The District of Columbia has outlined the steps it will take to become the healthiest, greenest and most livable city in the United States.
The Sustainable DC Plan, released this week by the District Department of the Environment (DDOE) and Office of Planning (OE), sets forth more than 100 actions that are meant to improve the District’s energy consumption, waste generation, stormwater management and access to open spaces, clean water and fresh, local food—all in just two decades.

At an event that celebrated the release of the plan, District of Columbia Mayor Vincent C. Gray called Washington, D.C., a “model” of sustainability for cities across the nation and around the world.
“Things are changing. Times are changing. And we are changing,” Gray said.

In recent years, the District has become a leader in planting trees, installing green roofs, boosting public transportation and curbing greenhouse gas emissions.
The Sustainable DC Plan will build on these actions with ambitious goals to clean up local land, water and the Chesapeake Bay. The District will ensure, for instance, that all residents live within a 10-minute walk of parks or natural spaces; that 40 percent of the city is covered with a healthy tree canopy; and that all of the District’s waterways—including the long-polluted Anacostia River—are made fishable and swimmable by 2032.
Read more about the Sustainable DC Plan.
After eleven years, $40 million and more than 16,000 linear feet of pipe, West Virginia is set to bring a new wastewater treatment plant online and make huge cuts to the pollution it sends into the Chesapeake Bay.
Under construction in West Virginia’s Eastern Panhandle, the Moorefield Wastewater Treatment Plant will replace four existing plants with one new system, marking a significant milestone in the headwater state’s efforts to curb pollution and improve water quality. Expected to go into operation this fall, the plant will remove 90,000 pounds of nitrogen and 93,000 pounds of phosphorous from West Virginia wastewater each year.
Funded by a range of sources—including the West Virginia Economic Development Authority, the West Virginia Department of Environmental Protection and the U.S. Environmental Protection Agency (EPA)—the new plant is heralded as evidence that thoughtful planning and forward-thinking—especially where pollution regulations are concerned—can help a community move toward conservation and environmental change.
Restoration Spotlight: Wastewater overhaul will cut pollution in West Virginia from Chesapeake Bay Program on Vimeo.
In the 1990s, the hundreds of wastewater treatment plants that are located across the watershed could be blamed for more than a quarter of the nutrient pollution entering the Bay, as the plants pumped water laden with nitrogen and phosphorous into local rivers and streams. Such an excess of nutrients can fuel the growth of algae blooms that block sunlight from reaching underwater grasses and, during decomposition, rob the water of the oxygen that aquatic species need to survive.
But in the last decade, technological upgrades to wastewater treatment plants have surged, and the pollution cuts that result mean these plants now contribute less than 20 percent of the nutrients still entering the Bay.
According to Rich Batiuk, Associate Director for Science with the EPA, the uptick in upgrades can be attributed to a number of factors.
“Wastewater treatment plants have always been regulated,” Batiuk said. “But [until the last decade], there wasn’t the science or the political will or the … water quality standards that could drive the higher levels of wastewater treatment that result in lower levels of nitrogen and phosphorous flowing into the watershed.”
As the science behind wastewater engineering has improved and the incentives for implementing upgrades have grown, more plants have begun to make changes. Some implement a “zero discharge” plan, using nutrient-rich effluent to feed agricultural crops rather than excess algae. Others—like the Moorefield plant—expose wastewater to nutrient-hungry microbes that feed on nitrogen and phosphorous; the resulting sludge, modified without the addition of chemicals, can be turned into compost rather than fodder for the local landfill.
Such modern upgrades to otherwise aging infrastructure have been celebrated as a boon for local communities and the wider watershed. While the Moorefield plant will, in the end, curb pollution into the Bay, it will first curb pollution in the South Branch of the Potomac River, into which it sends its effluent.

"The South Branch of the Potomac is a unique place,” Batiuk said. “People fish there, they swim there. This new plant helps more than the Chesapeake Bay.”
And Moorefield residents—including the Town of Moorefield Public Works Director Lucas Gagnon—plan to witness this local change firsthand.
