

How to model sediment and nutrient fluxes of floodplains and streambanks across the Chesapeake watershed

Greg Noe¹, Cliff Hupp¹, Ed Schenk², and Peter Claggett³

¹ USGS National Research Program, Reston VA
 ² Grand Canyon NPS, Flagstaff AZ
 ³ USGS Eastern Geographic Science Center, Annapolis MD

Funding from USGS Chesapeake Science Program, USGS National Research Program, and USGS Hydrologic Networks & Analysis Program

U.S. Department of the Interior U.S. Geological Survey

The USGS Chesapeake Floodplain Network: 42 full sites

Land Use

Ag > 50%

Goal:

Measure and predict the sediment/N/P fluxes of bank erosion and floodplain deposition for entire Chesapeake watershed

Site selection:

- Chesapeake NTN load gages
- 'unmanaged' floodplain land use (forest/scrub/herbaceous; not ag/ pasture/developed)
- Unchannelized •
- Landowner permission •
- Range of watershed size and land-use

1.	Measure
2.	Predict
3.	Scale
≈USGS	

USGS Chesapeake Floodplain Network

USGS GIS Toolkit Reach Geomorphology: LiDAR availability

~ 80% of Chesapeake watershed has available LiDAR

Coastal Plain analyzed by Spring 2016

Appalachian Plateau low quality

Remaining SW VA/WV planned September 2016

Status (by HUC 10)

USGS Chesapeake Floodplain Network: Dendrogeomorphic results all 3 PP

Approaches for predicting the whole Chesapeake watershed

Valley & Ridge, Piedmont, and Coastal Plain

OPTION #1
OPTION #2
OPTION #3
OPTION #4

Average: all 3 PP Average: each PP Regression: Watershed+Reach predictors Regression: Watershed only predictors (where GIS Toolkit unavailable)

Appalachian Plateau and Blue Ridge

OPTION #1

Average: PP of CFN

OPTION #3
 OPTION #4

Regression: Watershed+Reach predictors Regression: Watershed only predictors (where GIS Toolkit unavailable)

USGS Chesapeake Floodplain Network: Dendrogeomorphic fluxes of all 3 PP

		F (kg/	-lux /m/yr)	t-test different than zero?
		<u>Mean</u>	<u>95% CI</u>	<u>P</u>
	<u>Net Balance</u> :	74.3	9.1 to 139.6	<0.027
Sediment	<u>Floodplain</u> :	167.6	100.1 to 235.1	<0.001
	<u>Bank</u> :	-93.3	-114.8 to -71.8	<0.001
	<u>Net Balance</u> :	.240	.118 to .361	<0.001
Nitrogen	<u>Floodplain</u> :	.377	. 250 to .505	<0.001
	<u>Bank</u> :	138	176 to010	<0.001
	<u>Net Balance</u> :	.064	.015 to .112	<0.011
Phosphorus	Floodplain:	.110	.057 to .162	< 0.001
	<u>Bank</u> :	046	059 to033	<0.001

One-sample

USGS Chesapeake Floodplain Network: Comparing fluxes of all 3 PP

Kruskal-Wallis tests comparing Valley & Ridge, Piedmont, and Coastal Plain

		<u>P</u>			<u>P</u>
	<u>Net Balance</u> :	0.194		<u>Net Balance</u> :	0.128
Sediment	<u>Floodplain</u> :	0.262	Sediment	<u>Floodplain</u> :	0.194
	<u>Bank</u> :	0.190	<1 mm	<u>Bank</u> :	0.187
	<u>Net Balance</u> :	0.016	Mineral	<u>Net Balance</u> :	0.126
Nitrogen	<u>Floodplain</u> :	0.115	sediment	<u>Floodplain</u> :	0.166
	<u>Bank</u> :	0.138	Jediment	<u>Bank</u> :	0.191
	<u>Net Balance</u> :	0.046		<u>Net Balance</u> :	0.028
Phosphorus	<u>Floodplain</u> :	0.055	Organic	<u>Floodplain</u> :	0.096
	<u>Bank</u> :	0.249	sediment	<u>Bank</u> :	0.117
Poot age sin	ce evnosure also dit	ffered (P-0.008);	Carbonato	<u>Net Balance</u> :	0.499
Valley & Ride	ze: 26 vr	nereu (<i>F</i> =0.008).	carbonate	<u>Floodplain</u> :	0.813
Piedmont:	12 yr		Seument	<u>Bank</u> :	0.076
Coastal Plain	12 yr				
	2			<u>Net Balance</u> :	0.013
			Carbon	Floodplain:	0.067
Coastal Pla	in > Piedmon	t = Valley &	Ridge	Bank:	0.069

