Analysis of Persistent Open Water Deep Water and Deep Channel Dissolved Oxygen Impairments

Water Quality Steering Committee Conference Call

September 9, 2009

Ping Wang, Jeni Keisman, Lewis Linker, and the CBP Modeling Team

Overview

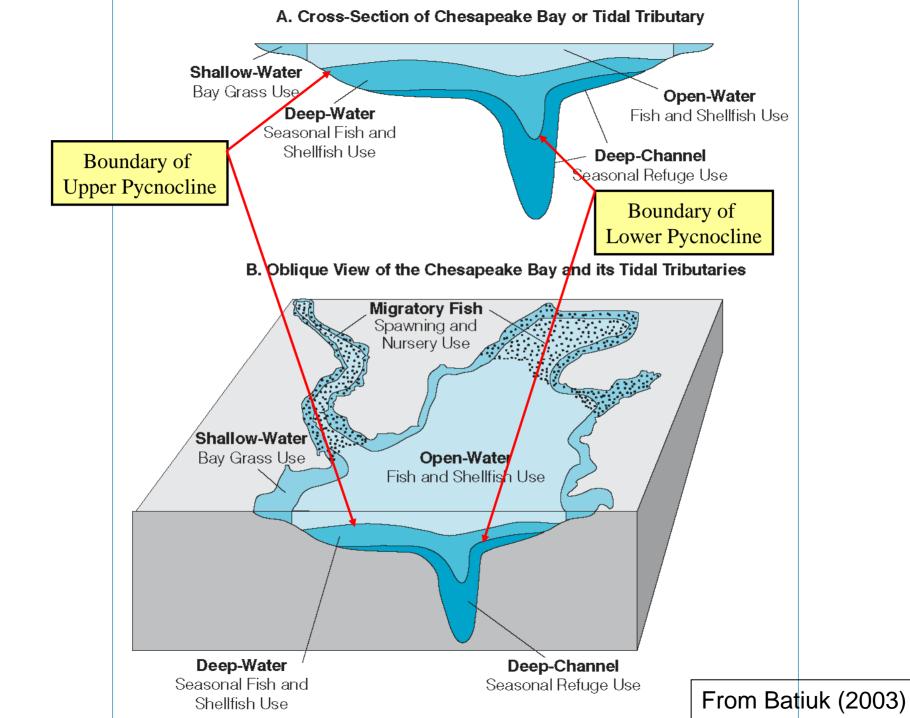
- The new reference curves of Open Water (10%), Deep Water (refinements to curve), and Deep Channel (10%) have reduced the number of CB segments not achieving the DO WQS at the Target Scenario (175/14.1), but more needs to be done.
- Confirmation that some of the Open Water designated uses have a pycnocline with an attendant need for development of a Deep Water DU for those CB segments.
- Recommended resolution paths for DO nonattainment segments.

Comparing Persistent DO Impairments Before and After Application of the New Reference Curves