“The residents in this area are aware of the Chesapeake Bay and its needed [nutrient] reductions,” Gagnon said. “But the biggest benefit for the local folks will be the reduction of nutrients in local waterways.”
“There are many people that fish and boat the South Branch,” Gagnon continued. “When this plant goes online, the water quality will be greatly enhanced, and they will have a much cleaner, better river to enjoy.”
The Chesapeake Bay Foundation has measured a “modest” improvement in Chesapeake Bay health, giving the Bay a “D+” in its biannual State of the Bay report.
While the Bay’s score of 32 on a one-to-100 scale falls short of what the Foundation would like to see—70 points, or an “A+”—this does mark a progression of one point since the report was last issued in 2010, and of four points since 2008.

Image courtesy Chesapeake Bay Foundation
The report marks improvements in five of 13 “indicators,” or gauges of Bay health, which Chesapeake Bay Foundation President William C. Baker attributes to sound science, renewed restoration efforts and the “Clean Water Blueprint,” or Total Maximum Daily Load, that is “in place and beginning to work.”
“Putting science to work gets results—especially when cooperation trumps conflict,” Baker said.

Image courtesy Chesapeake Bay Foundation
These results? According to the Foundation, the average size of the Bay’s annual dead zone is shrinking. Blue crabs are producing more juveniles and oyster spat are showing improved survival. And states like Virginia and Pennsylvania are planting trees and preserving land from development. Even as critical acres of underwater grass beds are lost—the one indicator to worsen over the past two years—the once-decimated grasses of the Susquehanna Flats offered good news, surviving Hurricane Irene and Tropical Storm Lee in 2011.
Even so, Baker advocated caution: “Our greatest worry is that there is potential for improvement to breed complacency.”
The Chesapeake Bay Program will publish Bay Barometer, its annual snapshot of Bay health and watershed-wide restoration, later this month.
Read the 2012 State of the Bay report.
An advisory committee has recommended that the Chesapeake Bay Program’s Watershed Model be adjusted to better account for the landscape’s influence on watershed health.

Whether it is a riparian forest buffer that can trap sediment before it flows into a stream or a wetland that can filter nutrient pollution along the edge of a creek or river, the landscape that surrounds a waterway can impact that waterway’s health.
In a report released this week, experts from the Scientific and Technical Advisory Committee (STAC) state that adjusting the Watershed Model to better simulate the influence of riparian forests, forested floodplains and other wetlands would improve the model’s accuracy and allow managers to better direct conservation funds toward those landscapes that most benefit water quality.
The Watershed Model is used by Chesapeake Bay Program partners and stakeholders to estimate the amount of nutrients and sediment reaching the Bay.
Learn more about The Role of Natural Landscape Features in the Fate and Transport of Nutrients and Sediment.
Impaired by trash, rated poor for nutrient pollution and listed as unsafe for human contact much of the time, Baltimore Harbor scored a failing grade on its most recent Healthy Harbor Report Card.

Image courtesy Waterfront Partnership of Baltimore
While community engagement in conservation is on the rise—volunteers have planted trees, picked up trash and even painted murals around storm drains to make a connection between streets and streams—algae blooms, dead zones and fish kills remain a problem for the urban watershed.
According to the Healthy Harbor Report Card, water quality in Baltimore Harbor did not improve in 2011, when spring and fall rains pushed pollutants into the water.
From a spring shower to a fall hurricane, the flow of pollutants into Baltimore Harbor is closely tied to regional rainfall. The amount of litter collected in the Harbor in 2011, for instance, spiked when water flow was at its highest after Tropical Storm Lee. Sewage overflows, too, were linked to large storms, when rainwater seeped into sewer pipes and pushed harmful bacteria into the Harbor.

Image courtesy Blue Water Baltimore/Flickr
To combat these problems, the non-profits behind the Healthy Harbor Report Card have engaged students and citizens in a mission to make the Harbor swimmable and fishable within the next decade. Blue Water Baltimore, for instance, has curbed stormwater runoff on school grounds and helped Clean Water Communities develop plans for cleaning and greening their neighborhoods. And the Waterfront Partnership of Baltimore has published a Healthy Harbor Plan to provide Baltimoreans with a roadmap for Harbor clean-up.
