBs, harm both wildlife and human health and must be reduced (Goal 4).

Are we finished? Not yet. Our good waters must remain healthy (Healthy Watersheds, Goal 5). Without increasing our leadership – citizens and elected officials committed to restoration – our efforts are for naught (Stewardship, Goal 6). Our Chesapeake Bay region is blessed with ecologically valuable and treasured lands that protect our waters and enhance our lives (Land Conservation, Goal 7).

What brings the magic of the Bay home most of all? Experiencing it – swimming, boating and fishing – which means increased Public Access (Goal 8). Future leadership is essential; our children must graduate from school with the knowledge and skills to protect and restore our lands and waters (Environmental Literacy, Goal 9). And our restoration efforts must account for changing climactic conditions and sea level rise (Climate Resiliency, Goal 10).

So, that's it: ten steps to a restored Chesapeake Bay. Have a good day, Andy.

About Joseph Gill – Joseph Gill is the Secretary of the Maryland Department of Natural Resources. Joe was appointed by Gov. Martin O’Malley in May 2013 after having served 3 years as DNR’s deputy secretary and 14 years as the agency’s Principal Counsel. He lives in Severna Park with his wife and two daughters.


Jan
05
2015

Chesapeake Bay Foundation reports minimal changes in overall Bay health

The Chesapeake Bay Foundation once again gave the Chesapeake Bay a “D+” grade in its biennial State of the Bay report, with improvements in water quality offset by declines in fisheries.

William C. Baker, President of the Chesapeake Bay Foundation, announces the Foundation's 2014 State of the Bay report at a press conference at the Philip Merrill Environmental Center in Annapolis, Md., on Jan. 5, 2015.

This grade remains the same from the nonprofit’s 2012 report. The score of 32 on a one-to-100 scale marks an improvement of one point since 2010 and of four points since 2008 but remains well short of the Foundation’s goal of 70, representing an “A+” or a “saved Bay.”

According to the report, four of the 13 indicators of Bay health showed signs of recovery: dissolved oxygen, water clarity, oyster populations and underwater grass abundance. Of those, dissolved oxygen showed the greatest improvement, with this year’s “dead zone” - an area of little to no dissolved oxygen where aquatic life is unable to thrive - the smallest it has been in thirty years. But these advances were offset by declines blue crab and striped bass populations, as well as increases in phosphorous pollution.

Chesapeake Bay Foundation President William C. Baker attributes improvements in water quality to the “Clean Water Blueprint,” or Total Maximum Daily Load - a comprehensive plan to reduce pollution going to the Bay and its rivers and streams.

“We have never before had this level of accountability and transparency in Bay restoration efforts,” said Baker in a release. “Our children and grandchildren can inherit a restored Chesapeake Bay, but only if we continue the hard work and investments that will lead to success.”

The Chesapeake Bay Program will publish Bay Barometer, its annual snapshot of watershed-wide health and restoration, later this month. The Bay Program is a voluntary partnership that includes the six watershed states of Delaware, Maryland, New York, Pennsylvania, Virginia and West Virginia, the District of Columbia, the Chesapeake Bay Commission and the U.S. Environmental Protection Agency representing the federal government.

Learn more about the Chesapeake Bay Foundation.



Jan
02
2015

Restoration Spotlight: Push for public access at Crow’s Nest Natural Area Preserve

Nearly 18 million people reside in the Chesapeake Bay region, with more moving to the area each year. Growing disputes over land use have conservationists working hard to protect the robust natural resources that can be found within the Bay region. A significant part of these efforts include developing and improving public access points as means for people to experience, explore and develop connections to the land, water and wildlife.

Nestled in between Accokeek Creek and Potomac Creek, Crow’s Nest Natural Area Preserve in Stafford, Virginia serves as one of the state’s highest land conservation priorities in the past 10 years. “This is a priority site because it’s such a large intact ecosystem. You have thousands of acres of mature hardwood forest on the coastal plain in Virginia,” explained Michael Lott, Crow’s Nest Manager and Northern Region Steward for the Virginia Department of Conservation and Recreation (DCR).

In addition to around 2,200 acres of mature hardwood forest, the site boasts 750 acres of nearly pristine wetlands and more than 10 miles of hiking trails, and it acts as a safe haven for wildlife and countless viewing opportunities for critters such as migratory waterfowl, white-tailed deer, river otters and beavers.

The preserve and those who manage it have faced many obstacles over the past few decades, including population growth and development encroaching on the area. “In the 1970’s, there were around 30,000 people in Stafford County; a few of the subdivisions were vacation homes for people in D.C. Now, the population is about 130,000. This is the best remaining tidal marsh in Stafford County, so our priority here is conservation,” said Geoff Austin, Northern Region Operations Steward with DCR.

Despite the vastness of the preserve and the great potential it holds for environmental education and recreational opportunities, the property is largely closed to the public until further operational resources can be effectively implemented.

The dynamic duo of Lott and Austin dedicate 90 percent of their working hours toward maintaining the preserve and trying to make it accessible to the public, but one major hurdle stands in their way – a mile-and-a-half long access road. “The big obstacle is the access road to the [completed] parking lot. We need to raise the money to fix that road. That road has been there since the colonial era, it’s been dug down and needs a lot of work before it’s passable for cars,” explained Austin. The team – with help from volunteers - keeps the trails clear, maintains the parking lot and plans to install proper trail signage once the road is completed.

Lott and Austin measure their success one victory - no matter the size - at a time, their latest being the installation of a handicap-accessible boat ramp to be opened to the public within the next couple of months. The ramp overlooks acres of tidal marsh, provides access to Accokeek Creek and lays adjacent to a half-mile trail complete with benches for wildlife observers. “It’s a great birding spot,” said Austin. The launch is part of a larger plan to connect a water trail system along the Potomac River.

DCR wants the public to be able to experience the preserve’s natural wonder. “In the past, this landscape did not lend itself to farming very well, and so a lot of the soil we have out here is still very much intact. Researchers have said that throughout the mid-Atlantic and East Coast, you can’t find soil like this in very many places anymore, which is why the forest out here is so productive," explained Lott. “A lot of the forest, particularly in the ravines, hasn’t been logged intensively since the Civil War, so it’s trending back toward mature forest. [For this reason] we keep the trails clear and have been holding open houses twice a year for five years now, so people have had the opportunity to see it and enjoy the trails.”

Tending to nearly 3,000 acres of forest and wetlands is no simple task for two people, but the work is done out of a place of deep caring and passion for protecting and sharing the special places in life with the public. “I grew up in this area and it’s nice to have an intact piece of hardwood [forest] that is going to be preserved in the area for years to come. It’s great to be able to walk out there when I’m working or hunting and see the big trees; you don’t see that in many other places in this area. As stewards of the land year-round you spend a lot of time here – it means a lot to be able to take care of this place.” said Austin.

To view more photos, visit the Chesapeake Bay Program’s Flickr page.

Jenna Valente's avatar
About Jenna Valente - Jenna developed a passion for conservation through her outdoorsy nature and upbringing in Hawaii, Washington State and Maine. A graduate of Virginia Tech's Executive Master of Natural Resources program and University of Maine's School of Communication and Journalism, she welcomes any opportunity to educate the public about the importance of caring for the environment.



Dec
15
2014

Photo Essay: Exploring the life of a waterman on a visit to Smith Island

For many of the people living upstream of the Chesapeake Bay, daily life doesn’t involve crab pots or oyster dredges. A group of such Bay novices — including one member who had never been on a boat — assembled in Crisfield, Md., this fall to take a ferry to Smith Island, one of the last two inhabited islands in the Chesapeake Bay. Actually a small cluster of low-lying stretches of land, Smith Island and its Virginia neighbor Tangier Island carry a rich cultural history dating back to the 1600s.  Over the years, they have been subjected to the extreme weather conditions in the open Chesapeake Bay and forces of sea level rise and land subsidence that have already claimed surrounding islands. The trip, organized by the Chesapeake Bay Program’s Forestry Workgroup, gave the foresters the chance to experience the unique life of a Chesapeake waterman.

A group of foresters organized by the Chesapeake Bay Program's Forestry Workgroup looks toward Rhodes Point, one of three communities on Smith Island, Md., while listening to environmental educator Norah Carlos of the Chesapeake Bay Foundation on Oct. 27, 2014. The annual trip helps foresters from the six-state Bay watershed connect with Chesapeake Bay heritage and restoration goals.

“These participants are engaged in work throughout the watershed that directly benefits the quality of the Bay, but often they have very little experience on the Bay itself,” said Craig Highfield of the Alliance for the Chesapeake Bay and the Forests for the Bay initiative, who has facilitated the excursion for the past two years. “This trip is a way to connect their work with a community that relies so intimately with a healthy Bay.”

Over the course of two and a half days, the group of foresters followed educators from Chesapeake Bay Foundation’s Smith Island environmental education center, taking in the unique culture, exploring the changing environment and finding new connections that bring the Bay closer to home.

“I think this group was able to draw similarities between the rural communities they work with — who rely on the natural resources on the land — with this rural community that relies on the natural resources of the Bay,” said Highfield.

Donning fish scales on her cheeks, Norah Carlos of the Chesapeake Bay Foundation demonstrates the first step of the "kiss and twist" method of ripping a menhaden in half for use as bait for a crab pot during an educational program on the waters of Smith Island, Md.

A colony of brown pelicans roosts on an uninhabited portion of Smith Island, which is used as a nesting site.

From right, Phill Rodbell of the U.S. Forest Service, Adam Miller of the Maryland Department of Natural Resources and Phil DeSenze of the U.S. Forest Service sort blue crabs caught with crab pots on the waters near Smith Island, Md., during a demonstration on the Chesapeake Bay Foundation’s boat.

Wes Bradshaw, a Smith Island native and environmental educator for the Chesapeake Bay Foundation, captains the Foundation’s boat while Mike Huneke of the U.S. Forest Service tosses back a blue crab in Smith Island, Md. The group of foresters learned how to tell which male and female crabs were legal to harvest.

After learning some of the history of the oyster industry on Smith Island from native waterman Wes Bradshaw, foresters sort through a muddy pile of oysters and oyster shells dredged from the water.

From right, Justin Arsenault and Ryan Galligan of the Maryland Forest Service and Harvey Darden and Gary Heiser of the Virginia Dept. of Forestry use canoes to get a close look at a salt marsh on Smith Island.

From left, Jennifer McGarvey of the Alliance for the Chesapeake Bay, Phill Rodbell of U.S. Forest Service, Payton Brown of the Alliance for the Chesapeake Bay, Tuana Phillips of the Chesapeake Research Consortium, Lou Etgen of the Alliance for the Chesapeake Bay and Philip McKnight of the Chesapeake Bay Foundation hike through an unpopulated portion of Smith Island.

Lyle Almond of University of Maryland Extension explores a formerly inhabited portion of Smith Island, Md., that still exhibits nonnative garden species like English ivy. Land subsidence has led to homes being removed from portions of Smith Island that are being lost to the water.

Lou Etgen, left, of the Alliance for the Chesapeake Bay and William Bow of the Pennsylvania Dept. of Conservation and Natural Resources update a list of species spotted by the group during their time on Smith Island. The list showed over 100 species by the end of the two-and-a-half-day trip.

Fish and invertebrates caught by a crab scraper and oyster dredge swim in a jar of water onboard the Chesapeake Bay Foundation's boat, to be kept in the Foundation’s aquarium at their center on Smith Island.

Payton Brown of the Alliance for the Chesapeake Bay hands a crab pot to Adam Miller of Maryland Dept. of Natural Resources while unloading the Chesapeake Bay Foundation's boat.

The sun rises behind a boat docked in the town of Tylerton, Md., on Smith Island on Oct. 28, 2014. Three small towns comprise a population of fewer than 400 people on the island.

A playground at Smith Island’s school in Ewell, Md., rests empty during school hours on Oct. 28, 2014. The island's population has declined steadily, with the school now serving just 11 students from kindergarten through eighth grade.

Robin Bradshaw, right, chats with Tina Corbin at the Smith Island Crabmeat Co-op in Tylerton, Md., on Oct. 29, 2014. The two women and a third are the only crab pickers remaining with the co-op, which is in its 19th season and began with 15 people and 3-4 helpers, according to Bradshaw. She says the rest have either died or moved away.

A barrel of steamed blue crabs awaits consumption on the dock in Tylerton, Md., after being harvested on the last night of the foresters’ educational trip to Smith Island on Oct. 28, 2014.

McKnight, left, and Carlos serve Smith Island cakes to the group at Chesapeake Bay Foundation’s Smith Island environmental education center in Tylerton, Md. The Smith Island cake, made with multiple thin layers of cake and frosting was named the state dessert of Maryland in 2008.

Ryan Galligan of the Maryland Dept. of Natural Resources looks out toward a crab boat as the group of foresters leaves Smith Island and returns to Crisfield, Md., on Oct. 28, 2014.
 

To view more photos, visit the Chesapeake Bay Program's Flickr page.

Will Parson's avatar
About Will Parson - Will is the Multimedia Specialist for the Chesapeake Bay Program. A native of Bakersfield, California, he acquired an interest in photojournalism while studying ecology and evolution at University of California, San Diego. He pursued stories about water and culture as a graduate student at Ohio University's School of Visual Communication, and as an intern at several newspapers in New England before landing in Maryland.



Dec
11
2014

Chesapeake Executive Council names Virginia's Governor McAuliffe as next chair

Virginia Governor Terry McAuliffe has been selected to chair the Chesapeake Executive Council, beginning January 1, 2015.

The Chesapeake Executive Council, established in 1983, is responsible for guiding the Chesapeake Bay Program’s policy agenda and setting conservation and restoration goals. Members include the governors of Delaware, Maryland, New York, Pennsylvania, Virginia and West Virginia, the Mayor of the District of Columbia, the Chesapeake Bay Commission Chair and the U.S. Environmental Protection Agency Administrator.

“I am humbled that my colleagues on the Chesapeake Executive Council have selected me to lead our collective efforts at this critical time in the restoration of the Chesapeake Bay,” said Governor McAuliffe. “Not only are we engaged in the implementation of the recently signed Chesapeake Bay Watershed Agreement, but we are continuing the difficult work of meeting our water quality goals under the framework of the Chesapeake Bay Total Maximum Daily Load. The Chesapeake Bay is a national treasure and an enormous economic asset for Virginia and our neighboring states. I look forward to working with my counterparts in this region to restore and protect the Bay for generations to come.”

Governor McAuliffe succeeds Maryland Governor Martin O’Malley, who became chair in December 2013. Under the leadership of Governor O’Malley, the Executive Council adopted the landmark Chesapeake Bay Watershed Agreement. He also served two consecutive terms as the Executive Council Chair in 2007 and 2008 and was instrumental in developing two-year milestones that focus on short-term, achievable goals.

"The Bay has been at the top of my agenda during my two terms as Governor and I have been honored to have served as chair three times during my tenure,” said Governor O’Malley. “I know Governor McAuliffe will provide the leadership necessary to meet our collective goals, and I wish him along with the other members of the Council well.”

Learn more.



Dec
02
2014

Letter from Leadership: Communities own past, prepare for future with stormwater utilities

Nobody enjoys paying taxes or fees to the government. Whether or not you believe in “big government,” April 15th is no one’s favorite day of the year. But it’s important to remember that when we put money into local governments, we benefit from what good government offers. It’s easy to feel more positive about paying a fee when you know the money is being put to good use.

Three Maryland towns – Berlin, Oxford and Salisbury – recently decided to be examples of what I’d call responsible, Bay-friendly government when each of them voluntarily established its own stormwater utility. A stormwater utility operates in a similar way to an electric or water utility; it generates funds by charging a fee for service and uses those funds to improve the community’s quality of life by updating sewer systems, addressing flooding issues, reducing polluted runoff in local waters and better planning for the impacts of climate change. These programs were not requirements from the state or federal government; rather, residents felt it was necessary and appropriate to create a funding source to deal with the problems facing their communities.