175 TN - 12.	8 TP Scenario		175 TN - 12	2.8 TP Scenario					
OLD REF	ERENCE CURVES		NEW REI	NEW REFERENCE CURVES					
Segment	Segment Name	Issue	Segment	Segment Name	Issue				
Deep Chann	nel		Deep Chan	n <mark>el</mark>					
CB3MH	Upper Central Bay	0.4% non-attainment	CB3MH	Upper Central Bay	0.2% non-attainment				
CHSMH	Lower Chester River	0.7% non-attainment	CHSMH	Lower Chester River	3.1% non-attainment				
EASMH	Eastern Bay	2.4% non-attainment	EASMH	Eastern Bay	3.2% non-attainment				
Deep Water			Deep Water						
СВЗМН	Upper Central Bay	0.2% non-attainment	CB3MH	Upper Central Bay	0.1% non-attainment				
CB4MH	Middle Central Bay	8.0% non-attainment	CB4MH	Middle Central Bay	7.5% non-attainment				
CB5MH	Lower Central Bay	0.6% non-attainment	CB5MH	Lower Central Bay	0.5% non-attainment				
EASMH	Eastern Bay	0.1% non-attainment	EASMH	Eastern Bay	FULLY ATTAINED				
Open Water			Open Wate						
CB2OH	Upper Ches. Bay	0.2% non-attainment	CB2OH	Upper Ches. Bay	FULLY ATTAINED				
CB7PH	Lower Eastern Bay	0.2% non-attainment	CB7PH	Lower Eastern Bay	FULLY ATTAINED				
BSHOH	Bush River	3.6% over load range	BSHOH	Bush River	4.6% over load range				
MAGMH	Magothy River	4.3% non-attainment	MAGMH	Magothy River	2.6% non-attainment				
SOUMH	South River	10.4% non-attainment	SOUMH	South River	8.4% non-attainment				
CHKOH	Chickahominy River	0.9% non-attainment	CHKOH	Chickahominy River	1.8% non-attainment				
CHSTF	Upper Chester River	2.1% non-attainment	CHSTF	Upper Chester River	1.4% non-attainment				
CHSOH	Middle Chester River	0.5% non-attainment	CHSOH	Middle Chester River	0.2% non-attainment				
CHOTF	Upper Choptank River	0.5% non-attainment	CHOTF	Upper Choptank River	FULLY ATTAINED				
СНООН	Middle Choptank River	0.1% non-attainment	СНООН	Middle Choptank River	FULLY ATTAINED				
CHOMH1	Lower Choptank River	0.7% non-attainment	CHOMH1	Lower Choptank River	FULLY ATTAINED				
LCHMH	Little Choptank River	1.1% non-attainment	LCHMH	Little Choptank River	FULLY ATTAINED				
POCTF	Upper Pocomoke River	17.2% non-attainment	POCTF	Upper Pocomoke River	17.9% non-attainment				
POCOH	Middle Pocomoke River	17.2% non-attainment	POCOH	Middle Pocomoke River	17.9% non-attainment				

Persistent DO Impairments Before and After Application of New Deep Water and Deep Channel Designated Uses

175 TN - 14.1 TP Scenario				175 TN - 14.1 TP Scenario						
NEW R	EFERENCE CURV	/ES	NEW D	NEW DEEP WATER & CHANNEL DUS						
Segment	Segment Name	Issue	Segment	Segment Name	Issue	Solutions*				
Deep Cha	annel		Deep Ch	annel						
СВЗМН	Upper Central Bay	0.2% non-attainment	CB3MH	Upper Central Bay	0.2% non-attainment	1				
CHSMH	Lower Chester River	3.1% non-attainment	CHSMH	Lower Chester River	3.1% non-attainment	6				
EASMH	Eastern Bay	3.4% non-attainment	EASMH	Eastern Bay	3.4% non-attainment	6				
Deep Wa	ter		Deep Wa	iter						
СВЗМН	Upper Central Bay	0.1% non-attainment	СВЗМН	Upper Central Bay	0.1% non-attainment	1				
CB4MH	Middle Central Bay	7.5% non-attainment	CB4MH	Middle Central Bay	7.5% non-attainment	1,2				
CB5MH	Lower Central Bay	0.5% non-attainment	CB5MH	Lower Central Bay	0.5% non-attainment	1				
EASMH	Eastern Bay	FULLY ATTAINED	EASMH	Eastern Bay	FULLY ATTAINED	NA				
Open Wa	iter		Open Water							
CB2OH	Upper Ches. Bay	FULLY ATTAINED	CB2OH	Upper Ches. Bay	FULLY ATTAINED	NA/3				
CB7PH	Lower Eastern Bay	FULLY ATTAINED	CB7PH	Lower Eastern Bay	FULLY ATTAINED	NA/3				
BSHOH	Bush River	4.6% over load range	BSHOH	Bush River	4.6% over load range	3				
MAGMH	Magothy River	1.5% non-attainment	MAGMH	Magothy River	FULLY ATTAINED	3				
SOUMH	South River	8.3% non-attainment	SOUMH	South River	FULLY ATTAINED	3				
CHKOH	Chickahominy River	1.8% non-attainment	СНКОН	Chickahominy River	1.8% non-attainment	4				
CHSTF	Upper Chester River	1.4% non-attainment	CHSTF	Upper Chester River	1.4% non-attainment	4				
CHSOH	Middle Chester River	FULLY ATTAINED	CHSOH	Middle Chester River	FULLY ATTAINED	NA				
CHOTF	Upper Choptank River	FULLY ATTAINED	CHOTF	Upper Choptank River	FULLY ATTAINED	NA				
СНООН	Middle Choptank River	FULLY ATTAINED	CHOOH	Middle Choptank River	FULLY ATTAINED	NA				
CHOMH1	Lower Choptank River	FULLY ATTAINED	CHOMH1	Lower Choptank River	FULLY ATTAINED	NA				
LCHMH	Little Choptank River	FULLY ATTAINED	LCHMH	Little Choptank River	FULLY ATTAINED	NA				
POCTF	Upper Pocomoke River	18.3% non-attainment	POCTF	Upper Pocomoke River	18.3% non-attainment	5				
POCOH	Middle Pocomoke River	18.5% non-attainment	POCOH	Middle Pocomoke River	18.5% non-attainment	5				