USGS Chesapeake Floodplain Network: Comparing fluxes of all 3 PP

	Da	an	CE	•

Carbon	Valley & Ridge: Piedmont: Coastal Plain:	Flux (kg/m/yr) 1.27 3.19 <mark>6.34</mark>
Nitrogen	Valley & Ridge: Piedmont: Coastal Plain:	.129 .192 .438
Phosphorus	Valley & Ridge: Piedmont: Coastal Plain:	.0275 .0458 .1306

Coastal Plain > Piedmont = Valley & Ridge

Regressions: Predictors of flux

Geomorphology, hydrology, land use, sediment, nutrients, ...

Wall-to-wall

Watershed characteristics Topography Geology Climate Hydrology Land use Soils Nutrient application **River** load Geomorphology

Patchy availability

+ <u>Reach geomorphology</u> Floodplain Bank Channel

Catchment + reach predictors of flux

Gages2

Area Elevation median Dimensionless elevation - relief ratio Slope

Precipitation Base Flow Index Horton overland flow % Topographic wetness index Subsurface flow contact time index Soil permeability Soil R-factor rainfall/runoff

Soil K-factor erodibility upper horizon Dam density 2009 Dam storage 2009

Nitrogen fertilizer+manure application Phosphorus fertilizer+manure application

<u>NAWQA</u>

% Developed 1974 % Developed 2012 % Production 1974 % Production 2012 ΔDeveloped 2012-1974

<u>Loads</u>

SPARROW sed load SPARROW P load SPARROW N load SPARROW sed yield SPARROW P yield SPARROW N yield

<u>USGS NTN</u>

Q50 Q90 Q99 Q50 yield Q90 yield Q99 yield Q50 'watershed power' Q90 'watershed power'

NLCD urban 2011 NLCD forest 2011 NLCD ag 2011 NLCD impervious 2006/2011

<u>Reach</u>

<u>Geomorphology</u> (USGS GIS Toolkit)

Floodplain width Channel width Bank height Bank angle (mean, max, min) Bankfull Slope Various ratios and products

Physiographic

<u>Province</u>

Valley & Ridge = 1 Piedmont = 1 Coastal Plain = 1

Fluxes are predictable: <u>Watershed + Reach</u> GIS-derived predictors Stepwise multiple regressions (*P*-to-enter=0.10):

Sediment: net balance

n=31, <mark> </mark>	² =0.61,	P<0.0	01
----------------------	---------------------	-------	----

FP_width:Bnk_height	β= +
FP_width:Ch_width	β=-
K factor erodibility uppersoil	$\beta = +$
Soil permeability avg	$\beta = +$
Elevation-Relief Ratio	β=-

Sediment: floodplain flux

ΔDeveloped 2012-1974	β= +
Horton Overland Flow %	β=-
Bank_avg_angle	β=-
Bank_ht	β=-
FP_range_elev	$\beta = +$
PP: Coastal Plain	$\beta = +$
Power_watershed_Q50	$\beta = +$

Sed_load_SPARROW	β=
Soil permeability avg	β=
Base Flow Index avg	β=

Nitrogen: floodplain flux

n=33, R²=0.68, P<0.001

∆Developed 2012-1974	β= +
K factor erodibility uppersoil	β= +
Soil permeability avg	β= +
Bank_avg_angle	β=-
Horton Overland Flow %	β=-
PPT avg	β= +