In January 2013, the town of Berlin passed legislation to reduce flooding and clean up local rivers and streams. The fees established by this legislation will generate almost $600,000 annually to improve stormwater management, repair existing infrastructure and reduce chronic flooding. Over time, this stormwater utility will save the town money by avoiding damage to the city’s infrastructure and reducing the impacts of flooding on local businesses.

In 2012, the town of Oxford – working with the Eastern Shore Land Conservancy (ESLC), the Mid-Atlantic Environmental Finance Center and other partners – conducted an assessment of the town’s existing stormwater conditions. The recommendations of the assessment included the creation of a stormwater utility. Over the years, residents of Oxford have seen more areas flood on a more frequent basis and felt they had to find a solution. Town Manager Cheryl Lewis believes the Federal Emergency Management Agency (FEMA) will give flood insurance discounts to communities that take action to address stormwater issues themselves.

Salisbury recently became the latest Maryland town to voluntarily establish a stormwater utility through a unanimous decision by its city council. But these programs aren’t exclusive to Maryland – across the Chesapeake Bay region, local governments have taken charge to help protect their local waters. From Washington, D.C., to Lancaster, Pennsylvania, to Lynchburg, Virginia, cities large and small have not only established stormwater utilities but have also implemented stormwater credit programs to reward homeowners who install rain gardens, pervious pavement, green roofs and other methods of reducing the amount of runoff from their property.

In many of these cases, these programs are dealing not simply with nuisance flooding, but with chronic flooding that disrupts business and results in lost income. While some opponents of the stormwater utility approach refer to the fees as a “rain tax,” supporters see it as a way to protect local waterways and drinking water sources from polluted stormwater runoff.

It’s encouraging to see groups rise above the rhetoric, recognize there is a problem, and take positive action and responsibility to address it, instead of waiting to be forced to make a change. These issues affect their community, their homes and their businesses, and they are taking charge.

Note: The opinions expressed above are those of the author and do not necessarily reflect U.S. EPA policy endorsement or action.

Nick DiPasquale's avatar
About Nick DiPasquale - Nick has nearly 30 years of public policy and environmental management experience in both the public and private sectors. He previously served as Deputy Secretary in the Pennsylvania Department of Environmental Protection, Director of the Environmental Management Center for the Brandywine Conservancy in Chadds Ford, Pennsylvania and as Secretary of the Delaware Department of Natural Resources and Environmental Control.



Nov
13
2014

Letter from Leadership: A thousand chances to heal

It is often said that the environment is dying a death by a thousand cuts. No single development, no act of an individual or organization or business causes a big negative impact; but collectively these developments and actions represent a significant impact on the environment. Left unchecked or unaltered, the ultimate fate is clearly predictable.

Thankfully, throughout the watershed, more and more small organizations and businesses are working with local governments to uproot pavement and concrete and replace it with gardens and natural areas.  These pollution-reducing conservation practices at churches, schools, libraries, car dealerships, marinas, and, yes, even local brew pubs are healing some of the thousand cuts, as they absorb runoff from buildings and parking lots and reduce pollution flowing off the land and into local streams and creeks. Most of these projects are the result of a few dedicated and talented local citizens and organizations. Recently, the Spa Creek Conservancy, working with the Alliance for the Chesapeake Bay and the Watershed Stewards Academy, with funding support from state and local agencies, installed rain gardens and infiltration basins at the Cecil Memorial Methodist and Mt. Olive African Methodist Episcopal (AME) Churches in Annapolis, Maryland.

Remarkably, these beautiful gardens now catch and absorb virtually all of the polluted stormwater runoff that previously flowed off the property, untreated, and into nearby Spa Creek. While controlling polluted runoff was important to the leadership and congregations of these inner-city churches, so too was the sense of pride that they had in beautifying their houses of worship, with flowering native plants in the rain gardens and these community improvements. 

So, how do we stop the death of a thousand cuts from which nature is suffering? By healing those cuts one at a time, through small projects like these that also lift our hearts and our souls and restore that sense of pride in our communities. How glorious and uplifting it will be for members of these churches to attend services and witness these plants in full bloom and know that they are honoring and paying tribute to creation.

Note: The opinions expressed above are those of the author and do not necessarily reflect U.S. EPA policy endorsement or action.

Nick DiPasquale's avatar
About Nick DiPasquale - Nick has nearly 30 years of public policy and environmental management experience in both the public and private sectors. He previously served as Deputy Secretary in the Pennsylvania Department of Environmental Protection, Director of the Environmental Management Center for the Brandywine Conservancy in Chadds Ford, Pennsylvania and as Secretary of the Delaware Department of Natural Resources and Environmental Control.



Nov
12
2014

Assessment explores impact of land development on Chesapeake Bay

Researchers from the National Centers for Coastal Ocean Science (NCCOS) surveyed three rivers in the Chesapeake Bay region to examine how variations in land use and development impact the health of the Bay, finding that water quality and aquatic animal health could help gauge the overall well-being of coastal regions.

Homes clustered along water

The NCCOS assessment, conducted from 2007 to 2009, explored linkages between land use, water quality, and aquatic animal health along the Corsica, Magothy, and Rhode Rivers. Researchers measured water quality for dissolved oxygen, nutrient concentrations and water clarity, and based aquatic animal health on the growth, disease rates and diversity of fish and shellfish stocks.

As the population of the Chesapeake Bay region grows from 17 million to a predicted 20 million residents by 2030, an increasing number of people will rely on the Bay for their food, recreation and livelihoods. The assessment results suggest that environmental pressure from development could both weaken the capacity of the Bay to provide these services and counteract the benefits of current restoration efforts.

“Luckily, ecosystems tend to be resilient; many are able to maintain a state of relatively strong health when faced with environmental stress,” the report states. However, it also clarifies that if the health of coastal waters is pushed beyond a point of recovery, it could affect the ability of the Bay to cope with “environmental stress”—including increased rainfall related to climate change.

“The science challenge, going forward, is in identifying and communicating where systems fall relative to some threshold or tipping point,” the report states. Results of the assessment can be used to inform “smart development plans” that can balance the effects of human activities with better support of Chesapeake Bay’s resiliency.

Learn more.



Oct
22
2014

Photo Essay: Following the Anacostia Water Trail

For the uninitiated, paddling the Anacostia River in Washington, D.C., provides an opportunity to discover a hidden natural gem. Paddling away from the riverbank on an early fall evening, we quickly begin to slide past egrets hunting in the shallows and turtles diving deep to avoid our canoe. Joining them is a kingfisher, chattering as it circles before landing on a branch, and a bald eagle, following the course of the river upstream and disappearing around a bend. Moments like this are why the Anacostia Watershed Society (AWS) hosts free paddle nights like the one at Kenilworth Park in D.C. — to change perceptions of a river with a reputation of being heavily polluted.

High schoolers, from left, Brian Brown, Dakoda DaCosta and Isaiah Thomas participate in a free paddle night organized by the Anacostia Watershed Society (AWS) near Kenilworth Park in Washington, D.C., on Sept. 23, 2014. The boys are part of the Green Team program organized by Groundwork Anacostia.

“From the perspective of someone who’s heard about the river but never been there, I think the most surprising thing is that there’s a whole lot of nature,” says Lee Cain, Director of Recreation at AWS. “When you get out there, there’s some places where you’re there and you think, ‘Am I in the middle of West Virginia?’”

Cain says he heard many negative stories about the Anacostia River before visiting it for the first time, but his perceptions changed after experiencing it up close. The Anacostia is indeed still plagued by trash, sewage, toxins and runoff. But it is also a place where Cain has seen fox and deer swimming across the river, where egrets aggregate by the dozens at nighttime, and where bald eagles and osprey lay their eggs in March so their fledglings can feed on shad. In June, the 9-mile Anacostia Water Trail officially opened, featuring many natural areas and recreation sites along the river.

“You’re probably going to see a higher density of wildlife on this river than you might in even the Jug Bay wetlands,” says Cain.

Paddlers return to Kenilworth Park in Washington, D.C., at the end of a paddle night organized by AWS on Sept. 23, 2014.

Cain says the Anacostia is better than it was 25 years ago, when cars, refrigerators and tires were the big items being pulled from the river. Positive signs of change have come in the form of a plastic bag fee passed by the D.C. Council in 2009, and a ban on plastic-foam food containers that passed in June. A group called Groundwork Anacostia River DC has implemented litter traps in several tributaries, and AWS operates a trash trap study as well. The Anacostia Revitalization Fund, established in 2012, has provided funding for local initiatives aimed at restoring the river’s health. DC Water’s $2.6 billion Clean River Project will remove 98 percent of combined sewer overflows to the Anacostia by 2022, keeping 1.5 billion gallons of diluted sewage from entering the Anacostia every year. And the Pepco Benning Road Power Plant, which ran on coal then oil for over a century, sits quietly near the Anacostia, shuttered since 2012 and slated for demolition.

“If [the power plant] has some source of PCB contamination then at least that source is gone and now, when we clean out the soil, we’ll have a pretty clean space,” says Cain.

He says it has been a big year for toxins in the river, with the District of Columbia taking core samples along the river to assess what is down there and what it will cost for removal.

A deer visits the Anacostia's riverbank as a heron wades through the river in Washington, D.C., on Sept. 23, 2014.

“One thing that’s encouraging is that it took us a couple centuries to sort of destroy this river, and then it’s only taken us about 25 years to get it to where it is now,” says Cain. “So you can imagine in another 25 years where it will be.”

In the meantime, AWS will continue working toward the goal of a fishable and swimmable Anacostia by 2025. Getting people on the Anacostia on paddle nights is just one effort to let people see firsthand what it already has to offer. The hope is that some of those visitors might become volunteers with AWS’ or their partners’ trash, stewardship, education and other programs.

“There’s a lot of the Anacostia that’s not exactly accessible to people, and in order to have all of these things and these efforts continue we need the support of the public,” says Cain. “We need people to recognize that this is a resource worth saving.”

Egrets congregate just before sunset on the Anacostia River in Washington, D.C., on Sept. 23, 2014. Many of the birds migrate from the Amazon Basin in South America, while others come from Florida and the Caribbean to spend their summers in Washington.

A plastic bottle lies wedged along the riverbank of the Anacostia River in Washington, D.C., on Sept. 23, 2014.

A kingfisher lands on a discarded pipe in the Anacostia River in Washington, D.C., on Sept. 23, 2014.

The Pepco Benning Road Power Plant rises above the Anacostia River during a free paddle night organized by AWS on Sept. 23, 2014. The plant was decommissioned in 2012 and is slated for demolition.

A bald eagle flies from its perch on a light post at the Washington Navy Yard in Washington, D.C., on Oct. 1, 2014. "Maybe I've been here and I just haven't seen them, but I pay attention to the birds," said Grant Lattin, who has worked at the Navy Yard for seven years but hadn't seen a bald eagle until recent weeks.

The USS Barry sits docked at the Washington Navy Yard in Washington, D.C., as egrets, cormorants and a bald eagle perch nearby on the Anacostia River, on Oct. 1, 2014.

An egret hunts near the bow of the USS Barry at the Washington Navy Yard in Washington, D.C., on Oct. 1, 2014.

Watershed specialists Carlos Rich, top, and Dawayne Garnett from Groundwork Anacostia work to empty a Bandalong litter trap at Kenilworth Park in Washington, D.C., on Oct. 1, 2014. Groundwork has installed litter traps at several tributaries of the Anacostia to prevent trash from reaching the river.

Watershed specialist Dawayne Garnett from Groundwork Anacostia picks out trash from a Bandalong litter trap at Kenilworth Park in Washington, D.C., on Oct. 1, 2014. The trash gets sorted into bags of plastic bottles, Styrofoam, glass and aluminum before it is weighed recorded and carried away. The trap gets emptied once a week, and often will take 12-20 garbage bags and many hours to remove everything.

Watershed specialists Antwan Rich, left, and Carlos Rich record the weights of bags of trash and recyclables pulled from a Bandalong litter trap operated by Groundwork Anacostia at Kenilworth Park in Washington, D.C., on Oct. 1, 2014. "One day it might stop, hopefully," Antwan said, referring to the regular influx of trash at the trap.

Men fish with lines wrapped around plastic bottles on the Anacostia River in Washington, D.C., on Sept. 23, 2014. There is currently a health advisory from the D.C. Department of Health against eating fish caught in the river, though AWS is pushing for the goal of a fishable and swimmable river by 2025.

Visitors haul a canoe from the Anacostia River after one of AWS' free paddle nighs at Kenilworth Park in Washington, D.C., on Sept. 23, 2014.

Nahshon Forde, an operations assistant with AWS, paddles in after helping with a free paddle night at Kenilworth Park in Washington, D.C., on Sept. 23, 2014. "By doing paddle nights and things like that we’re helping people develop a relationship with the river, and that’s kind of a conveyor belt to a lot of our other ways to be involved with AWS," said Lee Cain, Director of Recreation at AWS.
 

To view more photos, visit the Chesapeake Bay Program Flickr page.

Will Parson's avatar
About Will Parson - Will is the Multimedia Specialist for the Chesapeake Bay Program. A native of Bakersfield, California, he acquired an interest in photojournalism while studying ecology and evolution at University of California, San Diego. He pursued stories about water and culture as a graduate student at Ohio University's School of Visual Communication, and as an intern at several newspapers in New England before landing in Maryland.



Sep
30
2014

Letter from Leadership: Environmental literacy matters

As students settle into their new school-year routines, it’s a good time to reflect on how their experiences in the classroom affect the Chesapeake Bay.

Image courtesy brucemckay/Flickr

Today’s students will play a critical role in the health of tomorrow’s Chesapeake. Making sure they understand how to critically think about evolving environmental issues is essential to the long-term success of environmental protection.

While managers are making progress in addressing the issues facing the Bay, many of the remaining challenges to a healthier ecosystem rest in the hands of individuals, businesses and communities. From decisions on how to heat and cool homes to decisions on where to live, what vehicle to drive and what to plant on private properties, individual choices can have a huge impact on the Bay. This means a successful environmental protection strategy must be built on the collective wisdom of the environment’s residents, informed by targeted environmental education and starting with our youngest students.

In recent years, a clearer picture has emerged about the environmental literacy of our students. A 2008 National Environmental Literacy Assessment and related follow-up studies showed that students who attended schools with environmental education programs knew and cared more about the environment, and were more likely to take actions to protect their environment, than students who didn’t. But learning outdoors during the school day is not common in the United States.

Image courtesy vastateparkstaff/Flickr

While our society is increasingly disconnected from the natural environment—spending more time online and less time outdoors—there is good news: states are increasingly stepping up to ensure that students have the opportunity to connect with nature. The state of Maryland, for instance, has established the nation’s first graduation requirement for environmental literacy; beginning in 2015, every student that graduates from a school within the state will have participated in a program that will help him or her make more informed decisions about the environment. Several states in the region have established partnerships for children in nature, taking a comprehensive look at how they can better encourage outdoor programs for children. Even more are recognizing the efforts of their schools to become more sustainable, ensuring that more students are learning inside buildings that model sustainable behaviors.

This momentum is being echoed at the regional level. The recently signed Chesapeake Bay Watershed Agreement commits the six watershed states and the District of Columbia to give every student the knowledge and skills necessary to protect and restore their local watershed. The cornerstone of this goal is the Meaningful Watershed Educational Experience, or MWEE, which should occur at least once in each elementary, middle and high school. MWEEs connect standards-based classroom learning with outdoor field investigations to create a deeper understanding of the natural environment. MWEEs ask students to explore environmental issues through sustained, teacher-supported programming. But less intensive outdoor field investigations could occur more frequently—each year when possible.