* Possible Soutions to Persistent Impairment:

- 1 Less than 1% non attainment.
- 2 CB4 Deep Water has a 7% variance so only 1% of volume-time is in non-attainment under the old reference curves and 0.5% nonattainment under the new reference curves.
- 3 Segments which may require a deep water DU.
- 4 Segments which may require refinements to regional scale allocations to address regionally influenced water quality impairments.
- 5 Segments that are entirely open water designated uses—e.g., Upper and Middle Pocomoc with extensive water column contact with bottom sediments and sediment oxygen demand which have significant influence on the water column dissolved oxygen levels.
- 6 Segments with a better representation of the deeper channels and holes within the new Bay water quality/sediment transport model—e.g., Eastern Bay.

Approach 1: Use of Deep Water Designated Uses in Waters Previously Only Open Water – Segments Affected MAGOH, SOUMH, BSHMH, SEVMH

- In our previous 13K cell Water Quality Model we were unable to assess CB Segments like the South River due to limited segmentation. Now, with the 57k cell Water Quality and Sediment Transport Model, we have sufficient segmentation to fully examine the South River, as well as other new CB Segments, and the question of new Open and Deep Water designated uses comes to the forefront.
- Density stratification (pycnocline) restricts the physical exchange of higher oxygenated water in the upper water column with deeper bottom water.
- The boundary between Open Water and Deep Water is based on the presence of an upper pycnocline boundary.

 5

Discussion:

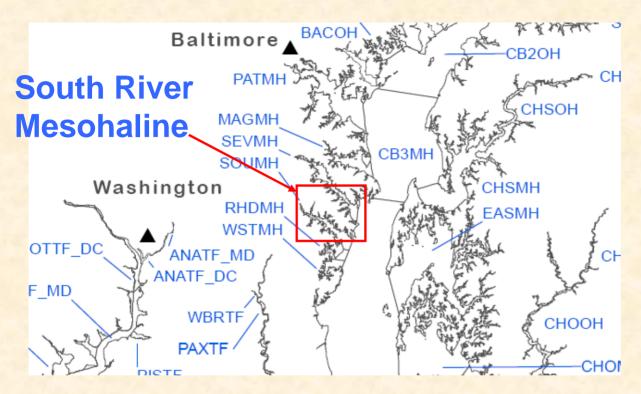
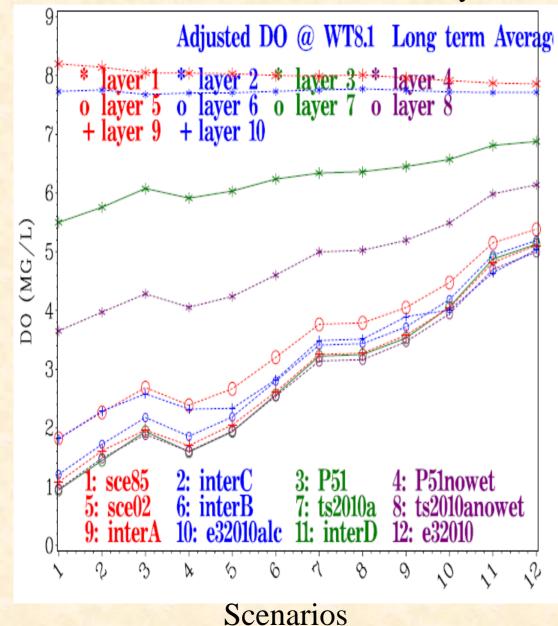
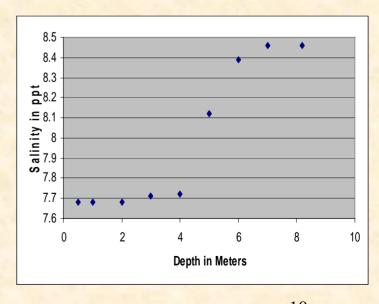

