# Improving estimates of nutrient loads to the Chesapeake Bay through satellite imagery-based forest disturbance metrics



### Lindsay N Deel

**X** 



EPA STAR Fellow

West Virginia University

Department of Geology and Geography

**Modeling Quarterly Review Meeting** 

July 23, 2013

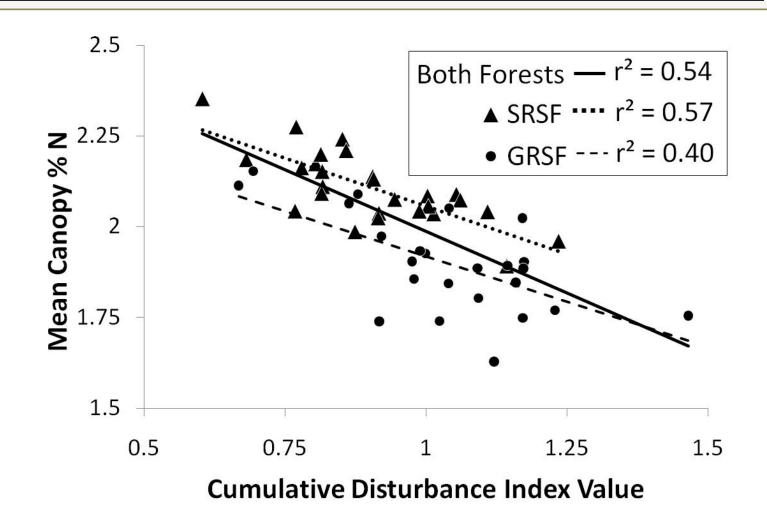
CBPO Conference Room – The Fishshack 410 Severn Avenue, Annapolis, MD

### Forest disturbance

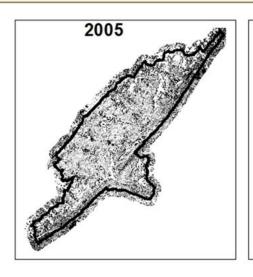
Forests make up about 60% of the land cover in the Chesapeake Bay watershed (CBW)

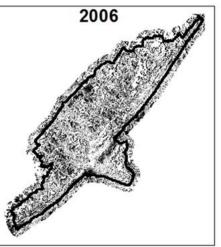
Disturbances, such as insect defoliation and forest harvests, influence nutrient retention and export (Eshleman et al. 1998, 2000, 2001; Swank et al. 1981; Lovett et al. 2002; Townsend et al. 2004; Likens et al. 1970, 1979; Vitousek and Reiners 1975; Beck and Hooper 1986; Martin et al. 1984; Lynch and Corbett 1991)

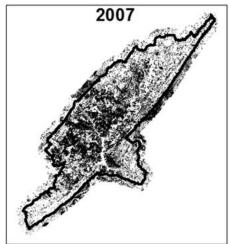
"Pulse" of nutrient export after disturbance events

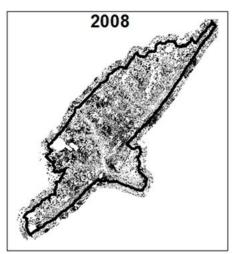

Disturbance effects may accumulate over time (Deel et al. 2012)

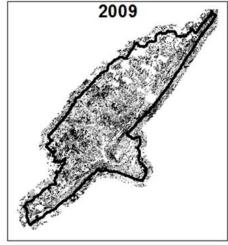
### Forest disturbance

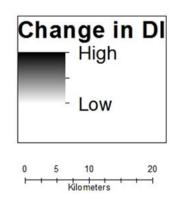

### 3 Hypotheses:


- Reduced Canopy Cover (C)
- Reduced Canopy Nitrogen (N)
  - Deel et al. 2012 RSE
- Increased, but varied, response in stream water N export based on disturbance type and intensity
  - In progress


# Disturbance and forest canopy





# Complementary work














# Complementary work

### Stream water response to disturbance

Eshleman KN, McNeil BE, and Townsend PA. 2008. Ecological Indicators.

Relationship between change in disturbance and total dissolved N export

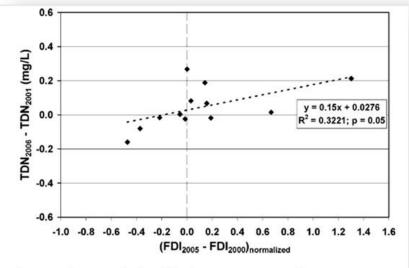
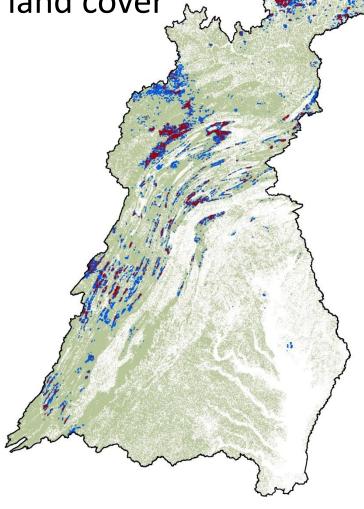



Fig. 6 – Linear relationship between  $\Delta$ TDN from 2001 to 2006 and normalized  $\Delta$ FDI from 2000 to 2005 for 12 independent sites with >90% forest cover.