The Watershed Agreement highlights the roles that state departments of education and local education agencies play in establishing expectations and guidelines for the development and implementation of MWEEs. Indeed, plans that include strategies for MWEE implementation—coupled with outreach and training opportunities for teachers and administrators—have been effective in establishing and supporting a network for environmental literacy.

To support these efforts, funding is available: the National Oceanic and Atmospheric Administration (NOAA) offers grants through the Bay Watershed Education & Training (B-WET) Program, and the Chesapeake Bay Trust offers similar opportunities. The Chesapeake Bay Program also maintains a clearinghouse of teaching resources on Bay Backpack.

Note: A version of this article also appeared in the October 2014 edition of the Bay Journal.

Author: Shannon Sprague is the Manager for Environmental Literacy & Partnerships with the National Oceanic and Atmospheric Administration’s Chesapeake Bay Office. She is also the co-chair of the Chesapeake Bay Program’s Education Workgroup.



Sep
23
2014

$9.8 million in grant funds will reduce pollution, restore habitats in Chesapeake Bay

From the restoration of marshes, wetlands and forest buffers to the installation of urban, suburban and agricultural pollution-reducing practices, 45 environmental projects across the Chesapeake Bay watershed have received $9.8 million in funding from the National Fish and Wildlife Foundation’s (NFWF) Chesapeake Bay Stewardship Fund.

Twenty-seven projects will be funded by the Small Watershed Grants Program, which supports on-the-ground restoration, conservation and community engagement. Eighteen more will be funded by the Innovative Nutrient and Sediment Reduction Grants Program, which finances the reduction of nutrient and sediment pollution in rivers and streams. The 45 projects will leverage more than $19.6 million in matching funds to improve the health of the watershed.

In Maryland, for instance, Civic Works will design and install rain gardens with community organizations, nonprofits and small businesses in Baltimore City. In Washington, D.C., the District Department of the Environment will retrofit seven drainage areas around a parking lot with low impact development techniques to slow down, cool off and clean up polluted stormwater. And in Pennsylvania, the Stroud Water Research Center will implement more than 120 “best management practices” on more than 15 farms.

Officials and guests announced the awards this morning at the Town Hall in Ashland, Virginia, where a grant will support improved stormwater management at the headquarters of the Ashland Police Department.

Learn more.



Sep
17
2014

Chesapeake jurisdictions open avenues for engagement in Watershed Agreement

Chesapeake Bay Program partners have identified the outcomes they will participate in to achieve the goals of the Chesapeake Bay Watershed Agreement, and have invited individuals and organizations to participate in the development of the Management Strategies that will describe how we will accomplish these outcomes and how we will monitor, assess and report our progress.

"Today marks an important milestone in Bay restoration, as all nine partners have identified the specific Management Strategies they will be… developing… to protect and restore the Chesapeake Bay, its streams and its rivers,” said Joe Gill, Principals’ Staff Committee Chair and Maryland Department of Natural Resources Secretary, in a media release. “Moving forward, we will be engaging citizens in every step of this process.”

Indeed, public input is essential to Management Strategy development: each strategy will include a period for public review and comment before it is adopted. Individuals can keep informed about the development of these Management Strategies in three ways:

  • Sign up for Bay Brief, a weekly newsletter that will include information about management strategies as well as funding and professional development opportunities.
  • Visit our Management Strategies subscription page to sign up for a specific Management Strategy mailing list. Related emails will include information about relevant meetings and public input periods.
  • Visit the Management Strategies Dashboard for an at-a-glance view of our progress.

Learn more.



Sep
09
2014

Discarded, derelict fishing traps harm blue crabs, watermen in Chesapeake Bay

Sunken fishing traps are having a big impact on wildlife in coastal waters around the United States, including blue crabs and the watermen who depend on them in Maryland, Virginia and North Carolina.

According to a report from the National Oceanic and Atmospheric Administration (NOAA), the problem of derelict fishing gear—which includes lost and discarded nets and traps—is “pervasive, persistent and largely preventable.” Whether accidentally lost or intentionally tossed overboard, derelict gear can continue to “ghost fish,” catching fish, turtles and other species and damaging seafloor habitats. In some cases, dead organisms continue to serve as bait until the traps stop catching fish.

“People may not realize that derelict traps can catch not just the target species of the fishery, but also other animals, including threatened and endangered species where populations are already very low,” said scientist Ariana Sutton-Grier in a media release.

In the Chesapeake Bay, derelict crab traps impact blue crabs, diamondback terrapins and other species. Between 35 and 40 percent of derelict traps are ghost fishing, with the highest catch rates taking place in Maryland waters. Here, about 20 blue crabs per trap per year are caught and killed, which researchers attribute to gear that is not designed to allow species to escape when traps become derelict.

The loss of fishing gear has an economic impact, too. According to the report, derelict traps in Virginia waters have caught as many as 913,000 crabs in a year, with an estimated worth of $304,000, or one percent of the Commonwealth’s annual commercial blue crab landings. In addition to the impact on commercial fisheries, there is a irect cost to watermen to replace lost traps, which range from $60 to $600.

Traps with biodegradable escape panels—which are inexpensive and easy to install—have been successfully tested in the Bay, with no adverse effects on blue crab catch. These, along with boat lanes that keep propellers away from trap lines and improved outreach and education to watermen, could pose solutions to the region’s derelict fishing trap problem.

Learn more.



Aug
06
2014

Photo Essay: Finding the Chesapeake’s dead zone

The R/V Rachel Carson is docked on Solomons Island. At 81 feet long, the red and blue research vessel stands out against the deadrise workboats that share the Patuxent River marina. Her mission today is to lead researchers from the University of Maryland Center for Environmental Science (UMCES) to the Chesapeake Bay’s dead zone.

Every summer, this so-called “dead zone” forms in the main stem of the Bay. The area of low-oxygen water is created by bacteria as they feed on algae blooms growing in nutrient-rich water. The dead zone persists through the warm summer months because the Bay is stratified into two layers: a surface layer of lighter, fresher water that mixes with the atmosphere, and a bottom layer of denser, saltier water, where oxygen depletion persists. These layers won’t mix until the cooler temperatures of autumn allow the surface waters to sink.

To find the dead zone, Director of Marine Operations and Rachel Carson Captain Michael H. Hulme takes us to one of the deep troughs that run down the center of the Bay. Geologic remnants of the ancient Susquehanna River, these troughs can reach up to 174 feet deep in an estuary whose average depth is just 21 feet. Hulme anchors offshore of Calvert Cliffs State Park.

The boat is equipped with a dynamic positioning system, which holds it in place regardless of wind or waves. This allows the captain to step away from the helm and offer his hands on deck. “Being able to hover over that [specific] latitude and longitude is what makes the Rachel Carson so unique,” said Hulme. It’s also one of the reasons the vessel is so useful to scientists, who often return to the same sampling site again and again over time.

UMCES Senior Faculty Research Assistant David Loewensteiner drops a CTD overboard. The oceanography instrument takes eight measurements per second, tracking conductivity, temperature and depth as it is lowered through the water. Connected to the ship with a cable, the CTD sends data to a laptop in the boat’s dry lab. We measure 2.04 mg/L of dissolved oxygen in surface water, and just 0.33 mg/L at 98 feet deep. Critters need concentrations of 5 mg/L or more to thrive; these are “classic dead zone” conditions.

Dead zones are bad for the Bay. Like animals on land, underwater critters need oxygen to survive. In a dead zone, immobile shellfish suffocate and those fish that can swim are displaced into more hospitable waters. “If you were a self-respecting fish and oxygen was [low], what would you do?” asked Bill Dennison, Vice President for Science Applications and Professor at UMCES. “Swim away.”

First reported in the 1930s, the appearance of the dead zone in the Bay is linked to our actions on land: as we replace forests with cities, suburbs and farms, we increase the amount of nutrients entering rivers and streams. This fuels the growth of algae blooms that lead to dead zones. “Hypoxia [or low-oxygen conditions] is driven by what we do on the watershed,” said UMCES Assistant Professor Jeremy Testa. “The Bay is naturally set up to generate hypoxia because of that [stratification] feature. That said… when there were no people here, there was not much hypoxia.”

While it is our actions on land that created the dead zone, it is our actions on land that can make the dead zone go away. Research has shown that certain pollution-reducing practices—like upgrading wastewater treatment plants, lowering vehicle and power plant emissions and reducing runoff from farmland—can improve the health of local rivers and streams. Scientists have also traced a decline in the duration of the dead zone from five months to four, which suggests that conservation practices gaining traction across the watershed could have very real benefits for the entire Bay.

To view more photos, visit the Chesapeake Bay Program Flickr page

Images by E. Guy Stephens/Southern Maryland Photography. Captions by Catherine Krikstan.



Jul
30
2014

Ten boats of the Chesapeake Bay

Have you ever found yourself looking out at the boats dotting the Chesapeake Bay and wondering, “What kind of ship is that?” So have we! Below is a list of 10 iconic watercraft visible on the Bay today.

Image courtesy Jon/Flickr

1. Log Canoe. Recognized as the Bay’s first workboat, log canoes once filled the region’s waterways as watermen sailed about in search of fish and shellfish. They are usually made from three to five hollowed out logs that are fastened together and shaped into a hull. One or two large masts jut out from the center of the boat, and sails capture the wind and use it as a propellant. Most log canoes that exist today have retired from their working lives and are sailed in races; in fact, fewer than two dozen log canoes remain in the Bay region and, out of those, less than half race.

Image courtesy Baldeaglebluff/Flickr

2. Skipjack. In the late nineteenth century, the skipjack—a popular work boat for watermen—saw a production boom as the Maryland oyster harvest reached an all-time peak of 15 million bushels. But as the Bay’s oyster population steadily declined, so did its skipjack fleet. There are 35 skipjacks left in the Bay region, many of them used for educational purposes (like the Chesapeake Bay Foundation’s skipjack, Stanley Norman). Like oysters, the boats that harvested them are culturally significant to this region—so much so that the state of Maryland named the skipjack its official state boat.

\

Image courtesy Laszlo Ilyes/Flickr 

3. Skiff. Skiffs are shallow, flat-bottomed boats recognizable by their sharp bow and square stern. These watercraft are made to move through the tributaries and along the coastal areas of the Bay. While they can be used as workboats, skiffs are typically used for recreational fishing and other leisurely outings.

4. Deadrise. The official boat of Virginia, the deadrise is a traditional work boat used by watermen to catch blue crabs, fish and oysters. The vessel is marked by a sharp bow that expands down the hull into a large V shape and a square stern.

Image courtesy E. Guy Stephens/Southern Maryland Photography 

5. Research vessel. Restoring the health of the Bay is as complex as the Bay ecosystem itself. Research vessels like the University of Maryland Center for Environmental Science’s (UMCES) R/V Rachel Carson travel the Bay, collecting data about water quality, flora and fauna to help scientists gain a better understanding about what should be done to improve our restoration efforts.

Image courtesy Judity Doyle/Flickr

6. Kayak. These small, human-powered boats are propelled by a double-bladed paddle. Kayaks are believed to be more than 4,000 years old, and originated as a hunting craft used on lakes, rivers and coastal waters. Modern kayaks vary in size and shape depending upon the paddler’s intended use. Whether it is racing through whitewater rapids or fishing in placid waters, kayaks are a sound choice for many recreational boater’s needs.

Image courtesy Jitze Couperus

7. Schooner. Schooners are sailing ships with two or more masts. They have a long history in the mid-Atlantic as workboats for the watermen who made their living harvesting oysters, blue crabs and fish from the Bay. Every October, schooners can be seen racing 146 miles down the Bay from Annapolis, Maryland, to Hampton Roads, Virginia, as a part of the Great Chesapeake Bay Schooner Race. This race was started to draw attention to the Bay’s heritage and to support environmental education and restoration work. 

 

 

Image courtesy Andreas Kollmorgen/Flickr 

8. Racing shell. The sport of rowing is often referred to as crew, and is a popular pastime for many who live in the watershed. While its origins can be traced back to ancient Egypt, competitive rowing did not evolve until the early eighteenth century in London. It is one of the oldest Olympic sports. While racing, athletes sit with their backs to the bow of the racing shell and face the stern, using oars to propel the boat forward.

Image courtesy Glen/Flickr

9. Shipping tanker. The shipping industry has been critical to the mid-Atlantic economy since the colonial era because the region serves as a bridge between the north and the south. In fact, the Bay is home to two of the United States’ five major North Atlantic ports: Baltimore, Maryland, and Hampton Roads, Virginia. Shipping tankers were created to transport large amounts of commodities and can range in size and capacity from several hundred tons to several hundred thousand tons. 

Image courtesy Vastateparkstaff/Flickr

10. Canoe. Canoes are lightweight, human-propelled water craft that are pointed at each end and open on top. Typically, one or more people paddle the boat with an oar while seated or kneeling. Like kayaks, canoes are multifaceted watercraft that can be used for anything from recreational fishing and paddling to moving through whitewater.

Jenna Valente's avatar
About Jenna Valente - Jenna developed a passion for conservation through her outdoorsy nature and upbringing in Hawaii, Washington State and Maine. A graduate of Virginia Tech's Executive Master of Natural Resources program and University of Maine's School of Communication and Journalism, she welcomes any opportunity to educate the public about the importance of caring for the environment.



Jul
14
2014

Photo Essay: Artificial reefs slow erosion, build habitat on Chester River

Across the Chesapeake Bay, strong waves crash into shorelines, pulling sand into the water and causing beaches to disappear. In recent decades, scientists have turned to living shorelines and stone reefs to slow this process—known as erosion—and create critical habitat for wildlife. On the Eastern Neck National Wildlife Refuge, one such project has proven successful on both counts.

The 2,285-acre island refuge in Rock Hall, Maryland, is part of the Chesapeake Marshlands National Wildlife Refuge Complex and has long offered feeding and resting grounds to songbirds, shorebirds and waterfowl. When a narrow piece of land at its southern point—the highest priority habitat at the refuge—proved in danger of washing away, the U.S. Fish and Wildlife Service (USFWS), the Maryland Department of Natural Resources (DNR) and several other partners came together to slow the disappearance of the shoreline.
 

In June, USFWS Biologist Dave Sutherland—along with staff from the Maryland Artificial Reef Initiative (MARI) and Coastal Conservation Association Maryland, both of which are partners in this effort— took our team to the refuge to see the living shoreline and underwater reefs that made it a model of climate resiliency. Five years after construction on these projects began, pieces of land do still break off of the island’s long peninsula that separates Hail Cove, Hail Creek and the Chester River. But the goal was never to stop erosion: it was to slow it down without using the manmade structures that block critters from reaching the beach.

While shoreline erosion is a natural process, sea-level rise has amplified the impacts of wind and wave energy across the watershed. “I look at sea-level rise as a human-induced issue that’s exacerbating what used to be a slower, natural process,” said USFWS Fisheries Biologist John Gill. “Not to say it wasn’t happening before. Just that its rate has increased. And it’s tougher for marshes to keep up.”

For Gill, the Hail Cove restoration project achieves “a nice balancing act” in its use of manmade infrastructure and the natural environment. The essential elements? Headland breakwaters, underwater reefs and a living shoreline. “You’re working with Mother Nature, but still providing erosion control,” Gill said.

Low headland breakwaters placed at each end of Hail Cove maintain the pocket beach, blocking wave energy that might otherwise destroy the shore. A long ribbon reef deemed the “arc of stone” stretches across the cove, offering further protection for the beach and vital habitat for fish, shellfish and invertebrates.

Hooked mussels colonized the ribbon reef soon after it was built, and eastern oysters that were planted there with volunteer help continue to thrive. Algae grow on the granite rocks, small fish live in the reef’s tiny crevices and waterfowl find a source of food on their migrations over the Bay. “A lot of species are habitat-starved, and this [arc of stone] provided a lot of what they need,” Sutherland said. “It’s well-populated with cobies and blennies and worms and macroalgae. It’s really a fantastic habitat.”