Learn more about the Healthy Harbor Report Card.
A paddler, a swimmer or a hiker itching to cool his tired toes can stand at the edge of a stream and judge the water. Is it clear? Is it clean? Are there critters at hand? But he won’t find an answer to his most basic question: How healthy is my waterway?
Enter the U.S. Environmental Protection Agency (EPA).

In celebration of the Clean Water Act, the EPA has launched a new website to help users learn more about the health of their local rivers, streams and lakes.
Using information gathered from state water quality monitoring reports, the smart phone and tablet-friendly site reveals where pollution has been reported and what is being done to reduce it.
Users can engage a smart phone’s GPS to list waters within a five-mile radius or enter a zip code or place name into a search box to check on locations throughout the United States.
A few quick searches for rivers and streams in the Chesapeake Bay watershed show polluted and unpolluted waters. Happy Creek in Front Royal, Va., was deemed polluted in 2008, harboring disease-causing bacteria and other microbes. But West Virginia’s Seneca Creek was assessed as unpolluted in 2010. Other waters remain “unassessed” or untested due to shortages in staff and funding.
The website’s simple descriptions and ultra-local perspective are meant to make science more accessible, understandable and relevant.
Learn more about How’s My Waterway.
An advisory committee of scientific experts has released a report recommending that Chesapeake Bay Program partners use multiple models to simulate conditions in the shallow waters of the Chesapeake Bay.
According to the report, improving shallow water simulations of dissolved oxygen and water clarity could improve the Chesapeake Bay Program’s understanding of the impacts that on-land conservation practices can have on the living resources found in shallow, tidal waters.

In the report, experts from the Scientific and Technical Advisory Committee (STAC) note that shallow water conditions are the most difficult to simulate, due in large part to interactions between shallow waters, open waters and land.
This report shows that the comparison of data produced by multiple shallow-water simulation tools could increase our confidence in the strategies managers choose to reduce pollution loads into the Bay. Dissolved oxygen and water clarity, in particular, are two water quality criteria that must be met to “delist” the Bay as impaired.
STAC’s findings encourage the Chesapeake Bay Program to set up a pilot alternative or complementary shallow-water models as soon as possible.
Learn more about the use of multiple models in the management of the Bay.
Plant forests, issue stormwater permits, install trash traps: the list of things we can do to improve water quality seems to grow each day. And as eager environmentalists, we would love to do all of them as soon as we can. But with worsening water and shrinking budgets, perhaps we should first find out which actions would make the biggest environmental difference.
In order to determine which pollution-reduction solution might work best for ourselves and our community, we must first pinpoint our water problems. Do our waterways contain too much sediment? Too much nitrogen? Once we know these answers, we can determine where to focus our efforts—whether on residential rain gardens that curb stormwater runoff, on upgrades to wastewater treatment plants or on something else entirely.
Finding out what is in our water—or monitoring water quality—provides us with a baseline. After we install a rain garden or restore a forest buffer or complete another restoration project, we can monitor water quality once again to determine whether or not the project has been effective.
How do we monitor water quality?
There are multiple ways to monitor water quality. We chose to highlight the method that involves going out on a boat during the summer!
There are two steps: first, biologists from the Maryland Department of Natural Resources (DNR) collect water samples from a number of selected sites throughout the Chesapeake Bay. Then, the samples are analyzed for nitrogen, phosphorus and carbon at the University of Maryland Center for Environmental Science (UMCES).
This analysis paints a vivid picture for scientists, allowing them to see where pollutants come from and how they might be mitigated.
From the Field: Monitoring water quality in the Chesapeake Bay from Chesapeake Bay Program on Vimeo.
What’s in the water right now?
Due to the lack of rain this year, monitoring teams found fewer nitrates, nutrients that run off into Bay tributaries from fertilizers and soil.
With fewer nitrates, algal blooms were less able to grow and resulting “dead zones” were less able to form. A dead zone is an area that does not contain any oxygen, leaving fish, shellfish and other critters struggling to breathe. This year’s dead zone was nearly half the size of last year’s.
