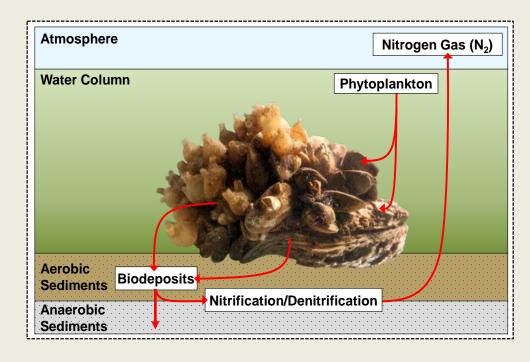
Integrated assessment of oyster reef ecosystem services

M. LISA KELLOGG, JEFFREY C. CORNWELL, KENNEDY T. PAYNTER, PAIGE G. ROSS AND MARK W. LUCKENBACH

Sustainable Fisheries Goal Implementation Team Executive Committee Meeting August 19, 2013

Integrated assessment of oyster reef ecosystem services

Three integrated projects in Harris Creek, MD


- 1) Quantifying denitrification rates and nutrient fluxes Cornwell (UMCES) and Kellogg (VIMS)
- 2) Macrofaunal utilization, secondary production and nutrient assimilation Paynter (UMD); Kellogg and Ross (VIMS)
- 3) Fish and crustacean utilization, secondary production and trophic linkages

 Luckenbach, Kellogg and Ross (VIMS)

Quantifying denitrification rates and nutrient fluxes

- Rationale: Oyster reefs alter local nutrient cycling and can enhance denitrification rates. However, rates can vary by orders of magnitude both between and within sites.
- Objective: Determine whether restoration sites in Harris Creek have enhanced denitrification rates

Quantifying denitrification rates and nutrient fluxes

- Approach:
- Direct measurement of nitrogen fluxes from 0.1 m² sections of reef during five sampling periods distributed throughout the year.
- Calculate annual enhancement(= restored site control site)

- Results from a prior study (Kellogg et al. 2013):
- A mature, densely populated restored reef in the Choptank River enhanced nitrogen removal by ~500 lbs. N acre⁻¹ y⁻¹

Macrofaunal utilization, secondary production and nutrient assimilation

• *Rationale*: Oyster reefs provide habitat for high densities of other macrofaunal species. These organisms are a food source for other species and assimilate nutrients in their tissues and shells

 Objective: Determine whether restoration sites in Harris Creek have enhanced macrofaunal species abundance, diversity, biomass, secondary production and/or nutrient assimilation.

Macrofaunal utilization, secondary production and nutrient assimilation

- Approach:
- Sample macrofaunal communities five times throughout the year
- Use resulting data to estimate secondary production and nutrient assimilation rates

- Results from a prior study (Kellogg et al. 2013):
- A mature restored reef in the Choptank River provided habitat for >20,000 organisms m⁻²

Fish and crustacean utilization, secondary production and trophic linkages

- *Rationale*: By providing habitat and food resources, oyster reefs can enhance the secondary production of both resident and transient finfish and crustaceans.
- Objectives:
 - 1) Determine whether finfish and crustacean utilization is enhanced at restoration sites in Harris Creek.
 - 2) Assess trophic linkages between transient finfish species and restoration sites.
 - 3) Estimate secondary production and nutrient assimilation by appropriate resident finfish and crustacean species

Fish and crustacean utilization, secondary production and trophic linkages

- Approach:
- Sample finfish and mobile crustacean communities five times throughout the year at restoration and control sites
- Assess finfish diet during each sampling period
- Estimates from a study in NC (Peterson et al. 2003):
- For every 10 m^2 of restored oyster reef, production of fish and large mobile crustaceans is enhanced by $\sim\!2.6$ kg m⁻² y⁻¹