Sutherland and his team soon recognized the benefits of installing infrastructure that allowed access to the beach: three weeks after sand was put down, engineers discovered nine diamondback terrapin nests on the shore, proving just how “habitat-starved” these native turtles were.

The Hail Cove project was completed this spring when 11 patch reefs—using one acre of material in all—were laid down over the two and a half-acre cove. The reefs will expand the underwater habitat that is so important to so many critters but has been lost with the decline of the Bay’s native oyster. For Sutherland, these reefs were “the icing on the cake. If the arc of stone is good, the patch reefs are going to be even better,” he said.

DNR Fisheries Biologist and MARI Coordinator Erik Zlokovitz echoed Sutherland’s satisfaction with the project. “This is a multipurpose shallow-water reef system. It’s not just an oyster reef or a fish reef. It’s a multipurpose reef for mussels, oysters and other invertebrates, which provide forage for fish and waterfowl,” he said.

The reef has also attracted recreational anglers to the area, who fish from kayaks and small boats for white perch and striped bass. Coastal Conservation Association Maryland, whose members are recreational fishermen, was a strong supporter of the Hail Cove project. For Sutherland, the cove’s restoration wouldn’t have been a success without the “great partners” that made it possible.

“Living shoreline science is really in its infancy, and every project is an experiment,” Sutherland said. But bringing partners together to strike a balance between manmade infrastructure and natural processes allowed this project to work, and Hail Cove now serves as “a starting point for reef construction in the Chester River,” said Sutherland. Indeed, relief funds for Hurricane Sandy recovery will soon finance further shoreline protection in the same area of the refuge.

“This project is a testament, to a certain extent, that if you build it, they will come,” Sutherland said. “We got to Hail Cove in the nick of time.”

To view more photos, visit the Chesapeake Bay Program Flickr page.

Images by Alexander Jonesi and Jenna Valente. Captions by Catherine Krikstan.



Jun
30
2014

Intersex fish found in three Pennsylvania river basins

Scientists have found intersex fish in three Pennsylvania river basins, indicating hormone-disrupting chemicals are more widespread in the Chesapeake Bay watershed than once thought.

Image courtesy RTD Photography/Flickr

Intersex conditions occur when pesticides, pharmaceuticals or other chemicals disrupt the hormonal systems of an animal, leading to the presence of both male and female characteristics. The presence of intersex conditions in fish, frogs and other species is linked to land use, as the chemicals that lead to these conditions often enter rivers and streams through agricultural runoff or wastewater.

Previous samplings of fish in the region have found intersex conditions in the Potomac, Shenandoah and Susquehanna rivers, as well as lakes and ponds on the Delmarva Peninsula. On samplings conducted at 16 sites between 2007 and 2010, researchers with the U.S. Geological Survey (USGS) found intersex fish in the Susquehanna, Delaware and Ohio river basins.

According to the USGS, freshwater fish called white suckers from sample sites in the Delaware and Susquehanna river basins had a yolk precursor in their blood. Male smallmouth bass from all sample sites had immature eggs in their testes. The prevalence of intersex fish was highest in the Susquehanna river basin, which researchers attribute to the higher rate of farms—and related herbicides, pesticides and hormone-containing manure—in the area. While scientists found no relationship between the number of wastewater treatment plants in an area and the prevalence of immature eggs in fish, the severity of intersex conditions did rise at sites downstream from wastewater discharge points.

“The sources of estrogenic chemicals are most likely complex mixtures from both agricultural sources, such as animal wastes, pesticides and herbicides, and human sources from wastewater treatment plant effluent and other sewer discharges,” said fish biologist Vicki Blazer in a media release.

Learn more.



Jun
30
2014

Ten ways the Watershed Agreement will improve life in the Chesapeake region

Over the Chesapeake Bay Program’s long history, its leaders have learned that collaboration is key to restoration success. In June, the governors of Delaware, Maryland, New York, Pennsylvania, Virginia and West Virginia, the mayor of the District of Columbia, the administrator of the U.S. Environmental Protection Agency (EPA) and the chair of the Chesapeake Bay Commission came together to sign the Chesapeake Bay Watershed Agreement. Written with input from individuals, organizations and other partners, this document contains goals and outcomes that will restore and protect the nation’s largest and most productive estuary. But what will the Agreement mean for the residents of this massive watershed? Read our list to find out.

10. Improved access to the water. From fishing piers to boat launches, people in the watershed want more access to rivers, streams and the Bay. And while partners have opened 69 new access sites over the last three years, access remains limited, with consequences for tourism economies and environmental conservation. Bay Program partners have set a goal to open 300 new public access sites across the watershed by 2025. Learn more.

9. New opportunities to fish in headwater streams. Our increasing need for land and resources has fragmented our rivers and streams, harming the health of those fish that must migrate through unobstructed waters to reach their spawning grounds each spring. Bay Program partners plan to improve stream health and restore fish passage to the Bay’s headwaters, opening up habitat to migratory fish like alewife, American shad and brook trout. More habitat can mean more fish, and more fish can mean more fishing opportunities. Learn more.

Image courtesy theloushe/Flickr

8. Cleaner waters. Nutrient and sediment pollution are behind the Bay’s biggest health problems. Nutrients fuel the growth of harmful algae blooms, which create low-oxygen dead zones that suffocate marine life. Suspended sediment blocks sunlight from reaching underwater plants. Bay Program partners plan to work under the Bay’s existing “pollution diet” to reduce nutrient and sediment pollution, improve water quality, and support the living resources of the Bay, its rivers and its streams. Learn more.

7. Safer waters. Almost three-quarters of the Bay’s tidal waters are considered impaired by chemical contaminants. These substances can harm the health of humans and wildlife, and have been linked to tumor growth in fish, eggshell thinning in birds and intersex conditions in amphibians. Bay Program partners are committed to reducing toxic contaminants in our waters, with a focus on mercury, PCBs and contaminants of emerging and widespread concern. Learn more.

6. Healthy waters that remain that way. Healthy watersheds provide us with clean water, critical habitat and economic benefits. While there are a number of healthy watersheds in the region, development poses a constant threat. Bay Program partners want 100 percent of state-identified healthy waters and watersheds to remain that way. Learn more.

5. A larger community of citizen stewards. The success of our restoration work will depend on local action, and local action will depend on local stewards. Bay Program partners hope to build a larger, broader and more diverse community of citizen stewards who will carry out the conservation and restoration activities that will benefit their local communities and the Bay. Learn more.

Image courtesy peterwalshprojects/Flickr

4. Sustainable seafood. Habitat loss, invasive species, poor water quality and harvest pressure threaten the sustainability of the Bay’s recreational and commercial fisheries. But Bay Program partners have committed to using sound science and responsible management to increase fish and shellfish habitat and populations, leading to more striped bass, blue crabs and oysters in the Bay and on the market. Learn more.

3. Smarter growth. With the largest land-to-water ratio of any estuary in the world, it is clear that what happens on land has a direct impact on water quality in the Bay. But stormwater runoff continues to push polluted rainwater over streets and sidewalks and into storm drains, rivers and streams. Bay Program partners plan to help local governments control polluted runoff, conserve valuable wetlands, farms and forests, and reduce the rate of land that is lost to paved roads and parking lots. Learn more.

Image courtesy Indiana.dunes/Flickr

2. More knowledge and skills to help save our watershed. It is often said that people value what they know and protect what they value. This means that a boost in environmental education now could create a vital foundation for environmental stewards of the future. Bay Program partners will work to enable area students to graduate with the knowledge, skills and meaningful experience needed to protect and restore their local watershed. Learn more.

1. Communities that are resilient to climate change. The impacts of climate change—rising seas, warming waters, extreme weather, ocean acidification—are happening now. To withstand these impacts, we must improve our natural and built infrastructure. Bay Program partners have set a goal to increase the climate resiliency of the watershed’s resources, habitats and communities using monitoring, assessment and adaptation. Learn more.

Note: The opinions expressed above are those of the author and do not necessarily reflect U.S. EPA policy endorsement or action.

Nick DiPasquale's avatar
About Nick DiPasquale - Nick has nearly 30 years of public policy and environmental management experience in both the public and private sectors. He previously served as Deputy Secretary in the Pennsylvania Department of Environmental Protection, Director of the Environmental Management Center for the Brandywine Conservancy in Chadds Ford, Pennsylvania and as Secretary of the Delaware Department of Natural Resources and Environmental Control.



Jun
26
2014

Evaluation shows Bay Program partners are making progress in Chesapeake cleanup

According to evaluations released this week by the U.S. Environmental Protection Agency (EPA), Chesapeake Bay Program partners are collectively on track to meet the phosphorous and sediment reduction commitments outlined in the Bay’s “pollution diet,” or Total Maximum Daily Load (TMDL). Further reductions in nitrogen, however, will be needed if partners are to meet all of their upcoming pollution-reducing goals.

Every two years, federal agencies and the watershed jurisdictions—which include Delaware, the District of Columbia, Maryland, New York, Pennsylvania, Virginia and West Virginia—report on the progress made toward the pollution-reducing “milestones” outlined in their Watershed Implementation Plans (WIPs). These WIPs describe how each jurisdiction will reduce the nitrogen, phosphorous and sediment pollution entering rivers and streams, and are included as commitments in the partnership’s recently signed Chesapeake Bay Watershed Agreement. Jurisdictions have set a goal to have all essential pollution-reducing practices in place by 2025 in an effort to meet water quality standards in the watershed.

Nutrient and sediment pollution are behind some of the Bay’s biggest health problems. Excess nitrogen and phosphorous fuel the growth of harmful algae blooms, which result in low-oxygen dead zones that suffocate marine life. Suspended sediment blocks sunlight from reaching underwater plants and suffocates shellfish. But “best management practices” (or BMPs) like upgraded wastewater treatment technologies, improved manure management and enhanced stormwater management can help towns, cities and states lower the amount of pollution flowing into local waters.

The EPA will continue to oversee the watershed jurisdictions’ pollution-reducing efforts, and will offer further attention to some pollution sectors—including wastewater in Delaware and New York; agricultural runoff in Delaware, Pennsylvania and West Virginia; and urban and suburban runoff in Pennsylvania, Virginia and West Virginia—to ensure partners remain on track to meet their 2017 targets.

Learn more.



Jun
24
2014

Scientists predict above-average dead zone for Chesapeake Bay

Scientists expect the Chesapeake Bay to see an above-average dead zone this summer, due to the excess nitrogen that flowed into the Bay from the Potomac and Susquehanna rivers this spring.

Dead zones, or areas of little to no dissolved oxygen, form when nutrient-fueled algae blooms die and decompose. The latest dead zone forecast predicts an early-summer oxygen-free zone of 0.51 cubic miles, a mid-summer low-oxygen zone of 1.97 cubic miles and a late-summer oxygen-free zone of 0.32 cubic miles. This forecast was funded by the National Oceanic and Atmospheric Administration (NOAA) and is based on models developed at the University of Maryland Center for Environmental Science (UMCES) and the University of Michigan.

Dead zone size depends on nutrient pollution and weather patterns. According to the U.S. Geological Survey (USGS), 44,000 metric tons of nitrogen entered the Bay in the spring of 2014. This is 20 percent higher than last spring’s nitrogen loadings, and will influence algae growth and dead zone formation this summer.

Researchers with the Maryland Department of Natural Resources (DNR) and the Virginia Department of Environmental Quality (DEQ) will measure oxygen levels in the Bay over the next few months. While a final dead zone measurement is not expected until October, DNR biologists measured a larger-than-average low-oxygen zone on their June monitoring cruise, confirming the dead zone forecast.

Learn more



Jun
16
2014

Chesapeake Executive Council signs landmark accord to restore Bay watershed

The Chesapeake Executive Council signed the Chesapeake Bay Watershed Agreement today, recommitting Chesapeake Bay Program partners to restoring, conserving and protecting the Bay, its tributaries and the lands around them.

Agreement signatories include the governors of Maryland, Virginia, Pennsylvania, New York, West Virginia and Delaware; the mayor of the District of Columbia; the chair of the Chesapeake Bay Commission; and the administrator of the U.S. Environmental Protection Agency (EPA) on behalf of the Federal Leadership Committee for the Chesapeake Bay. This marks the first time that the Bay’s headwater states of New York, West Virginia and Delaware have pledged to work toward those restoration goals that reach beyond water quality, making them full partners in the Bay Program’s watershed-wide work.

“Today we celebrate the most inclusive, collaborative, goal-oriented Agreement the Chesapeake Bay watershed has ever seen, highlighted by unprecedented participation from the headwater states and the public,” said Chesapeake Executive Council Chair and Maryland Gov. Martin O’Malley in a media release. “This Agreement not only addresses our continuing water quality and land use challenges, it also confronts critical emerging issues—environmental literacy, toxic contaminants and climate change. Finally, it builds upon the strength of our diverse citizenry, calling to action the nearly 18 million people that call our watershed home. Together, we can and will achieve our united vision of a healthy Bay and a productive watershed, cared for by engaged citizens at every level.”

Image courtesy Benjamin Wilson Imagery/Flickr

Years in the making, the Agreement contains 10 goals and 29 measurable, time-bound outcomes that will help create a healthy watershed. They will lower nutrient and sediment pollution; ensure our waters are free of toxic contaminants; sustain blue crabs, oysters and forage fish; restore wetlands, underwater grass beds and other habitats; conserve farmland and forests; boost public access to and education about the environment; and increase the climate resiliency of the watershed’s resources, habitats and human communities.

Public input had a direct impact on the content of the Agreement—encouraging partners to include goals related to environmental stewardship, toxic contaminants and climate change—and will continue to contribute to how the Agreement is achieved. Indeed, partners plan to work with universities, local governments, watershed groups, businesses and citizens in creating the management strategies that will define how we will accomplish the Agreement’s outcomes and goals.

Image courtesy USACE HQ/Flickr

In addition to signing the Chesapeake Bay Watershed Agreement, Executive Council members heard from the Bay Program’s three advisory committees, which represent citizens, local governments and scientific and technical interests from across the watershed. Executive Council members also heard from four high school students representing Maryland, Virginia, Pennsylvania and the District of Columbia. While each of these students was introduced to conservation in a different way, they have all had valuable experiences on the Bay and spoke about the importance of engaging future generations in environmental restoration, advocacy and leadership.

Learn more about the Chesapeake Bay Watershed Agreement or the 2014 Executive Council Meeting



May
31
2014

Letter from Leadership: Public comments matter

For the past two and a half years, the Chesapeake Bay Program has been working on a new Chesapeake Bay Watershed Agreement, an accord that will guide the collaborative restoration and conservation efforts of the six states and the District of Columbia in the 64,000 square mile network of land and waters that drains to the Chesapeake. Meaningful public review and input has proven critical to this process.

Image courtesy B Tal/Flickr

The first opportunity to gain public input occurred in July 2013, when the agreement’s framework was put out for public review. Interested parties were able to submit comments in writing, through our website and during a public meeting; through these channels, representatives of various organizations asked questions or expressed their views on various topics of discussion. This level of transparency and inclusiveness is characteristic of the manner in which the Bay Program conducts its affairs.

In addition to these opportunities, the Bay Program’s staff and leadership engaged in numerous outreach activities, addressing advisory committees, watershed organizations and local communities to ensure they were aware of this effort and could participate in a meaningful and informed way. A second opportunity for formal public comment was provided this past February on a more substantive draft agreement. In all, more than 2,400 comments were received from throughout the watershed. Each comment was reviewed, evaluated and taken into account during the decision-making process. Each step in this process was open and transparent, and summaries of all comments and how they were responded to were made available.

Image courtesy Rusty Sheriff/Flickr

Transparency and accountability have been themes throughout the development of the new agreement. And we will continue our efforts to be open and accountable as we move into the next steps of our efforts—the development of Management Strategies, an important new component of this agreement. These strategies will serve as written documentation for how we intend to achieve our goals and outcomes, and will be developed by our Goal Implementation Teams. Once a draft Management Strategy is developed, a public notice will be issued and an opportunity for public input will be provided. As before, this input will be used to consider making changes to the Management Strategies before they are finalized for implementation.