“Nitrates and ammonias… If you have too much of these, it leads to algal blooms, which can lead to dead zones in the Bay,” explains Carl Zimmerman, Manager of the Nutrient Analytical Service Lab at UMCES.
The UMCES lab has multiple ways of analyzing nitrogen, phosphorus and carbon in water samples it receives from field crews.
“We’re looking for changes in the nutrient concentrations. If a best management practice has been implemented, will it improve water quality? Will upgrades in sewage treatment plants reduce the amount of nutrients that come into the Bay? These [answers] can only be accomplished by looking at our water tables,” says Zimmerman.
The DNR monitoring program Eyes on the Bay has a website on which the public can track water quality at each of the Bay’s monitoring sites.
“We want to let the public know how we’re doing as a government in cleaning up the Bay,” explains Mark Trice, Program Chief of DNR's Water Quality Informatics Program.
“We all want a clean Bay and the quality of life that comes with clean water,” says Trice.

Image courtesy Eric Vance/US EPA
More about water quality monitoring:
Learn what simple changes you can make to decrease your biggest pollutant (whether it’s nitrogen, phosphorous or sediment), all from your own backyard!
Farmers in the Chesapeake Bay watershed might soon have an easier time putting pollution credits on the market.
The U.S. Department of Agriculture (USDA) has awarded $2.5 million to five Bay organizations to improve the infrastructure behind water quality trading markets, which allow buyers to purchase "pollution credits" for reductions or cuts in pollution that landowners have made on their properties.
From better determining demand for credit to improving outreach to hundreds of eligible farmers, the planned improvements aim to benefit both the land and those who work it. A farmer who uses conservation practices to reduce his runoff of nutrients or sediment, for instance, can produce on-farm energy savings and water quality credits while improving the environmental health of his land.

Watershed recipients of Conservation Innovation Grants program funding include the Alliance for the Chesapeake Bay, the Chesapeake Bay Foundation, the Maryland Department of Agriculture, the Virginia Department of Conservation and Recreation and the Borough of Chambersburg, Pa.
The Conservation Innovation Grants program is administered by the Natural Resources Conservation Service (NRCS). This year, an additional $23.5 million has been awarded to more than 50 recipients across the nation for innovative and conservation-minded agricultural practices, from improving soil health to increasing on-farm pollinator habitat.
The health of some Virginia rivers is showing signs of improvement, but many of the state’s waterways are still polluted, according to a recent report issued by the Virginia Department of Environmental Quality (DEQ).
The report assesses water quality in more than 1,200 Virginia watersheds from January 2003 through December 2008 and includes a statewide list of “impaired” waters.
Water quality is assessed in relation to several “designated uses”: wildlife, aquatic life, swimming, fish consumption, shellfish consumption and public water supply. A waterway is considered impaired if its water quality cannot support one or more of these uses. Several subcategories also exist for the Chesapeake Bay and its tidal tributaries to ensure that water quality in those waterways can support the Bay’s aquatic life.
Pollution continues to plague many streams, rivers and lakes in Virginia, leading to the addition of about 1,400 miles of streams and rivers and 2,500 acres of lakes to this year’s statewide impaired waters list.
More than 430 waters, including about 25 square miles of estuaries, were removed from the list, as they now fully meet water quality standards. An additional 600 waters were removed for at least one impairment.
In addition, the report proposes 80 full delistings and 540 partial delistings.
According to the report, about 5,600 miles of rivers and streams, 16,000 acres of lakes and reservoirs and 113 square miles of estuaries have high water quality that supports some or all of the designated uses. About 12,100 miles of rivers and streams, 96,500 acres of lakes and reservoirs and 2,200 square miles of estuaries are considered impaired.
Of the waters that were assessed, less than one-third of stream and river miles has high water quality; about 14 percent of lake and reservoir acres have high water quality; and less than 5 percent of estuary square miles has high water quality.