- Deep Water requires a monthly mean DO > 3 mg/l.
- Open Water requires a monthly mean DO > 5 mg/l.
- Problem: Some DUs, such as MAGMH, SEVMH and SOUMH, are entirely categorized as OW. Evidence of a pycnocline that limits bottom water reaeration and causes violation of the Open Water DO standard has been demonstrated.
- Approach 1: Reassessing the occurrence of pycnoclines for these segments to create a Deep Water DU, and recalculate DO criteria attainment.

Table VI-1. Chesapeake Bay dissolved oxygen criteria.

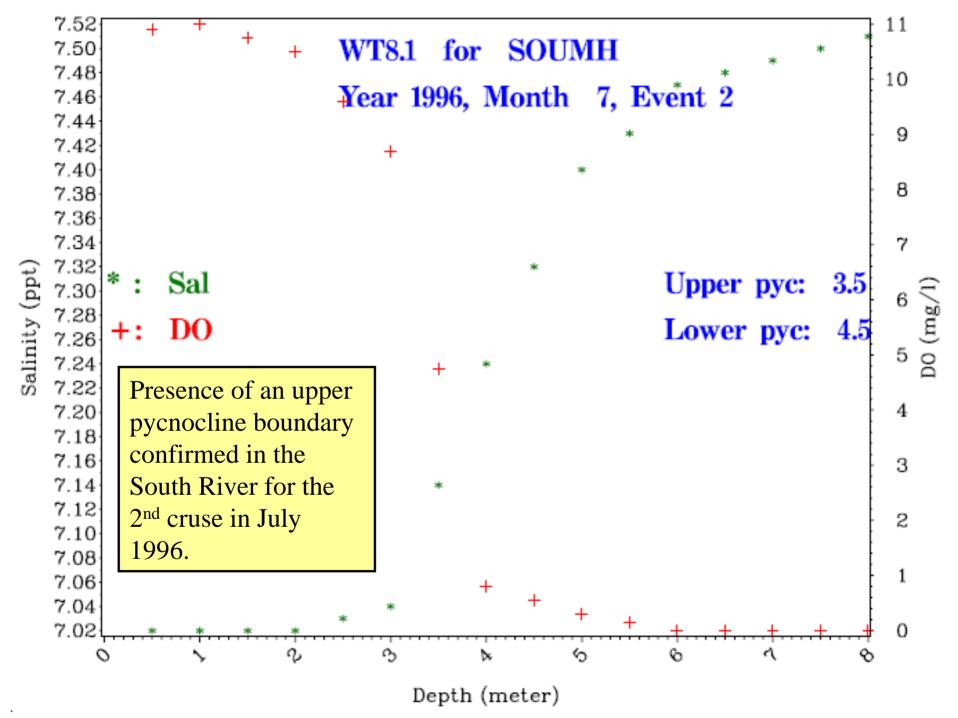
Designated Use	Criteria Concentration/Duration	Protection Provided	Temporal Application	
Migratory fish spawning and nursery use	7-day mean \geq 6 mg liter ⁻¹ (tidal habitats with 0-0.5 ppt salinity)	Survival/growth of larval/juvenile tidal-fresh resident fish; protective of threatened/endangered species.	February 1 - May 31	
	Instantaneous minimum ≥ 5 mg liter ⁻¹	Survival and growth of larval/juvenile migratory fish; protective of threatened/endangered species.		
	Open-water fish and	June 1 - January 31		
Shallow-water bay grass use	Open-water fish and shellfish designated use co	riteria apply	Year-round	
	30-day mean ≥ 5.5 mg liter ⁻¹ (tidal habitats with 0-0.5 ppt salinity)	Growth of tidal-fresh juvenile and adult fish; protective of threatened/endangered species.	Year-round	
Open-water fish and shellfish use	30-day mean ≥ 5 mg liter ⁻¹ (tidal habitats with >0.5 ppt salinity)	Growth of larval, juvenile and adult fish and shellfish; protective of threatened/endangered species.		
	7-day mean ≥ 4 mg liter ⁻¹	Survival of open-water fish larvae.		
	Instantaneous minimum ≥ 3.2 mg liter ⁻¹			
	30-day mean ≥ 3 mg liter ⁻¹ Survival and recruitment of bay anchovy eggs and larvae.			
Deep-water seasonal fish and	1-day mean ≥ 2.3 mg liter ⁻¹	Survival of open-water juvenile and adult fish.	June 1 - September 30	
shellfish use	Instantaneous minimum ≥ 1.7 mg liter ⁻¹			
·	Open-water fish and	October 1 - May 31		
Deep-channel	Instantaneous minimum ≥ 1 mg liter ⁻¹	June 1 - September 30		
seasonal refuge use	Open-water fish and	October 1 - May 31		