Management Strategies will specify exactly what each of the Bay Program partners will contribute, how they will address impacts associated with climate change, what resources and information they will bring to the table, how they will interact and engage communities and involve local governments, and how they will use the adaptive management process to review indicators and monitoring data and make well-documented, science-based decisions. The partnership’s Science and Technical Advisory Committee will assist the Goal Implementation Teams in developing new indicators and performance metrics to ensure they are collecting appropriate data and information to measure progress toward their outcomes and to make warranted adjustments, if necessary.

Each of these Management Strategies will be reviewed and evaluated on a biennial basis. The two-year reviews will be presented to the partnership’s governance structure for discussion and feedback. All of the Management Strategies and two-year reviews will be publicly available so progress toward the agreement’s goals and outcomes can be tracked. This level of transparency and accountability, as well as public engagement and outreach, is unprecedented in any previous agreements intended to guide the Bay restoration effort.

Image courtesy Alicia Pimental/Flickr

In my 25-year career in public service, I have not witnessed a more genuine effort to solicit public input and to give that input serious consideration. That input resulted in significant improvements in the Chesapeake Bay Watershed Agreement. Goals and outcomes that were not included or previously rejected were reconsidered and inserted in the new agreement as a direct result of public input. Not every comment was addressed in exactly the way it was submitted; but every comment did get deliberate consideration and was addressed in some manner by the partnership’s leadership, which includes many secretaries of state environmental agencies, federal agency representatives and leaders of non-governmental and advisory groups. In the end, the final agreement is a much clearer, stronger and more comprehensive document because of the input we received from concerned and engaged citizens throughout the watershed. 

This “next generation” agreement will guide restoration of the Bay watershed and ecosystem in the decades ahead. Implementation of the new agreement will continue to be influenced and shaped by the interests, knowledge and expertise of every individual, organization, community, local government, business and partner that is willing to engage and be involved in this endeavor. On behalf of the entire Bay Program, I want to express our genuine gratitude for taking the time and making the effort to share your thoughts, concerns and suggestions with us on the new Chesapeake Bay Watershed Agreement. It made a very distinct and significant difference in the outcome.

Note: The opinions expressed above are those of the author and do not necessarily reflect U.S. EPA policy endorsement or action.

Nick DiPasquale's avatar
About Nick DiPasquale - Nick has nearly 30 years of public policy and environmental management experience in both the public and private sectors. He previously served as Deputy Secretary in the Pennsylvania Department of Environmental Protection, Director of the Environmental Management Center for the Brandywine Conservancy in Chadds Ford, Pennsylvania and as Secretary of the Delaware Department of Natural Resources and Environmental Control.



May
29
2014

Reducing agricultural runoff creates clean water in Chesapeake Bay

Reducing runoff from farmland has lowered pollution in Maryland, Virginia and Pennsylvania waters, indicating a boost in on-farm best management practices could lead to improved water quality in the Chesapeake Bay.

In a report released earlier this year, researchers with the Chesapeake Bay Program, the University of Maryland Center for Environmental Science (UMCES) and the U.S. Geological Survey (USGS) use case studies to show that planting cover crops, managing manure and excluding cattle from rivers and streams can lower nutrient concentrations and, in some cases, sediment loads in nearby waters.

Excess nutrients and sediment have long impaired the Bay: nitrogen and phosphorous can fuel the growth of algae blooms and lead to low-oxygen dead zones that suffocate marine life, while sediment can cloud the water and suffocate shellfish. In New Insights: Science-based evidence of water quality improvements, challenges and opportunities in the Chesapeake, scientists make clear that putting nutrient- and sediment-reducing practices in place on farms can improve water quality and aquatic habitat in as little as one to six years.

Planting winter cover crops on farm fields in the Wye River basin, for instance, lowered the amount of nutrients leaching into local groundwater, while planting cover crops and exporting nutrient-rich rich poultry litter in the upper Pocomoke River watershed lowered the amount of nitrogen and phosphorous in the Eastern Shore waterway. In addition, several studies in Maryland, Virginia and Pennsylvania showed that when cattle were excluded from streams, plant growth rebounded, nutrient and sediment levels declined and stream habitat and bank stability improved.

Image courtesy Chiot's Run/Flickr

Earlier this week, U.S. Department of Agriculture Secretary Tom Vilsack named the Bay watershed one of eight “critical conservation areas” under the new Farm Bill’s Regional Conservation Partnership Program, which will bring farmers and watershed organizations together to earn funds for soil and water conservation.

Learn more.



May
23
2014

University of Maryland report card measures minimal changes in Chesapeake Bay health

Researchers at the University of Maryland Center for Environmental Science (UMCES) measured minimal changes in Chesapeake Bay health in 2013, once again giving the estuary a “C” in their annual Chesapeake Bay Report Card.

This grade was the same in 2012, up from a “D+” in 2011. The Bay Health Index was reached using several indicators of Bay health, including water clarity and dissolved oxygen, the amount of algae and nutrients in the water, the abundance of underwater grasses, and the strength of certain fish stocks, including blue crab and striped bass. Introduced in this year’s report card, the Climate Change Resilience Index will measure the Bay’s ability to withstand rising sea levels, rising water temperatures and other impacts of climate change.

UMCES Vice President for Science Applications and Professor Bill Dennison attributed the Bay’s steady course to local management actions. While pollution-reducing technologies installed at wastewater treatment plants have improved the health of some rivers along the Bay’s Western Shore, continued fertilizer applications and agricultural runoff have stalled improvements along the Eastern Shore, Dennison said in a media release.

Learn more.



Apr
21
2014

Chesapeake Bay’s underwater grass abundance rises 24 percent in 2013

Underwater grass abundance in the Chesapeake Bay increased 24 percent between 2012 and 2013, reversing the downward trend of the last three years.

Because underwater grasses are sensitive to pollution but quick to respond to water quality improvements, their abundance is a good indicator of Bay health. Aerial surveys flown from last spring to last fall showed an almost 12,000-acre increase in grass abundance across the Bay, which scientists attribute to the rapid expansion of widgeon grass in the saltier waters of the mid-Bay and the modest recovery of eelgrass in shallow waters where the species experienced a “dieback” after the hot summers of 2005 and 2010. Scientists also observed an increase in the acreage of the Susquehanna Flats.

“The mid-Bay has seen a big rise in widgeon grass,” said Robert J. Orth, Virginia Institute of Marine Science (VIMS) professor and coordinator of the school’s Submerged Aquatic Vegetation Survey, in a media release. “In fact, the expansion of this species in the saltier waters between the Honga River and Pocomoke Sound was one of the driving factors behind the rise in bay grass abundance. While widgeongrass is a boom and bust species, notorious for being incredibly abundant one year and entirely absent the next, its growth is nevertheless great to see.”

Underwater grasses, also known as submerged aquatic vegetation, are critical to the Bay, offering food to invertebrates and waterfowl and providing shelter to fish and crabs. Like grasses on land, underwater grasses need sunlight to survive. When algae blooms or suspended sediment cloud the waters of the Bay, sunlight cannot reach the bottom habitat where grasses live. While healthy grass beds can trap and absorb some nutrient and sediment pollution—thus improving water clarity where they grow—too much pollution can cause grass beds to die. Indeed, poor water clarity remains a challenge for eelgrass growth in deeper waters.

Until this year, the Bay Program mapped underwater grasses by geographic zone. Now, abundance is mapped in four different salinity zones, each of which is home to an underwater grass community that responds differently to strong storms, drought and other adverse growing conditions. This reporting change “makes more ecological sense,” said Lee Karrh, program chief at the Maryland Department of Natural Resources (DNR) and chair of the Bay Program’s Submerged Aquatic Vegetation Workgroup.

“Reworking our historic data was hard work, but doing so makes it easier to understand patterns in grass growth,” Karrh said.

Learn more.



Apr
17
2014

Oyster aquaculture could combat Potomac River pollution

Raising oysters along the bed of the Potomac River could lower pollution and improve water quality, according to new findings that show “farm-raised” shellfish are a promising method of managing nutrients.

Image courtesy Robert Rheault/Flickr

Nutrient pollution from urban, suburban and agricultural runoff has long plagued the Potomac, whose watershed spans four states and the District of Columbia and has the highest population in the Chesapeake Bay region. Excess nutrients like nitrogen and phosphorous can fuel the growth of algae blooms, which block sunlight from reaching underwater grasses and create low-oxygen dead zones that suffocate marine life. While filter-feeding oysters were once plentiful in the river—capable of removing nutrients from the water—their numbers have dropped due to overfishing and disease.

In a report published in Aquatic Geochemistry, scientists with the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS) show that cultivating shellfish on 40 percent of the Potomac’s bottom would remove all of the nitrogen now polluting the river. While conflicting uses—think shipping lanes, buried cables and pushback from boaters and landowners—mean it is unlikely that such a large area would be devoted to aquaculture, putting even 15 to 20 percent of the riverbed under cultivation would remove almost half of the incoming nitrogen. The combination of aquaculture and restored reefs could provide even greater benefits.

Image courtesy Virginia Sea Grant/Flickr

Shellfish aquaculture could also have benefits outside the realm of water quality: the shellfish could serve as a marketable seafood product, while the practice could provide growers with additional income if accepted in a nutrient trading program. Even so, the report notes that aquaculture should be considered “a complement—not a substitute” for land-based pollution-reducing measures.

“The most expedient way to reduce eutrophication in the Potomac River estuary would be to continue reducing land-based nutrients complemented by a combination of aquaculture and restored oyster reefs,” said scientist and lead study author Suzanne Bricker in a media release. “The resulting combination could provide significant removal of nutrients… and offer innovative solutions to long-term persistent water quality problems.”

At present, there are no aquaculture leases in the Potomac’s main stem. But in 2008, Maryland passed a plan to expand aquaculture in the region, and in 2009, NOAA launched an initiative to promote aquaculture in coastal waters across the United States.

Learn more.



Apr
02
2014

New wastewater treatment technologies create clean water in Chesapeake Bay

Upgrading wastewater treatment technologies has lowered pollution in the Potomac, Patuxent and Back rivers, leading researchers to celebrate the Clean Water Act and recommend continued investments in the sewage sector.

Introduced in 1972, the Clean Water Act’s National Pollutant Discharge Elimination System permit program regulates point sources of pollutants, or those that can be pinpointed to a specific location. Because wastewater treatment plants are a point source that can send nutrient-rich effluent into rivers and streams, this program has fueled advancements in wastewater treatment technologies. Biological nutrient removal, for instance, uses microorganisms to remove excess nutrients from wastewater, while the newer enhanced nutrient removal improves upon this process.

Researchers with the University of Maryland Center for Environmental Science (UMCES) have linked these wastewater treatment technologies to a cleaner environment. In a report released last month, five case studies show that wastewater treatment plant upgrades in Maryland, Virginia and the District of Columbia improved water quality in three Chesapeake Bay tributaries.

The link is clear: excess nutrients can fuel the growth of algae blooms, which block sunlight from reaching underwater grasses and create low-oxygen dead zones that suffocate marine life. Lowering the amount of nutrients that wastewater treatment plants send into rivers and streams can reduce algae blooms, bring back grass beds and improve water quality.

In New Insights: Science-based evidence of water quality improvements, challenges and opportunities in the Chesapeake, scientists show that new technologies at Baltimore’s Back River Wastewater Treatment Plant led to a drop in nitrogen concentrations in the Back River. Upgrades at plants in the upper Patuxent watershed led to a drop in nutrient concentrations and a resurgence in underwater grasses in the Patuxent River. And improvements at plants in northern Virginia and the District lowered nutrient pollution, shortened the duration of algae blooms and boosted underwater grass growth in the Potomac River.

Image courtesy Kevin Harber/Flickr

The Chesapeake Bay Program tracks wastewater permits as an indicator of Bay health. As of 2012, 45 percent of treatment plants in the watershed had limits in effect to meet water quality standards. But a growing watershed population is putting increasing pressure on urban and suburban sewage systems.

“Further investments in [wastewater treatment plants] are needed to reduce nutrient loading associated with an increasing number of people living in the Chesapeake Bay watershed,” New Insights notes.

Learn more.



Mar
27
2014

Proposal clarifies Clean Water Act protections for seasonal streams

After almost a decade of confusion about just what waters the Clean Water Act protects, the U.S. Environmental Protection Agency (EPA) and the U.S. Army Corps of Engineers have clarified that most seasonal and rain-dependent streams are guarded under the law.

While these streams might only flow during certain times of year or following a rainstorm, they are connected to downstream waters that offer habitat to wildlife and drinking water to communities.

The federal agencies’ proposed rule also protects wetlands near rivers and streams. But it does not expand the scope of the Clean Water Act, and it preserves existing exemptions for building irrigation ponds, maintaining drainage ditches and other agricultural activities. In other words, protection for ponds, lakes and other “stand-alone” waters will be determined on a case-specific basis, and those agricultural activities that do not send pollutants into protected waters will still not require a permit.

The proposed rule will be open for public comment for 90 days after its publication in the Federal Register.

Learn more.



Mar
26
2014

Groups, individuals leave thousands of comments on Watershed Agreement

More than 60 organizations and two thousand people have commented on the Chesapeake Bay Program’s draft Chesapeake Bay Watershed Agreement, offering feedback that the Chesapeake Executive Council will consider when finalizing the restoration plan.

Image courtesy Jeff Weese/Flickr

Climate change and chemical contaminants were among the leading issues addressed. More than 1,000 individuals asked the Bay Program to integrate climate concerns and adaptation strategies into our work, while more than 300 asked us to set goals to reduce the pesticides, pharmaceuticals and other toxic contaminants in our rivers and streams. Residents from across the watershed submitted letters that described the potential effects of both issues, from rising water temperatures and eroding shorelines to intersex fish and human health impacts.

Other comments on the draft agreement addressed the need to control stormwater runoff in urban and suburban areas, increase the environmental education of the region’s students and establish more public access sites to connect citizens with local waterways.

“The Chesapeake Bay Program values citizen input,” said Joe Gill, chair of the Bay Program’s Principals’ Staff Committee and secretary of the Maryland Department of Natural Resources (DNR). “More than 17 million people live in this watershed. One of the most important lessons we have learned in our decades of restoration work is that individual citizens, private businesses, watershed groups and local governments are our stakeholders—they are people who have a “stake” in what we do. They are key partners in the attainment of our restoration goals. The Executive Council will welcome and consider all of the comments we receive from our stakeholders when finalizing the new agreement.”

The Chesapeake Bay Watershed Agreement will guide signatories—which include the states of Maryland, Virginia, Pennsylvania, New York, West Virginia and Delaware; the District of Columbia; the Chesapeake Bay Commission; and the U.S. Environmental Protection Agency—in the restoration of the watershed. It establishes goals and outcomes that address water quality, fisheries and habitat, land conservation, public access and environmental literacy.

Comments on the draft agreement were left between January 29 and March 17 by private citizens, nonprofit organizations, conservation districts, wastewater agencies and more. A previous comment period on a prior draft took place between July 10 and August 15, 2013, and generated comments summarized here.

Learn more.



Mar
25
2014

Restoration Spotlight: Conserving waterfowl habitat at Mallard Haven River Farm

On a blue bird day in Church Creek, Maryland, a white pickup truck bounces down a dirt driveway, splashing through fresh mud puddles and leaving ripples in its wake. The low whirring of female Northern pintail ducks in the middle of their courtship is exuberant, and there is excitement in the air – it is almost time for the birds to make their long migration north.

The truck rounds a bend and hundreds of waterfowl take flight, seeking solace in the nearby Honga River. Landowner Jerry Harris steps out of the truck, his two hunting dogs, Bo and Maddie, in tow. Jerry has owned Mallard Haven River Farm for nearly 20 years and has transformed it from an open pasture to an ideal stopover site for thousands of waterfowl migrating along the Atlantic Flyway.