“We continue to find watersheds where pollution is a problem, but we also are seeing more areas where water quality has improved,” said Virginia DEQ Director David Paylor. “This is good news that we expect to continue as our cleanup efforts progress throughout the state.”
Every two years Virginia DEQ monitors about one-third of the state’s watersheds on a rotating basis, taking six years to complete a full monitoring cycle. The agency has assessed 98 percent of the state’s watersheds (1,218 out of 1,247) since the 2002 report.
The water quality assessments completed for the Virginia portions of the Bay watershed may help set clean-up plans for the waters that will be part of the Chesapeake Bay Total Maximum Daily Load (TMDL).
The draft water quality report is available in its entirety at www.deq.virginia.gov. DEQ is soliciting public comment on the report until Sept. 24 at 5 p.m.
Welcome once again to the BayBlog Question of the Week! Each week we'll take a question submitted through the Chesapeake Bay Program website and answer it here for all to read.
This week’s question comes from Michael, who asked: Are there any real-time or near real-time monitoring stations on the Chesapeake Bay? How can I access that data?
Maryland and Virginia have real-time, near-time and fixed monitoring stations throughout the Chesapeake Bay and its tributaries. These stations collect data on salinity, water temperature, dissolved oxygen and a host of other indicators. Data for stations in Maryland are available at www.eyesonthebay.net, which is run by the Department of Natural Resources, and data for stations in Virginia are available through the Virginia Estuarine and Coastal Observing System, part of the Virginia Institute of Marine Science.
You can also visit the Bay Program’s Water Quality Database for a map of monitoring stations, metadata, schedules of monitoring cruises and other links related to monitoring in the Bay.
In addition to these monitoring stations, the National Oceanic and Atmospheric Administration (NOAA) has deployed seven “smart buoys” at various locations throughout the Bay. These buoys, known formally as the Chesapeake Bay Interpretive Buoy System or CBIBS, collect data on wind, air and water temperature, dissolved oxygen, turbidity and other environmental indicators every 10 to 60 minutes. The data is distributed to the public via the web at www.buoybay.org and by phone at 1-877-BUOY-BAY.
The seven buoys are located at:
Do you have a question about the Chesapeake Bay? Ask us and your question might be chosen for our next Question of the Week!
On Friday, July 3, I did my usual twice-monthly volunteer water quality sampling at four sites on the Magothy River near where I live. I started doing this in 1991 through a program run by Anne Arundel County to get a better understanding of Bay water quality, and I’ve kept doing it ever since. The county program was discontinued, but I’ve continued sampling with the Magothy River Association, which has other volunteers who also do water monitoring.
This monitoring trip was different from recent ones because my four-year-old granddaughter came with me. This was only the second time she'd seen any part of the Chesapeake up close (she lives in Vermont and usually visits us at Christmas). Thus, I was thinking about how she was reacting to it. It’s been a long time since my own kids helped me with monitoring (my youngest child is 26).
We started our sampling at the end of the Bayberry pier, on the south shore on the lower part of the river’s mainstem, where all seemed to be well. Several people were catching juvenile spot (Leiostomus xanthurus) pretty regularly, and my granddaughter was fascinated by watching them. The reason they were able to catch these bottom-dwelling fish at that location was apparent when we measured the dissolved oxygen (DO): it was over 8 mg/l on both the surface and bottom, plenty of oxygen for fish. The bottom DO here has not fallen below 5 mg/l (the EPA and state standard for fish habitat) since I started sampling at Bayberry in April.
The fish & DO story was different at the three other Magothy sites I sample, and the news was not good.
At the first two these sites, Ulmstead in the mouth of Forked Creek and in my own neighborhood (Stewarts Landing) on Old Man Creek, the bottom DO was less than 1 mg/l at both sites, but that’s fairly common in the summer. There were no weird colors or smells, and people were fishing or crabbing in shallow water nearby, although not in water as deep as where I sample.