### Disturbance in the CBW


Forests make up 60% of the land cover

in the CBW

### **Gypsy moth defoliation**

**Blue** = defoliated 2 out of the past 10 years

**Red** = defoliated 3 or more times in the past 10 years



# Model assumptions

### The Watershed Model

Forests, woodlots, and wooded land-use type

One percent harvested annually Increased N loads for 3-5 years after harvest

Median of 3.1 lbs/ac-yr (moderated by N dep) 21.4 lbs/ac-yr from harvested

**Contribution**: *Spatially explicit* estimates of forest condition throughout the watershed and *statistical relationships* between forest condition and nutrient export

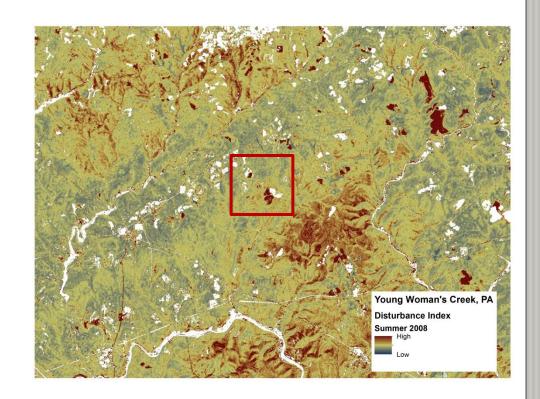
# Satellite imagery

Satellite imagery has been successfully used to map forest disturbance (McNeil et al. 2007; de Beurs and Townsend 2008; Healey et al. 2005; Hais et al. 2009; Eshleman et al. 2009; Kennedy et al. 2007, 2010; Huang et al. 2010; Cohen et al. 2010)

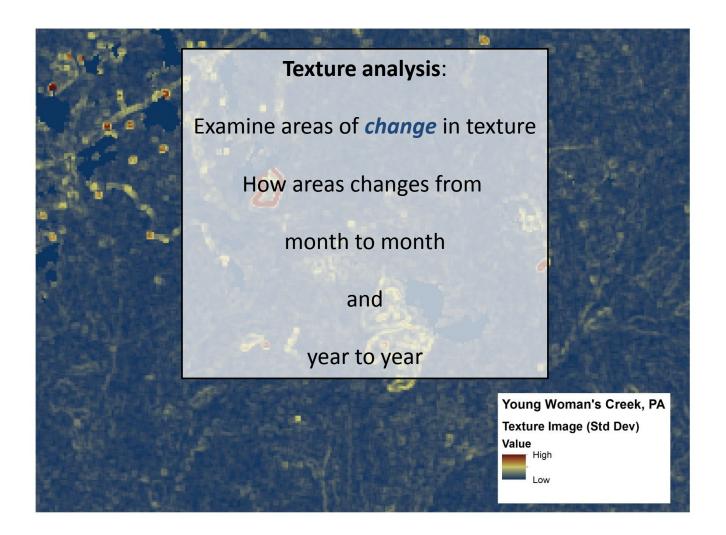
### Moderate Resolution Imaging Spectroradiometer (MODIS)

- Images entire earth every 1-2 days
- 36 spectral bands (wavelengths)
- 500m resolution (for MOD09A1 surface reflectance product)

### Landsat TM 5 and Landsat 8


- Images approximately every two weeks
- 7 spectral bands (wavelengths)
- 30m resolution

### Data & Methods


Original image

Tasseled Cap

Disturbance Index



# Data & Methods



### Data & Methods

# Watershed-scale nutrient and sediment export data

- Functional linear concurrent models (FLCMs) regression-based for time series data
- USGS Spatially Referenced Regression on Watershed Attributes (SPARROW)
- Angelica Gutierrez-Magness (NOAA)

## Expected results

Disturbance type classification and estimate of total area disturbed

Statistical relationships between disturbance type and streamwater N export

Interpretation of the variability in streamwater N export attributable to different disturbance types

### Potential implications

Model refinement

Direct and/or indirect policy implications

Greater insight into the regional nutrient dynamics of the CBW

Ultimately, improved health of the Bay due to more targeted management

### Questions/Comments

### Funding sources:

- EPA STAR Graduate Fellowship
- NASA WVSGC Graduate Research Fellowship
- NASA Applied Sciences Program
- West Virginia University

### Acknowledgements:

- Chesapeake Bay Program office, Annapolis, MD
- PhD committee: B McNeil, T Warner, G Elmes, J Conley, and A Gutierez-Magness
- Image processing: A Singh, UW-Madison