Harris recounts purchasing the farm as an open pasture with a ditch down the center in the late ‘90s. Initially, he battled saltwater intrusion and high-tide floods of the Chesapeake Bay. His solution involved closing off the connection between the ditch and the Bay and creating a freshwater storage area that can now hold up to 6.5 million gallons of water. With financial assistance from the state of Maryland, Ducks Unlimited and North American Wetlands Conservation Act Grants (NAWCA), he built berms to create a series of separate water impoundments for use by waterfowl across 80 acres of the 230-acre farm.

Harris has hired two full-time employees to help maintain the property. “We’ve tried to do everything to improve the efficiency of our work,” Harris said. “We have pipes in all the impoundments that lead to a main water storage ditch, so we can connect our portable pumps right to the pipes and drive the water wherever we would like. If we’re irrigating this field during a dry period we don’t have to hook hoses up or anything.”

Because his land is privately owned, Harris has the freedom to experiment with unconventional conservation practices. His latest endeavor? Moist soils management, or the slow draw down of water from the impoundments to foster the growth of wetland plants like smartweed, fall panicum and fox tail. “As the water gradually comes down, it will support different kinds of weeds, and if you are good enough at it you can have a whole platter of foods that fulfill the ducks’ dietary needs,” Harris said. Moist soils management is good for the wildlife and the farmer: it cuts fertilizer use, and mechanical tilling is only needed about once every five years.

In the past, Harris grew corn on his farm to provide high-energy food for visiting waterfowl. Harris admits that deer and their affinity for corn have presented a challenge to his habitat management practices. For this reason, he plans to grow rice instead. “It’s literally the same kind of high-carbohydrate food that corn is,” Harris said. “The big advantage is that the deer don’t eat rice. In some fields, nearly half of the corn crop gets eaten by the deer.”

Harris has been an avid hunter since he was a young boy; growing up hunting with his grandfather on the bays north of San Francisco cultivated his passion for conserving wildlife habitat. He now owns three farms in Maryland and one in Montana, all under conservation easements through Ducks Unlimited, the largest land conservation owner in the United States, of which he sits on the board.

“The farm is big enough that on a windy day you can be shooting on the farm and the upwind birds will still be there. With the wild ducks, the thing you want to do if you want to keep them is not disturb them too much, otherwise they find another place to go,” Harris said. He has even calculated exactly how many ducks he and his guests can harvest in a year without negatively impacting waterfowl populations, setting the limit at 175 ducks from all four farms.

Harris designates 20 percent of his time to sitting on the board of Ducks Unlimited and of Waterfowl Chesapeake, a Maryland-based non-profit whose mission is to create, restore and conserve waterfowl habitat in the Chesapeake Bay Region. Together they help draw awareness to protecting area wetlands.

Judy Price, the executive director of Waterfowl Chesapeake, has helped the organization raise more than $5 million for habitat restoration and conservation education projects. Waterfowl Chesapeake, the umbrella organization of the annual Waterfowl Festival, held in November in Easton, Maryland, recently created an alliance for waterfowl conservation that consists of a panel of scientific experts that offer advice to current and prospective habitat restoration initiatives. They have also created a restoration project registry, expanding the visibility of high-value projects to the public and potential funders.

When asked why protecting waterfowl habitat is a priority, Price responded, “The annual migration of waterfowl truly enhances our lives throughout the Chesapeake region and, in particular, the Eastern Shore. Not only do we gain ecological benefits, but also significant economic value, from a healthy waterfowl community. By focusing on maintaining strong habitat, hopefully, we can avoid people, years from now, saying, ‘I remember seeing ducks and geese in the skies. Whatever happened to them?’”

Images by Steve Droter. To view more photos, visit the Chesapeake Bay Program Flickr page.

Jenna Valente's avatar
About Jenna Valente - Jenna developed a passion for conservation through her outdoorsy nature and upbringing in Hawaii, Washington State and Maine. A graduate of Virginia Tech's Executive Master of Natural Resources program and University of Maine's School of Communication and Journalism, she welcomes any opportunity to educate the public about the importance of caring for the environment.



Mar
14
2014

Scientist maps changes in duration of Chesapeake Bay dead zone

The duration of the Chesapeake Bay’s annual “dead zone” has declined over time, according to research published last month in the scientific journal “Limnology and Oceanography.”

First reported in the 1930s, the Bay’s dead zone, or conditions of low dissolved oxygen also known as hypoxia, results from excess nutrients, which fuel the growth of algae blooms. As these blooms die, bacteria decompose the dead algae. This decomposition process removes oxygen from the surrounding waters faster than it can be replenished, suffocating marine life. While intensified agriculture and development continue to push nutrients into rivers and streams, research by Yuntao Zhou and others shows the duration of the Bay’s dead zone decreased from five months to four months between 1985 and 2010, and the end of the hypoxic season moved up from October to September. This could suggest that efforts to manage nutrient loads—through upgrades to wastewater treatment plants, cuts to vehicle and power plant emissions and reductions to runoff from farmland—are working.

This same research showed no change in the average onset of the Bay’s dead zone or for its average volume, whose peak has moved from late to early July. In other words, while the duration of the Bay’s dead zone has declined, its size and severity have not.

While Zhou points out that nutrient pollution is the foremost factor that fuels the development of our dead zone, his research also shows that weather patterns can act as an additional driver. Northeasterly winds, for instance, can create conditions that reinforce the separation between the Bay’s fresh and saltwater, leading to larger hypoxic volumes.

Learn more.



Mar
11
2014

Severe weather pushes more waterfowl into region

Severe weather to the north of the region pushed a large number of ducks, geese and swans into the main portion of the Chesapeake Bay this winter, leading to a 22 percent jump in the results of Maryland’s 2014 Midwinter Waterfowl Survey.

According to the Maryland Department of Natural Resources (DNR), pilots and biologists from both DNR and the U.S. Fish and Wildlife Service (USFWS) counted more than 905,000 waterfowl during their aerial assessments of state waters this winter. The birds were easier to count this season than in winters past because a number of them were concentrated in the few ice-free, open waters of the Bay and its tributaries.

This total included 128,000 dabbling ducks and 190,300 diving ducks, representing a 76 and 94 percent jump from last winter, respectively. Indeed, the canvasback count was the highest it has been since the mid-1960s, and estimates for mallards and black ducks were the highest they have been since the mid-1970s. Survey teams also witnessed large numbers of Canada geese along the upper Bay: 512,000, 11 percent more than were witnessed in January 2013.

The USFWS Division of Migratory Bird Management pools these survey results with those from other states to get a sense of the distribution and population size of waterfowl wintering along the Atlantic Flyway. This migration route follows the Atlantic coast of North America, and this winter hosted more than 3.19 million birds. Of this total, teams counted more than 1.6 million in watershed states, including Maryland, Virginia, West Virginia, Pennsylvania, Delaware and New York.

Learn more.



Mar
05
2014

Benefits of green infrastructure can outweigh costs

Green roofs, porous pavement and other tools of the green infrastructure trade can be a cost-effective way to control stormwater runoff, according to a U.S. Environmental Protection Agency (EPA) report that estimates the benefits of Lancaster City’s long-term green infrastructure plan.

Image courtesy Lindsayy/Flickr

Located in south-central Pennsylvania, Lancaster City has a population approaching 60,000. Each year, combined sewer overflows send almost 750 million gallons of stormwater runoff and untreated waste into the Conestoga River, pushing excess nutrients into the tributary of the Chesapeake Bay. In an effort to combat this pollution problem, the city released a green infrastructure plan in 2011 that outlines the tree plantings, parking lot excavations and other projects that will be put in place over the next 25 years.

While the plan lists the water quality benefits the city expects to see—including the reduction of stormwater runoff by more than 1 billion gallons per year—it is, for some, an incomplete assessment. So, in a report released this week, the EPA furthered the city’s benefits analysis by addressing the additional environmental, social and economic benefits that green infrastructure can provide.

According to the report, the long-term implementation of green infrastructure in Lancaster City could save $120 million in avoided gray infrastructure capital costs and earn close to $5 million in annual benefits. Green infrastructure would reduce air pollution, energy use and stormwater runoff, and offer residents a boost in property values, recreational opportunities and other qualitative benefits. With a forecasted implementation cost of between $51.6 and $94.5 million, it is clear the benefits of green infrastructure exceed the costs.

While gray infrastructure uses tanks and pipes to trap and dispose of rainwater, green infrastructure uses soil and vegetation to manage rainwater where it falls. A combination of green and gray infrastructure has proven effective for Lancaster City, and similar plans could benefit communities across the watershed.

One reconstructed parking lot, for instance, incorporated almost 6,000 square feet of bioretention and infiltration practices on South Plum Street, with an estimated annual benefit of more than $1,100. A commercial green street in northeast Lancaster incorporated bioretention and infiltration practices as well as permeable pavement, with an estimated annual benefit of more than $2,300. And an urban park redeveloped with a host of green infrastructure practices carries an estimated annual benefit of more than $5,500.

“Valuing multiple benefits of green infrastructure ensures water management investments by the city will help… provide a safer, healthier and more prosperous community,” said Liz Deardorff, Clean Water Supply director at American Rivers, in a media release. “The results of this study affirm that green infrastructure has multiple benefits for both large and small cities needing to reduce pollution and ensure clean water.”

From the Field: Capturing stormwater naturally in Lancaster, Pennsylvania from Chesapeake Bay Program on Vimeo.

Learn more.



Feb
25
2014

Science shows restoration work can improve local water quality

Pollution-reducing practices can improve water quality in the Chesapeake Bay and have already improved the health of local rivers and streams, according to new research from the Chesapeake Bay Program partnership.

In a report released today, several case studies from across the watershed show that so-called “best management practices”—including upgrading wastewater treatment technologies, lowering vehicle and power plant emissions, and reducing runoff from farmland—have lowered nutrients and sediment in local waterways. In other words, the environmental practices supported under the Clean Water Act, the Clean Air Act and the Farm Bill are working.

Excess nutrients and sediment have long impaired local water quality: nitrogen and phosphorous can fuel the growth of algae blooms and lead to low-oxygen “dead zones” that suffocate marine life, while sediment can block sunlight from reaching underwater grasses and suffocate shellfish. Best management practices used in backyards, in cities and on farms can lower the flow of these pollutants into waterways.

Data collected and analyzed by the Bay Program, the University of Maryland Center for Environmental Science (UMCES) and the U.S. Geological Survey (USGS) have traced a number of local improvements in air, land and water to best management practices: a drop in power plant emissions across the mid-Atlantic has led to improvements in nine Appalachian watersheds, upgrades to the District of Columbia's Blue Plains Wastewater Treatment Plant have lowered the discharge of nutrients into the Potomac River and planting cover crops on Eastern Shore farms has lowered the amount of nutrients leaching into the earth and reduced nitrate concentrations in groundwater.

“In New Insights, we find the scientific evidence to support what we’ve said before: we are rebuilding nature’s resilience back into the Chesapeake Bay ecosystem, and the watershed can and will recover when our communities support clean local waters,” said Bay Program Director Nick DiPasquale in a media release.

But scientists have also noted that while we have improved water quality, our progress can be overwhelmed by intensified agriculture and unsustainable development, and our patience can be tested by the “lag-times” that delay the full benefits of restoration work.

“This report shows that long-term efforts to reduce pollution are working, but we need to remain patient and diligent in making sure we are putting the right practices in place at the right locations in Chesapeake Bay watershed,” said UMCES President Donald Boesch in a media release. “Science has and will continue to play a critical role informing us about what is working and what still needs to be done.”

UMCES Vice President for Science Applications Bill Dennison echoed Boesch’s support for patience and persistence, but added a third P to the list: perspiration. “We’ve got to do more to maintain the health of this magnificent Chesapeake Bay,” he said.

“We’ve learned that we can fix the Bay,” Dennison continued. “We can see this progress… and it’s not going to be hopeless. In fact, it’s quite hopeful. This report makes a good case for optimism about the Chesapeake Bay.”

You can view an Executive Summary of the report here. Learn more.



Jan
31
2014

Letter from Leadership: What do you think?

It’s been fourteen years since the last Chesapeake Bay agreement was signed, and much has changed in the decade and a half since Chesapeake 2000 was written. We have learned more about what works and what doesn’t when it comes to conservation. We have improved how we monitor our progress. We are aware of the impacts of climate change, which will make it more difficult for us to achieve our goals. And we have watched an Executive Order and a “pollution diet” be issued, the first directing federal agencies to step up their restoration work and the second calling on states to reduce pollution entering rivers and streams. In this time, we have also recognized the need to revisit our previous Bay agreements and better coordinate our future efforts to efficiently and effectively accomplish our restoration goals.

After countless meetings, discussions and a preliminary public comment period, the Chesapeake Bay Program is now seeking review and comment on a final draft of a new Chesapeake Bay Watershed Agreement. Like past agreements, this one is a result of negotiations and compromise, and will guide the six Bay states and the District of Columbia in their work to create a healthy and vibrant watershed.

This draft agreement is more focused than past versions. It contains seven high-level goals and twenty-two measurable, time-bound outcomes. These will allow our partners—which, for the first time, include West Virginia, New York and Delaware—to focus on top restoration priorities and better measure progress. Indeed, one of the agreement’s most significant improvements is its inclusion of management strategies, which will describe how and when we intend to achieve our outcomes as we engage local communities, develop indicators of success and report on our progress. Management strategies bring an unprecedented level of transparency to our work, and provide a higher level of accountability than previous agreements have done. 

But to make this the best agreement possible, we need to hear from you. And we have tried to make the public comment process an easy one: the draft agreement is available here, and we will welcome comments until March 17, 2014. You can offer input at the March 13 meeting of the Management Board or submit an online comment or an email to the Bay Program. Learn more

Note: The opinions expressed above are those of the author and do not necessarily reflect U.S. EPA policy endorsement or action.

Nick DiPasquale's avatar
About Nick DiPasquale - Nick has nearly 30 years of public policy and environmental management experience in both the public and private sectors. He previously served as Deputy Secretary in the Pennsylvania Department of Environmental Protection, Director of the Environmental Management Center for the Brandywine Conservancy in Chadds Ford, Pennsylvania and as Secretary of the Delaware Department of Natural Resources and Environmental Control.



Jan
29
2014

Draft Watershed Agreement available for public feedback

Three decades after the first Chesapeake Bay Agreement was signed, the Chesapeake Bay Program is seeking public input on a new agreement that will guide partners in the restoration of the Chesapeake Bay and recommit stakeholders to conservation success.

Image courtesy JoshuaDavisPhotography/Flickr

The draft Chesapeake Bay Watershed Agreement establishes a series of goals and outcomes that address water quality, fisheries and habitat, land conservation, public access and environmental literacy. Signatories will include the states of Maryland, Virginia, Pennsylvania, New York, West Virginia and Delaware; the District of Columbia; the Chesapeake Bay Commission; and the U.S. Environmental Protection Agency.

By signing the agreement, partners will commit to taking the steps needed to attain a healthy watershed: to lower nutrient and sediment pollution; to sustain blue crabs, oysters and forage fish; to restore wetlands and underwater grass beds; to conserve farmland and forests; and to boost public access to and education about the environment.

“Healthy, sustainable fisheries, plentiful habitats for wildlife, conservation efforts and citizen actions that support clean water and clean air—this is how we create a healthy Bay,” said Bay Program Principals’ Staff Committee Chair and Maryland Department of Natural Resources Secretary Joe Gill in a media release. “Connecting our citizens to these resources through public access and environmental education completes the picture, instilling the personal sense of ownership key to our progress.”