However, in upper Cattail Creek in Berrywood, the water was a weird milky green and there was a musky smell, so I knew before I lowered the meter that the DO would be bad. The color and the smell are both signs of an algae bloom that died and is decomposing. The surface DO was only 0.7 mg/l, the second lowest surface DO reading I've ever made, and the bottom DO was definitely anoxic with 0.00 mg/l, the lowest DO meter reading I’ve ever seen. My granddaughter can't quite read numbers yet, but she knows zero when she sees it. It made me sad to show her how dead the creek was. Amazingly there were no signs of any dead fish; I think the fish usually avoid the whole upper creek when it's such a dead zone. I’ve never seen anyone fishing or crabbing nearby. A week after I sampled there, Cattail Creek had a health advisory against swimming posted by the county health department for high bacteria levels, so that creek has multiple problems.
The water quality in these creeks was not always this dismal. Both Cattail and Old Man creeks were much healthier in 2004 and 2005, when dark false mussels covered almost all of the hard surfaces over a variety of depths in both creeks. By pure luck, when I chose my sampling sites in 1991 I picked two sites that would have some of the densest mussels 13 years later, so I have been able to document the water quality improvements that followed their filtration. Water clarity (measured by Secchi depth) and bottom dissolved oxygen showed dramatic improvements in both creeks in those years, and underwater bay grass (SAV) acreage in the Magothy went up in both 2004 and 2005. Volunteer divers and kayakers organized by Dick Carey of the Magothy River Association estimated the number of mussels and the volume of the creek. From that research they estimated that, in 2004, the mussels could filter the water in Cattail Creek every two days, while it took them 15 days in 2005. (Watch an eight-minute video about the mussels and the 2004 surveys.) Imagine how healthy the Bay would be if oysters were filtering its water every two days, or even every 15 days.
People who remember the mussels from 2004 keep asking me how we can get them back, along with improved water quality. I don’t have an easy answer. Memories of the mussels do give me hope that improvement is possible. I just wish the mussels and the good water quality were still here to show my granddaughter, instead of zeroes on the DO meter.
More than 60 nonprofit organizations from throughout the Chesapeake Bay watershed have launched a new campaign called “Choose Clean Water” that will help local communities clean up and protect the waterways that flow to the Bay.
The “Choose Clean Water” campaign is the first coordinated effort by the newly formed Chesapeake Bay Coalition, a partnership of national, regional and local nonprofit organizations working together to push for stronger federal action on Bay restoration.
“Choose Clean Water” has three specific policy goals:
The campaign will highlight where actions to protect the Chesapeake need to be taken and who is responsible to take those actions. The Chesapeake Bay Coalition will track and report on how officials are fulfilling their responsibilities to provide every Bay region resident with clean water.
“We are very excited to be part of this new effort because clean water is important for everyone in our region,” said Bill Street, executive director of the James River Association, a member of the Chesapeake Bay Coalition. “The state of the Chesapeake is only the cumulative result of the many policy decisions made by our leaders every day, and together we will provide the public voice and the mandate for change.”
The Chesapeake Bay Coalition currently has more than 60 member organizations, including national organizations such as American Rivers and Ducks Unlimited, regional organizations such as the Chesapeake Bay Foundation and the Eastern Shore Land Conservancy, and local organizations such as Lynnhaven River NOW and the Herring Run Watershed Association.
“By coordinating our experiences, our expertise, and our members, we will be able to speak with a clear, strong voice to make the tough choices that will give us clean water,” said Tony Caligiuri, regional executive director at the National Wildlife Federation, the organization coordinating the coalition.
For more information about the Chesapeake Bay Coalition and the “Choose Clean Water” campaign, visit choosecleanwater.org.
The world’s a pretty big place. So when a group of water resource experts from different parts of the world come together, and all describe the same problems (though seen through different lenses of geography, culture, and language), that’s a notable thing.
That’s what happened at the 2008 World Water Expo in Zaragoza, Spain, where water resource experts from across the globe — including Australia, Israel, Jordan, Spain, South Africa, and the United States — participated in a scientific symposium as a kick-off to the Expo. All invited speakers there spoke of problems with growth, water supply, water quality, and climate disruption. The water resource conditions in the various countries were as varied as the languages spoken, but the underlying problems were the same. Jordan, for example, is arid with a developing economy, whereas Australia is arid with a post-industrial economy — yet both face the same challenges of growth, water supply, water quality, and climate disruption.