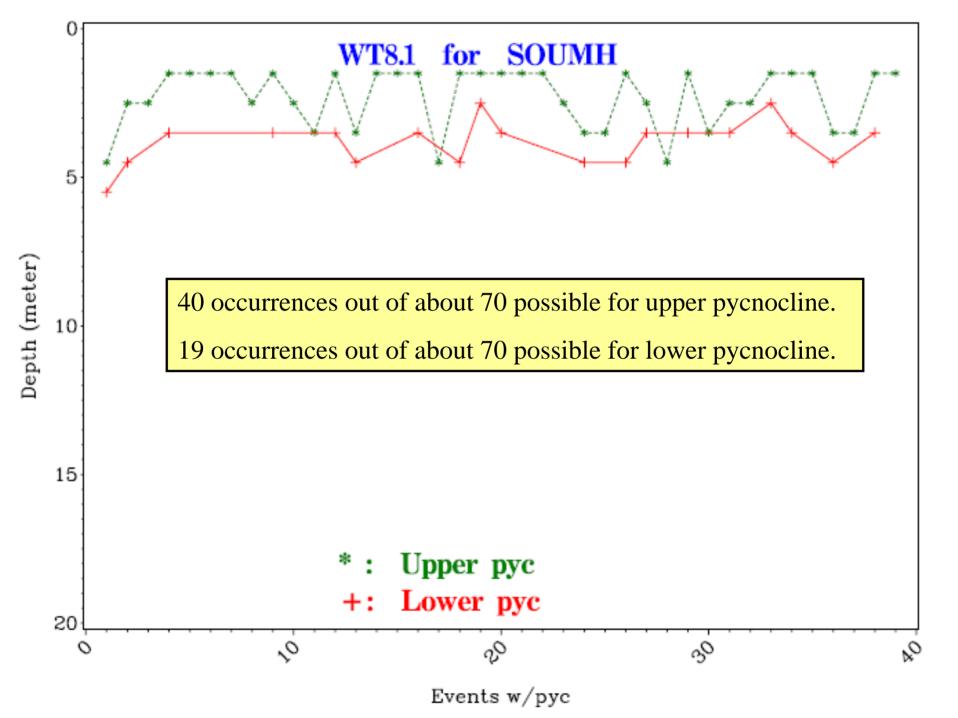

At temperatures considered stressful to shortnose sturgeon (>29°C), dissolved oxygen concentrations above an instantaneous minimum of 4.3 mg liter⁻¹ will protect survival of this listed sturgeon species.