“The goals and outcomes that are outlined in the Chesapeake Bay Watershed Agreement are interrelated: improvements in water quality can mean healthier fish and shellfish; the conservation of land can mean more habitat for wildlife; and a boost in environmental literacy can mean a rise in stewards of the Bay’s resources,” said Bay Program Director Nick DiPasquale. “By signing this agreement, Bay Program partners will acknowledge that our environment is a system and that these goals will support public health and the health of the watershed as a whole.”

The draft is available here. The Bay Program welcomes comments on this draft between January 29 and March 17, 2014. Interested parties can offer input at the March 13 meeting of the Management Board or by submitting an online comment or an email to the Bay Program. Learn more.



Jan
23
2014

Bay Foundation calls on states to better control stormwater runoff

The Chesapeake Bay Foundation has called on Maryland, Virginia and Pennsylvania to better control stormwater runoff and improve the region’s environment, economy and health.

Image courtesy brianjmatis/Flickr

Made worse by urban and suburban development, stormwater runoff is the fastest growing source of pollution in the Chesapeake Bay. Once precipitation falls onto streets, sidewalks and lawns, it can pick up trash, oil and other pollutants before entering storm drains, rivers and streams. Each year, stormwater runoff contributes to fish mortalities and beach closures across the watershed.

In a report released this week, the Bay Foundation pushes watershed states to implement stronger pollution control permits alongside “cost-effective, common-sense projects” that will help cities meet the pollution limits outlined in the Chesapeake Bay Total Maximum Daily Load (TMDL), or pollution diet. Planting trees, building roadside rain gardens and installing green roofs have been proven to reduce stormwater runoff—and can often be done at lower costs than some initially estimate.

The Bay Foundation cites several cases to illustrate this point. Frederick County, Maryland, for instance, used natural vegetation rather than pipes, culverts or other structural solutions to filter polluted runoff, and reduced its projected pollution control costs by 65 percent. A University of Maryland Environmental Finance Center analysis found that Calvert County, Maryland, initially over-estimated its stormwater control costs; by installing more efficient pollution control methods and offering private business owners incentives to reduce runoff on their own properties, the county could meet their cleanup goals at a cost that was 96 percent lower than projected.

“This is a local problem requiring local solutions that will provide significant local benefits,” said Bay Foundation President William C. Baker in a media release. “But there are important roles for… governments in tackling the challenges of polluted runoff.”

Learn more.



Jan
16
2014

Photo Essay: Patent tonging for oysters on the Patuxent River

At sunrise, the Roughwater heads out of its Solomons Island harbor and onto the Patuxent River. Driven by a captain who has worked the Chesapeake Bay for two decades, the boat stops over an unseen reef. Simon Dean and his crew—Brian Elder and Jason Williams—are wearing waterproof bibs and white rubber boots, and are ready to bring in oysters.

Known as patent tonging, the work that takes place on the Roughwater moves in one fluid motion: hydraulic tongs enter the water, grab a mess of oysters and dump them with a crash onto a metal culling table. Three-inch grooves built into the table’s edge help the crew cull, or sort the oysters by size. Good oysters are tossed into a plastic basket, while too-small bivalves and empty shells go back overboard.

The patent tongs are controlled by foot pedals: one pushes the tongs up and down, while the other swings them open and closed. “At the end of the day, your feet are more tired than your hands,” Dean said.

As a waterman, Dean’s work is dependent on the seasons. During the winter, he oysters. During the summer, he crabs and takes fishing parties out on the Bay. He bought the Roughwater in 2009, and was “running everybody else’s boat before that.”

Wooden-handled culling hammers help Dean and his crew knock undersized oysters off of bigger bivalves. Young oysters attach themselves to adults in order to grow, forming dense reefs that offer habitat to fish, crabs and other critters. While concrete is often used to construct artificial reefs, shell makes the best substrate for spat.

Watermen must work to “get as much shell off as you can,” Dean said. In part, this is because buyers prefer the look of a clean oyster. And in part, it is because shell must go back into the Bay, where it will provide a new place for young oysters to settle.

In an effort to restore natural oyster populations to the Bay, shell recycling programs have popped up across the region and lawmakers have established oyster sanctuaries and strengthened harvesting restrictions. But this seems to have fueled tension between states and the industry and fed the belief that watermen often work in conflict with the law.

Dean and his wife, Rachel, are working to change this oft-held perception, using heritage tourism to teach both children and adults about estuarine life and the role that watermen play in the region’s history and economy. “We’re not poachers. We’re not outlaws. We’re not thieves,” Dean said. And he hopes that Solomons Island Heritage Tours will “break down that stigma that watermen have [against them].”

Dean and his crew don’t have time for conversation while the tongs are running. Dean thinks about how he will sell his oysters, and how he will compete with other watermen. By the end of the day, they have reached their patent tonging limit: 15 bushels per license, with two licenses per boat. Dean will sell some of these to restaurants and some to individuals. But will he ever keep any for himself? “I like them,” Dean said. But when it comes to eating them, “I just don’t have time.”

To view more photos, visit the Chesapeake Bay Program Flickr page.

Images by E. Guy Stephens/Southern Maryland Photography.
Captions by Catherine Krikstan.



Jan
10
2014

Clean Air Act improves water quality in Appalachian rivers

The reduction of power plant emissions in the mid-Atlantic has improved water quality in the Chesapeake region, according to new research from the University of Maryland Center for Environmental Science (UMCES).

Image courtesy haglundc/Flickr

Researchers at the university’s Appalachian Laboratory have traced improvements in the water quality trends of nine forested watersheds located along the spine of the Appalachian Mountains to the Clean Air Act’s Acid Rain Program. Passed in 1990, the Acid Rain Program led to a 32 percent drop in human-caused nitrogen-oxide emissions in 20 states. As these emissions have declined, so too has the amount of nitrogen found in some Pennsylvania, Maryland and Virginia waterways.

In other words, while the Acid Rain Program only intended to reduce the air pollution that causes acid rain, it had the unintended consequence of reducing the amount of nitrogen oxide particles landing on the region’s forests, thus improving local water quality.

“Improvements in air quality provided benefits to water quality that we were not counting on,” said UMCES President Donald Boesch in a media release.

Once nitrogen oxide particles are emitted into the air, wind and weather can carry them long distances. In time, these particles fall onto the land or into the water. Nitrogen that enters rivers and streams can fuel the growth of algae blooms, which block sunlight from reaching underwater grasses and create low-oxygen “dead zones” that suffocate marine life. Scientists estimate that just over one-third of the nitrogen polluting the Bay comes from the air.

Learn more.



Dec
31
2013

Letter from Leadership: What can I do for the Chesapeake Bay?

People often feel helpless when confronting the environmental concerns that face us today. They want to know, in simple and straightforward terms, what they can do to help. In the Chesapeake Bay watershed, the answer lies in our work to reduce the flow of nutrients and sediment into our waterways.

While we have made great strides in upgrading nutrient-removal technology at wastewater treatment plants, controlling power plant and automobile exhaust emissions, and putting conservation practices in place on area farms, we have not made as much progress in reducing stormwater runoff from homes and businesses. Rainfall continues to run across rooftops, driveways and lawns, picking up pollutants before it enters storm drains, rivers and streams. And we continue to look for ways to encourage homeowners to reduce their stormwater discharges.

Image courtesy Wisconsin Department of Natural Resources/Flickr

Environmental regulations have not focused on runoff from homes because these pollution sources are too small, diffuse and numerous to manage effectively and efficiently. But the Chesapeake Bay Program is developing a system that will give homeowners credit for reducing their runoff and helping their communities meet the goals of the Total Maximum Daily Load (TMDL), or Bay “pollution diet.” More than 30 stakeholders worked through the Chesapeake Stormwater Network to develop this crediting program, which will respond to the needs of both homeowners and government agencies and provide an accurate mechanism for verifying residential best management practices.

Rain barrels, rain gardens and permeable pavement are just some of the tools that can help a homeowner manage runoff and add color and character to his property. But it is important for us to ensure that these practices are installed correctly to reduce pollution over time. So a guide is in production that will show homeowners how to design, construct and maintain different practices, and an online tool will allow them to add their practices to a website, where the data will be checked and pollution reductions will be calculated.

Training and certification programs are being planned. Smart phone apps are being developed. And this initiative appears to be catching on among homeowners and in communities across the watershed, where people see it as an opportunity to improve their neighborhood, increase their property values and make a positive impact on their local environment and the water quality of the Bay. 

Note: The opinions expressed above are those of the author and do not necessarily reflect U.S. EPA policy, endorsement, or action.

Nick DiPasquale's avatar
About Nick DiPasquale - Nick has nearly 30 years of public policy and environmental management experience in both the public and private sectors. He previously served as Deputy Secretary in the Pennsylvania Department of Environmental Protection, Director of the Environmental Management Center for the Brandywine Conservancy in Chadds Ford, Pennsylvania and as Secretary of the Delaware Department of Natural Resources and Environmental Control.



Dec
16
2013

Decoy carvers show Chesapeake Bay birds at Waterfowl Festival

Millions of ducks, geese and other waterfowl visit the Chesapeake Bay each year, finding food and habitat in marshes across the watershed. Hunters have long gone after these birds as a source of food, using wooden or plastic decoys to attract them to their blinds. But in recent decades, what were once tools of the hunting trade have become works of art, and modern decoys showcase the carving styles of the artists behind the birds.

“[Decoys] started out as a means of putting food on the table, of attracting live birds,” said Kristin Sullivan, a Ph.D. candidate who studies the heritage behind decoy carving at the University of Maryland. But this soon changed: “By the 1950s, decoys started to become mass-produced, so hunters could get fairly cheap plastic or wooden birds and didn’t have to carve them out themselves.” This, paired with a burgeoning collector’s market created by hunting parties who kept hand-carved decoys as souvenirs, turned decoys into decorative, collectible items.

Now, tourists are a big customer for decoy carvers. So, too, are people who have “some sort of connection to hunting, or some… sort of connection to the landscape from which the bird came,” Sullivan said. Indeed, decoys carved in the Bay region are often evocative of the estuary. “A decoy is going to reflect the landscape,” said Sullivan.

But decoys also reflect the personality of the carver. We interviewed five carvers at the Waterfowl Festival in Easton, Md., to find out how they started carving, what makes their work unique and how the Bay has informed their birds. You can find our questions and their answers below.

Robert Clements, Clements Creations and Woodworking, Smithsburg, Md.

What drew you to decoy carving?
This show did. In about 1987, I came down here for the first time, and decided that once I retired from the Secret Service, this was going to be my job. So way back when, in 1987, is when it all started. I was cutting through one of the buildings, and in a little hallway, there was a gentleman… who was hand-chopping decoys. And I thought that was the neatest thing in the world, that someone could do that. So I’m all self-taught. After I retired, I got a bunch of reference books and I sat out in my workshop and that’s all I did until I felt that [my work] was at a point where I was comfortable with it.

Describe your carving style.
What I like to do is what they call contemporary antiques. It’s just a new bird they try to make old. [Another carver] told me to come up with your own style, don’t copy anybody else, do what you want to do. And that’s exactly what I decided to do.

How has the Chesapeake Bay inspired or informed your work?
I grew up in Takoma Park, and we had relatives around the Bay. I wasn’t a typical Bay guy, but being in the state of Maryland and [experiencing] all the history related to the Bay—you can just get caught up in it.

What role do waterfowlers play in conservation?
The whole hunting type person—you’d be surprised how those people are more in tune with the environment than the techno guys with their iPads and iPods. I think the hunting guys—the old guys especially—can give you a perspective of exactly how they did things in the beginning and how they do things now. It’s probably a 180 degree turn.

What is your favorite bird to carve?
It’d have to be a wood duck. I hate painting them, but they have so many colors in them the bird just pops. It’s a pain to do, but it’s probably the prettiest bird out there.

Ed Wallace, Wildfowl Carvings by Ed Wallace, Galena, Md.

What drew you to decoy carving?
I’ve been carving for about 30 years. We used to visit the Waterfowl Festival all the time, and I was down here and I said to myself one time, I think I can do that.

Describe your carving style.
Well, it’s my style. I have never had a lesson, and I don’t give lessons, because I want to do birds my way. I don’t want to do a bird like somebody else, and I don’t want somebody else to do a bird like mine.

How has the Chesapeake Bay inspired or informed your work?
At one time, I was a commercial hunter. I took hunting parties [out] and grew up on the Bay. It’s just bred into you.

What role do waterfowlers play in conservation?
More than a lot of people think. You know, they preserve what they have. And if they don’t, there’s not going to be any [more birds].

What is your favorite bird to carve?
A mallard drake. Why? I don’t know. I don’t like to do wood ducks; I don’t know anybody that does. I did one a couple of months ago, and that’s probably the last one I do. I don’t mind the carving. But I don’t care what you do, you can’t make one look natural.

Gilmore B. Wagoner, Quality Working Decoys by Gilmore B. Wagoner, Havre de Grace, Md.

What drew you to decoy carving?
A necessity. When I first started hunting in the early sixties, we couldn’t afford to buy decoys, so we made them. And the first ones we made were made from two by fours and two by sixes. Kind of looked like something a little kid would make, but they worked. We were making blue bills and canvasbacks, and we made some mallards, but they weren’t that good. Back in the old days, all you had to do was paint a tin can solid black and it would work. You could decoy a duck with just a painted one-gallon can. Now, they’re manufacturing decoys for the hunter, not for the ducks. The prettier a decoy is, it draws the hunter to them. It doesn’t, per se, draw the duck to the decoy.

Describe your carving style.
My carving style today is Upper Chesapeake Bay. I worked for [Havre de Grace decoy carver] Madison Mitchell for approximately seven years. While I was working for him, I worked for the federal government at Aberdeen Proving Ground, where I tested military equipment. The person you go to if you live in Havre de Grace and you want to learn how to make decoys is Madison Mitchell. I don’t think there’s a decoy maker in Havre de Grace that did not work for him.

How has the Chesapeake Bay inspired or informed your work?
I’ve always lived in Havre de Grace. I’ve never lived beyond three blocks from the water. When I was a kid, back in the early fifties, our whole summer was spent around that water, swimming, fishing, crabbing or doing whatever kids seven, eight, nine, 10 years old do. It’s a heritage thing with me, just like the rest of the guys here on the Eastern Shore. They grow up on some of the islands around here; they were brought up fishing, crabbing and eeling. We just followed the path of our forefathers and our grandfathers and our fathers. It’s in our blood. I’ll probably never leave Havre de Grace or leave the water.

What role do waterfowlers play in conservation?
I’ve always been associated with Delta Waterfowl, Ducks Unlimited and even this organization here, the Waterfowl Festival. I’ve always given decoys so they can raise money. Of course, they transfer the money into their conservation efforts. I donate the material or the products, so they can raise the money and do the [conservation] work.

What is your favorite bird to carve?
I have two. Widgeon, a.k.a. bald pates, and pintails. Canvasbacks are okay, but there’s just so many of them around. I tend to lean toward the more colorful ducks: mallards, pintails and widgeon. That’s generally what I like to carve, something more colorful.

Jeannie Vincenti, Vincenti Decoys, Havre de Grace, Md.

What drew you to decoy carving?
My husband, [Patrick Vincenti], is a carver. I work with him on a daily basis, and I run our store in Havre de Grace. My husband was drawn to [carving] because he was a hunter, and as a hunter, he had a need to make his own decoys. As he started making them, people wanted them, so he left his full-time job in 1986 to be a full-time carver.

Describe his carving style.
It’s definitely a Maryland-style bird. But more specifically, it’s an Upper Bay working decoy.

How has the Chesapeake Bay inspired or informed his work?
Living next to this estuary—which is probably one of the best in the world—the duck hunting here was outstanding. It still is. So I would have to say, the availability of the ducks made the desire to make the decoys and hunt, and as you hunted all those years and you made the decoys, you develop a tremendous respect for that Bay and its richness.