Where does the Bay Program fit into this picture? As an invited participant, the Bay Program described our approach of integrating models, monitoring, and research for restoration of the Chesapeake. Our presentation of the linked airshed, watershed, estuarine, and living resource models, along with the supporting and corroborating monitoring observations and research was well-received, and was seen as a world-class example of the information systems needed to support water resources under pressure from population growth, climate change, and past environmental degradation.
All of the invited speakers spoke to problems of growth and water quality. In the Chesapeake, we’ve been working a long time to restore water quality despite growth pressures in our watershed, so these are issues we’re familiar with. But just like in other parts of the world, the issues of providing an adequate water supply and climate disruption are also emerging issues for the Chesapeake. Last year, the city of Fredrick, Maryland, had to curtail construction permits due to concerns over the sufficiency of water supply. This may be a harbinger, because our Chesapeake water supply infrastructure is designed for average annual flows different from the decreased annual flows we may see with future climate change, as the Bay Program has described in presentations at the 2007 American Water Resources Society and the Coastal and Estuarine Research Federation.
At the World Water Expo we saw that the challenges of growth, adequate water supply, water quality, and climate disruption were ubiquitous. The world’s a big place and a watery place. How ironic that we’re all in the same boat.
The Chesapeake Bay 2006 Health and Restoration Assessment reports show that the Bay's overall health remains degraded, despite significant advances in restoration efforts by Bay Program partners through newly focused programs, legislation and/or funding.
“While much has been accomplished, there is still much work left to be done,” said Jeff Lape , director of the Bay Program Office. “Restoring the Chesapeake Bay cannot be done with government support alone. It is up to every citizen living in the Bay watershed to become a steward of our nation's largest and most cherished estuary.”
The annual Health and Restoration Assessment reports give watershed residents a clear and concise synopsis of Bay health and on-the-ground restoration efforts in key areas including:
Read or download the full report.
Scientists with the Bay Program have found little damage to underwater grass beds in the upper Bay and tidal Potomac River during their initial trips to assess the impacts of the major rainstorms and flooding that took place in the Bay watershed during the end of June.
Intense rainfall events affect water quality by carrying excessive loads of sediments, nutrients and contaminants into the Bay. This runoff has become more intense in recent years, due to the increase in impervious surfaces (such as paved roads, driveways and parking lots) in the Bay watershed. Instead of being absorbed into the ground, the rain flows rapidly and intensely across these surfaces into streams, causing streambank erosion and an excess flow of dirt and pollutants into the water.
The excess flow can cause losses of clams, oysters, underwater grasses and other living resources by blocking sunlight, burying them in sediment or creating oxygen-deprived “dead zones.” The beginning of summer is an especially critical time of the year, because shellfish are spawning and young grasses are trying to grow.
While the flow into the Bay after the June rain event was high, it was not unprecedented. Flows this high or higher occur about once every three years. The flow from Hurricane Agnes, which hit the Bay region in June 1972, was three times higher than this June's rainfall event. However, a flow this high during the early summer period is unusual; 1972 was the only other year this has occurred in June since 1968.
Scientists with the Bay Program will continue to take extra steps to monitor the health of the Bay this summer, including:
Additional cruises and flyovers to track water quality conditions. These will show scientists the effects of excess nutrients and sediment on water clarity, and allow them to see if harmful algal blooms are forming. Visits to oyster beds and underwater grass meadows, which are vulnerable to the excess flow of nutrients, sediment and contaminants caused by the rainfall. Using increased technology to pinpoint where excess sediments end up in the Bay.
An immediate concern with the rainfall is the potential for high bacteria counts in some water bodies. People should not swim in the Bay's rivers, creeks and any other area that is not regularly monitored for bacteria. The Bay's swimming beaches are regularly monitored, and swimming there will be restricted if high bacteria levels are found.
For updates on Bay conditions this summer, visit the Bay Program Web site; also, conditions in the Maryland portion of the Bay will be posted at Eyes on the Bay.