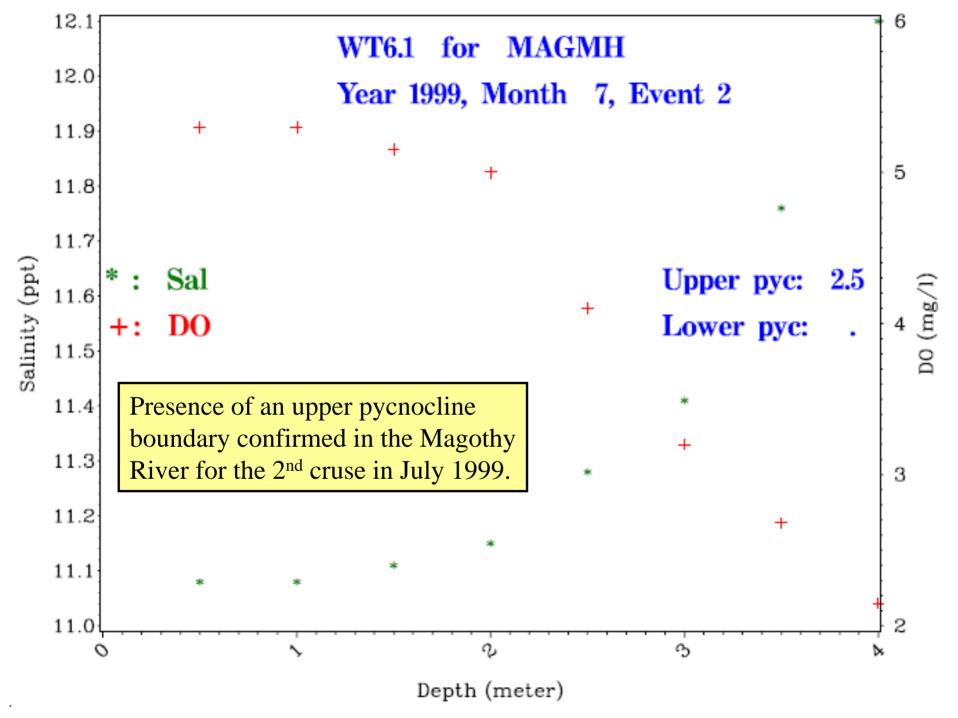
Location of the South River Mesohaline

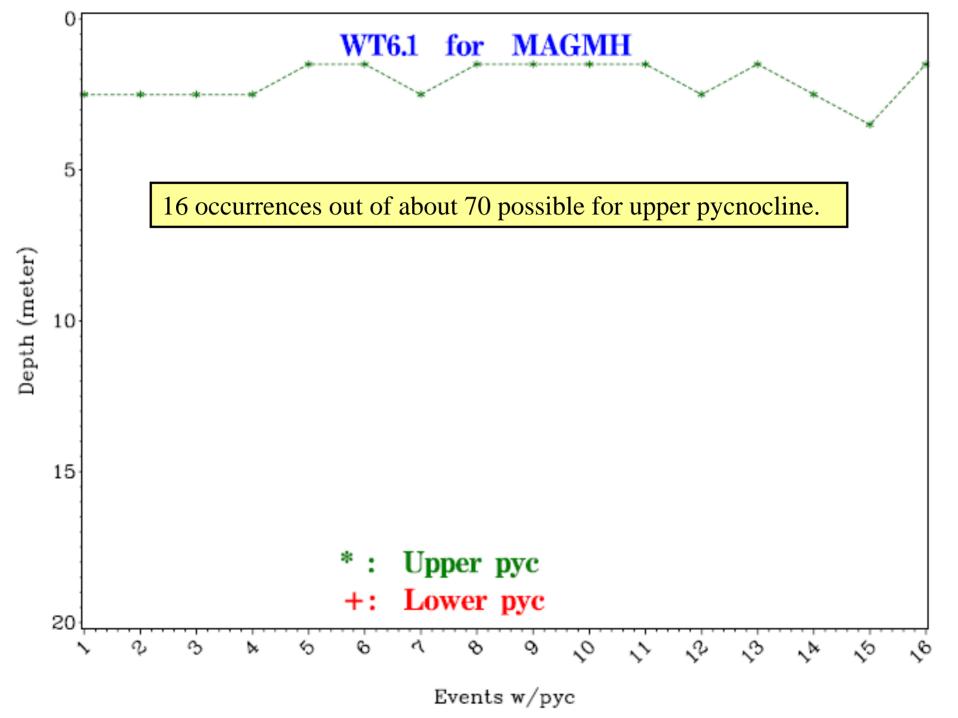


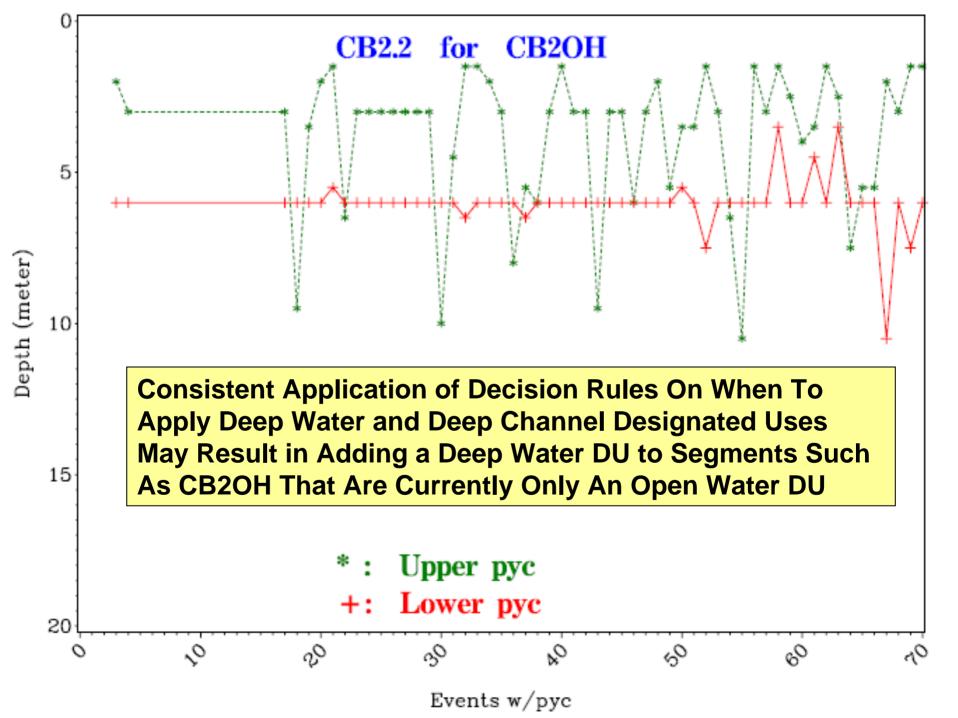
			Intermediate C	91 -'00 Base		Intermediate B	<u>Tributary</u> Strategy 2010a	Intermediate A	Trial Allocation	2003 Allocation Scenario	Intermediate D	E3 2010 Scenario,	
		1985 Scenario.	Scenario.	Scenario,	2002 Scenario,	Scenario,	Scenario,	Scenario.	Scenario 175TN		Scenario,	138TN	
	Scenario	420TN 28.4TP	378TN 24.5TP	340TN 24.1TP	333TN 20.9TP	279TN 17.2TP	236TN 21.1TP	209TN 13.7TP	<u>14.1TP</u>	12.8TP	159TN 12.3TP	12.0TP	
							100	0.0		DO Deep		DO Deep	
		DO Deep	DO Deep	DO Deep	Channel	DO Deep	Channel						
Cbseg	State	Channel Instantan-eous	Channel Instantan-eous	Channel Instantan-eous	Channel Instantan-eous	Channel Instantan-eous	Channel Instantan-eous	Channel Instantan-eous	Channel Instantan-eous	Instantan- eous	Channel Instantan-eous	Instantan- eous	
Cusey	State	ilistalitali-eous	I I Stantaneous	ilistalitali-eous	I I	Instantan-eous	I III Staritari - e ou s	I III Stantan - eous	Illista Iltali-eous	eous	I III Staritari - e o us	eous	1
SOUMH	MD	15.9%	17.1%	17.1%	16.4%	13.5%	9.8%	9.8%	8.3%	8.4%	5.7%	3.8%	


South River Mesohaline Estimated DO In One Meter Depth Increments for Key CBP Scenarios




The South River (WT8.1), has a pycnocline as shown here on June 5, 1991. Evidence for pycnoclines have been found in other segments of concern including MAGMH (WT6.1), CHSOH (ET4.2), and POCOH (EE3.3).