What role do waterfowlers play in conservation?
Just like deer hunters or anything else, you have to keep the numbers of birds in check, because there’s not enough food. And as we infringe upon their space, there’s less food for them. So by following the rules and the guidelines of waterfowling, you’re doing it in a fair and right way, and you’re keeping the numbers in check, just like you would for deer or any other animal.

What is your favorite bird that you and your husband sell in your store?
My husband’s would be the canvasback; mine would have to be the black duck. I like the way he paints it, and it just has a look that I like. But the canvasback is the bird that is most desirable, and [Pat] has a strong fondness for canvasbacks.

Charles Jobes, Charles Jobes Decoys, Havre de Grace, Md.

What drew you to decoy carving?
My dad has made decoys for 63 years. We all made decoys as kids; I’ve got two brothers, younger brother Joey, older brother Bobby. My dad worked for Madison Mitchell in Havre de Grace, Madison Mitchell is my godfather. So we more or less worked for my dad, all of us coming up. As the years went on, we always worked on the water crabbing, fishing and making decoys. And I’ve made decoys for a living for probably 35 years. We all make decoys for a living now.

Describe your carving style.
The carving style is a Chesapeake Bay decoy—an Upper Chesapeake Bay decoy. Where we live, the carving style of the decoy [features] an up-curved tail [and] regular, slick paint. It’s a regular gunning decoy paint style and carving style, made out of white pine and cedar and basswood.

How has the Chesapeake Bay inspired or informed your work?
When we were kids, we body booted on the Susquehanna Flats, [standing in the water, surrounded by decoys]. It’s an area that years ago, in the twenties and thirties and even before that, was home to hundreds of thousands of canvasbacks. Everybody would come to the Flats to kill canvasbacks, black heads and redheads. The Chesapeake Bay is an estuary where all the ducks and geese come in the wintertime, and that was the first place that they stopped, coming down. Then they would disperse through the whole Bay. We grew up on that water.

What role do waterfowlers play in conservation?
When they started the [U.S. Fish and Wildlife Service Federal] Duck Stamp in 1937, when Ding Darling made the first Duck Stamp, that was the first conservation stamp. All that money goes to waterfowl. If you didn’t have waterfowlers that hunt, there would be no money to go to the wetlands that Ducks Unlimited restored in North Dakota, South Dakota, the boreal forest. There wouldn’t be anything.

What is your favorite bird to carve?
Canvasback. Drake canvasback. They’re probably the easiest duck to make, but they’re the king of ducks. They’re just so pristine, and they’re a neat duck. They’re the king of the Chesapeake.

Catherine Krikstan's avatar
About Catherine Krikstan - Catherine Krikstan is a web writer at the Chesapeake Bay Program. She began writing about the watershed as a reporter in Annapolis, Md., where she covered algae blooms and climate change and interviewed hog farmers and watermen. She lives in Washington, D.C.



Keywords: history, waterfowl
Dec
11
2013

Groundwater withdrawal causing land to sink in lower Chesapeake region

The intensive withdrawal of groundwater is causing land to sink in the lower Chesapeake Bay region, worsening the effects of sea-level rise and increasing the severity of floods along the Delmarva Peninsula and Virginia Coastal Plain.

Image courtesy PhotoSeoul/Flickr

Land subsidence, or the sinking of the land’s surface, is in part a natural phenomenon, occurring as bedrock responds to the melting of an ice sheet that once covered Canada and the northern United States. But according to a new report from the U.S. Geological Survey (USGS), most of the land subsidence in this area is taking place in response to groundwater withdrawal, which could help explain why the region has the highest rates of relative sea-level rise on the Atlantic Coast.

When groundwater is pumped out of the earth, water levels in the area’s underground aquifers decrease. As these water levels decrease, the aquifer system compacts, causing the land above it to sink. In the southern Bay region, land subsidence has been measured at rates of 1.1 to 4.8 millimeters per year—close to the width of five stacked pennies.

Land subsidence can increase flooding, alter wetland and coastal ecosystems, and damage human infrastructure and historical sites. Some areas in Virginia—like the city of Franklin and the counties of Isle of Wight and Southhampton—have already experienced floods as the land around them sinks, and the low-lying Hampton Roads could experience similar episodes soon.

But according to the USGS, a change in water use—from moving groundwater pumping out of high-risk areas to slowing rates of groundwater withdrawal—could slow or mitigate land subsidence and relative sea-level rise.

Learn more.



Dec
03
2013

Bay Barometer: Chesapeake faces challenges from pollution, development

The Chesapeake Bay Program’s latest look at watershed health reflects the reality of an impaired Bay, where population growth and pollution could threaten stable blue crab, striped bass and shad populations.

Released today, Bay Barometer: Health and Restoration in the Chesapeake Bay Watershed collects and summarizes the Bay Program’s most recent data on water quality, pollution loads and other “indicators” of Bay health, from ecological markers like underwater grass abundance to measures of progress toward restoration goals.

According to the report, more than half of the watershed’s freshwater streams are in poor condition, almost three-quarters of the Bay’s tidal waters are impaired by chemical contaminants and just 29 percent of the Bay has attained water-quality standards.

But an absence of rapid improvement in Bay health is not an indication that our restoration efforts are ineffective. Instead, it is an indication that lag-times are at play. Knowing that we will have to wait before we see visible improvements in water quality gives officials hope that the work done in 2012—like the 285 miles of forest buffers planted along waterways, the 2,231 acres of wetlands established on agricultural lands or the 34 miles of streams reopened to fish passage—will lead to results in the watershed. In fact, long-term trends indicate nutrient levels in Bay tributaries are improving, with most showing lower levels of nitrogen and phosphorous.

“Bay Program partners have made significant strides in moving us ever closer to a healthy, restored Bay watershed,” said Bay Program Director Nick DiPasquale in a media release. “We will have to exercise persistence and patience as the actions we take to rebuild balance and resilience… into this complex ecosystem… show up in the data from our monitoring networks.”

Learn more.



Nov
25
2013

Antibiotics, hormones increasingly found in livestock and poultry manure

Growing scientific evidence shows that pathogens, antimicrobials and hormones are increasingly appearing in livestock and poultry manure across the United States, according to a literature review prepared by the U.S. Environmental Protection Agency (EPA).

Image courtesy USDAgov/Flickr

These “contaminants of emerging concern”—so named because their risks to human health and the environment may be unknown—could pose threats to plants, animals and people if rain, spills or storage failures push contaminated manure into rivers and streams.

The flow of manure into our waterways has long been linked to nutrient pollution. According to 2010 estimates, manure accounts for 19 percent of the nitrogen and 26 percent of the phosphorous entering the Chesapeake Bay, where it fuels the growth of algae blooms and creates dead zones that suffocate marine life. But research now shows that more of the nation’s manure could contain a new class of pollutants that could have serious implications for water quality.

Manure can contain pathogens, for instance, that could infect humans if allowed to contaminate our drinking water or food crops. It can contain antibiotics and vaccines that could facilitate the development of antimicrobial resistance. And it can contain natural and artificial hormones that, even in low concentrations, could affect the reproductive health and fitness of fish, frogs and other marine life.

Indeed, good manure management has become a key conservation practice in the watershed, where four states—Delaware, Pennsylvania, Maryland and Virginia—rank among the ten highest manure-generating states, according to the U.S. Department of Agriculture (USDA). As livestock and poultry production shift to larger, more concentrated operations, facilities produce more manure than can be used on the surrounding farmland. If this manure is properly applied, stored and transported, it can be kept out of rivers, streams and the Bay.

Learn more about contaminants in livestock and poultry manure.



Nov
20
2013

Potomac River scores “C” on latest report card

The Potomac Conservancy has reported an improvement in the Potomac River’s health for the third year in a row, giving the waterway a “C” in its seventh annual State of the Nation’s River report.

The Potomac Conservancy, an advocacy group that fights for the health of the waterway, has an optimistic outlook for the river’s future. “After suffering the effects of historical overfishing, pollution and habitat destruction, it is no wonder that the Potomac River’s recovery is a slow one,” the report states. “We believe the river is on its way back to full health.”

In 2012, the Potomac topped American Rivers’ list of the nation’s most endangered waterways, the biggest threat a combination of agricultural and stormwater runoff. With continued population growth in the Washington, D.C., area, human development has increased the amount of impervious surfaces that cannot absorb polluted rainfall traveling across the land and into storm drains, rivers and streams.

“Going forward, when it comes to cleaning up the Potomac, public enemy number one is polluted runoff,” said Hedrick Belin, Potomac Conservancy president. “That is the single largest threat to the full recovery of the Potomac, in that it is the only source of pollution that we see growing.”

The Conservancy plans to take a “three-pronged” approach to reducing polluted runoff, strengthening regulatory frames at a local level, increasing funding for clean water programs and creating incentives and assistance programs for property owners to make it easier for them to contribute to a healthy waterway.

Belin stresses the importance of protecting both the river and the land that surrounds it. ”As we peek around the corner or over the horizon, we see some troubling trends if we don’t change how we treat the land that surrounds the Potomac,” he explained.

Read the State of the Potomac River report, or learn what you can do to protect clean water.



Nov
12
2013

Ancient seawater found under Chesapeake Bay

The oldest body of seawater ever identified is buried under the Chesapeake Bay.

According to the U.S. Geological Survey (USGS), this recently discovered body of water dates back to the Early Cretaceous period, when wet and dry seasons controlled the climate, tropical jungles dominated the landscape and dinosaurs were becoming more plentiful.

Image courtesy Nicolle Rager-Fuller/National Science Foundation

The water is buried beneath a large meteorite that struck the earth 35 million years ago, throwing debris into the atmosphere and spawning a train of tsunamis that probably reached as far as the Blue Ridge Mountains. The so-called “Chesapeake Bay impact crater” is the largest crater discovered in the United States and helped determine the current shape of the Bay.

Because the water is trapped in place, USGS scientists have been able to estimate its age—100 to 145 million years old—and its salinity—twice as salty as modern seawater.

Acting USGS Associate Director for Water Jerad Bales said in a media release that before this discovery was made, no one realized that the saltier-than-normal groundwater found deep in the Atlantic Coastal Plain “was North Atlantic ocean water that has essentially been in place for 100 million years.”

“We are working directly with seawater that dates far back in earth’s history,” Bales said.

Learn more.



Nov
12
2013

Groundwater pushes nitrogen into Bay, delays effects of restoration

Slow-moving groundwater on the Delmarva Peninsula could push excess nutrients into the Chesapeake Bay even after we have lowered the amount of nitrogen and phosphorous we put onto the land.

Image courtesy yorgak/Flickr

According to new research from the U.S. Geological Survey (USGS), most of Delmarva is affected by the slow movement of nutrients from the land into the water. A USGS model developed to track the movement of nitrogen through the region showed that groundwater—and the pollutants it can contain—takes an average of 20 to 40 years to flow through the peninsula’s porous aquifers into rivers and streams. In some parts of Delmarva, the groundwater that is now flowing into local waterways contains nitrogen linked to fertilizer used three decades ago.

The slow flow of nitrogen-laden groundwater into the Bay could affect efforts to restore the watershed, lengthening the “lag-time” between the adoption of a conservation practice and the effect of that practice on a particular waterway. In other words, it could take days or even decades for today's management actions to produce positive water quality results.

“This new understanding of how groundwater affects water-quality restoration in the Chesapeake Bay will help sharpen our focus as many agencies, organizations and individuals work together to improve conditions for fish and wildlife,” said Lori Caramanian, Department of the Interior Deputy Assistant Secretary for Water and Science, in a media release.

While these findings seem to contradict the value of our restoration work, the study in fact indicates that pollution-reducing practices put in place over the past decade have begun to work. The study also confirms that rigorous steps taken to reduce nutrients on the land will lower the amount of nitrogen loading into streams in the future.

Learn more.



Oct
31
2013

Letter from Leadership: Lag-times call for patience in awaiting a restored Bay

How poor are they that have not patience! What wound did ever heal but by degrees?
William Shakespeare, Othello, Act II, Scene 3

Between fast food restaurants and speed-of-light cell phones, we live in a culture of instant gratification. But the environment around us doesn’t operate that way. Instead, it is slow to respond to changes—like the upsets or imbalances created by human activity.

Scientific evidence shows that many of the pollution-reducing practices we are placing on the ground now may take years to show visible improvements in water quality. One reason? Pollutants can be persistent. French and Canadian researchers, for instance, tracked the movement of fertilizer through a plot of land over the course of three decades. While more than half of the fertilizer applied to the land in 1982 was absorbed by agricultural crops like wheat and sugar beet, 12 to 15 percent remained in the soil. The researchers predicted it would take an additional 50 years before the fertilizer fully disappeared from the environment.

Much of the farmland in the Chesapeake Bay watershed sits over groundwater, now contaminated with high levels of nitrates following years of fertilizer applications above ground. Work by the U.S. Geological Survey (USGS) has shown that it will take a decade for this nitrogen-laden groundwater to flow into rivers, streams and the Bay. On the Delmarva Peninsula, where deeper, sandy aquifers underlie the Coastal Plain, this so-called “lag-time” could take 20 to 40 years.

So what implications could lag-times have for the Bay restoration effort? Last year, the Chesapeake Bay Program’s Scientific and Technical Advisory Committee (STAC) released a report about the lag-time phenomenon. The team of experts concluded that lag-times will affect public perception of our progress toward meeting the pollution diet set forth by the Chesapeake Bay Total Maximum Daily Load (TMDL).

The TMDL requires the six Bay states and the District of Columbia to implement their proposed pollution-reduction measures by 2025. There may be an expectation on the part of the general public and our elected officials that once these measures are fully implemented, the Bay will have met its water quality goals. But now we know that it may take some time before we can make that claim. As 2025 approaches, we must remind the public that lag-times exist and ask for their patience in seeing a healthy Bay. Because through patience—and vigilance—the Bay will be restored. 

Note: The opinions expressed above are those of the author and do not necessarily reflect U.S. EPA policy, endorsement, or action.

Nick DiPasquale's avatar
About Nick DiPasquale - Nick has nearly 30 years of public policy and environmental management experience in both the public and private sectors. He previously served as Deputy Secretary in the Pennsylvania Department of Environmental Protection, Director of the Environmental Management Center for the Brandywine Conservancy in Chadds Ford, Pennsylvania and as Secretary of the Delaware Department of Natural Resources and Environmental Control.



Oct
30
2013

Chesapeake Bay Stewardship Fund directs $9.2 million to environmental work

From the restoration of tidal wetlands to the greening of a town cemetery, 40 environmental projects across the Chesapeake Bay watershed have received more than $9 million in funding from the National Fish and Wildlife Foundation’s (NFWF) Chesapeake Bay Stewardship Fund.

Image courtesy Eric Vance/U.S. Environmental Protection Agency 

Half of the projects will be funded by the Small Watershed Grants Program, which supports on-the-ground restoration, conservation and community engagement. Twenty more will be funded by the Innovative Nutrient and Sediment Reduction Grants Program, which finances the reduction of nutrient and sediment pollution in rivers and streams.

The Anacostia Watershed Society, for instance, will restore more than 10 acres of tidal wetlands along the Anacostia River, improving area flood control and outdoor recreation. The Oyster Recovery Partnership will repopulate at least 40 acres of oyster reefs in Harris Creek, bolstering current restoration work in the Choptank River tributary. And the Town of Bath in West Virginia will bring green infrastructure into a local cemetery, increasing tree canopy and reducing erosion into the Potomac River.

Image courtesy Eric Vance/U.S. Environmental Protection Agency

The awards were announced this morning at the Earth Conservation Corps Pump House, where a wetland restoration project was funded by the Chesapeake Bay Stewardship Fund in 2012.

Learn more about the grant recipients.



410 Severn Avenue / Suite 112
Annapolis, Maryland 21403
Tel: (800) YOUR-BAY / Fax: (410) 267-5777
Directions to the Bay Program Office
Terms of Use | Privacy Policy
©2012 Chesapeake Bay Program | All Rights Reserved