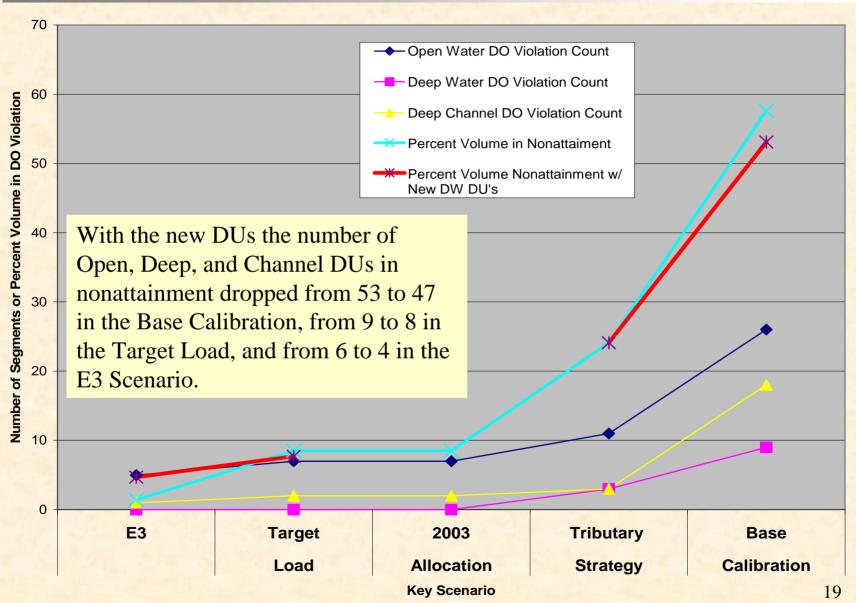



10

Where we were previously before the application of new reference curves and the new Deep Water designated uses.

Cbseg	1985 Scenario, 420TN 28.4TP DO Open Water Summer Monthly '96-'98	91 -'00 Base Scenario, 340TN 24.1TP DO Open Water Summer Monthly '96-'98	2003 Allocation Scenario, 175TN 12.8TP DO Open Water Summer Monthly '96-'98	E3 2010 Scenario, 138TN 12.0TP DO Open Water Summer Monthly '96-'98		
CB2OH	2.0%	1.4%	0.2%	0.1%		
СВ7РН	8.5%	6.3%	0.2%	0.1%		
CHOMH1	5.3%	3.3%	0.7%	0.5%		
LCHMH	3.3%	2.4%	1.1%	0.8%		
MAGMH	11.2%	8.7%	4.3%	0.9%		
SEVMH	10.0%	8.4%	0.0%	0.0%		
SOUMH	16.7%	18.1%	10.4%	5.3%		

Where we were after the application of new reference curves and the new Deep Water designated uses.


1996-1998	91 -'00 Base Scenario, 340TN 24.1TP			2003 A	2003 Allocation Scenario 175TN 14.1 TP			E3 2010 Scenario 138TN 12.0TP		
1990-1990								100111 12:011		
	DO Open			DO Open			DO Open			
	Water	DO Deep	DO Deep	Water	DO Deep	DO Deep	Water	DO Deep	DO Deep	
	Summer	Water	Channel	Summer	Water	Channel	Summer	Water	Channel	
Cbseg	Monthly	Monthly	Instantaneous	Monthly	Monthly	Instantaneous	Monthly	Monthly	Instantaneous	
CB2OH	0.00%	0.00%	N/A	0.00%	0.00%	N/A	0.00%	0.00%	N/A	
CB7PH	4.32%	0.00%	N/A	0.00%	0.00%	N/A	0.00%	0.00%	N/A	
CHOMH1	0.00%	1.35%	N/A	0.00%	0.00%	N/A	0.00%	0.00%	N/A	
LCHMH	0.00%	19.90%	N/A	0.00%	4.26%	N/A	0.00%	0.00%	N/A	
MAGMH	1.27%	30.89%	N/A	0.00%	0.00%	N/A	0.00%	0.00%	N/A	
SEVMH	0.50%	2.35%	N/A	0.00%	0.00%	N/A	0.00%	0.00%	N/A	
SOUMH	0.00%	45.84%	N/A	0.00%	0.03%	N/A	0.00%	0.00%	N/A	

Other Approaches to Address Persistent Nonattainment of DO

- For segments with less than 1% nonattainment at the 175/14.1 Target Scenario take no action and examine attainment with the final Phase 5.3 and WQSTM.
- For the Lower Chester River and Eastern Bay, examine WQSTM output for the reasons of persistent DO nonattainment.
- For the Chickahominy and Upper Chester River there is the possibility of either loading issues or perhaps resolution through local reductions.
- High nonattainment in the Upper and Middle Pocomoke is not yet understood. We're looking into loading issues and into the WQSTM output.

DO Stoplight Plot Summary Information

Decision Requested

Quality Steering Committee approval to move forward on the recommended resolution of Open Water segments with persistent DO impairments beyond the 175/14.1 target.