Phosphorus: net balance n=31, R²=0.70, P<0.001

ΔDeveloped 2012-1974	β= +
Horton Overland Flow %	β= –
K factor erodibility uppersoil	$\beta = +$
Sed_load_SPARROW	$\beta = +$
PP: Piedmont	β=-
Q50	β=-

Phosphorus: floodplain flux

n=33, <mark>R²=0.93</mark>, P<0.001

ΔDeveloped 2012-1974	β= +
P_yield_SPARROW	β= +
N_appl_rate	β=-
NLCD_Ag_2011	β= +
Horton Overland Flow %	β=-
Bank_max_angle	β=-
Q50_yield	$\beta = +$
Dam_density	$\beta = +$
Bnk_height:FP_width	$\beta = +$
Dam_storage	$\beta = +$
P_appl_rate	β=-
NLCD_Urb_2011	$\beta = +$
K factor erodibility uppersoil	β= +

Phosphorus: bank flux

n=31, R²=0.55, P=0.002

Land-use Production 1974	β=-
NLCD_Ag_2011	$\beta = +$
Elevation-Relief Ratio	$\beta = +$
PP: Valley & Ridge	$\beta = +$
Dam_density	$\beta = +$

Sediment: bank flux

n=31, R²=0.37, P=0.005

Bank_max_angle	β=
PPT_avg	β=
Over_ratio	β=

Nitrogen: bank flux

n=31, R²=0.27, P=0.004 Land-use Production 1974 $\beta = -$

Fluxes are predictable: <u>Watershed</u> GIS-derived predictors Stepwise multiple regressions (*P*-to-enter=0.10):

Sediment: net balance

n=31, R²=0.55, P<0.001

ΔDeveloped 2012-1974	β= +
Horton Overland Flow %	β= –
Sed_load_SPARROW	β= +
K factor erodibility uppersoil	β= +

Sediment: floodplain flux

n=33, R²=0.46, P<0.001

ΔDeveloped 2012-1974	β= +
Horton Overland Flow %	$\beta = -$
K factor erodibility uppersoil	$\beta = +$

K factor erodibility uppersoil	$\beta = +$
Sed_load_SPARROW	β= +
Soil permeability avg	β= +
Base Flow Index avg	β=-

Nitrogen: floodplain flux

n=33, R²=0.41, P<0.001

ΔDeveloped 2012-1974 βPP: Coastal Plain β

β= + β=+

Phosphorus: net balance n=31, R²=0.70, P<0.001

ΔDeveloped 2012-1974	β= +
Horton Overland Flow %	β= –
K factor erodibility uppersoil	$\beta = +$
Sed_load_SPARROW	$\beta = +$
PP: Piedmont	β=-
Q50	$\beta = -$

Phosphorus: floodplain flux

n=33, R²=0.87, P<0.001

ΔDeveloped 2012-1974	β= +
P_yield_SPARROW	β= +
N_appl_rate	β=-
NLCD_Ag_2011	β= +
Horton Overland Flow %	β= –
Q50	β=+
Land-use Production 2012	β=-
Dam storage	β=+
Subsurface Flow Contact T	β=-
Q90	β=-

Nitrogen: bank flux

n=31, R²=0.27, P=0.004 Land-use Production 1974 $\beta = -$

Phosphorus: bank flux

n=31, R²=0.55, P=0.002

Land-use Production 1974	β= –
NLCD_Ag_2011	$\beta = +$
Elevation-Relief Ratio	$\beta = +$
PP: Valley & Ridge	$\beta = +$
Dam density	$\beta = +$

Fluxes are predictable: Watershed + Reach GIS-derived predictors Stepwise multiple regressions (*P*-to-enter=0.10, R² change > 0.05):

Sediment: net balance

n=31, R²=0.61, P<0.001

FP_width:Bnk_height	β= +
FP_width:Ch_width	β=-
K factor erodibility uppersoil	$\beta = +$
Soil permeability avg	$\beta = +$
Elevation-Relief Ratio	β= –

Sediment: floodplain flux n=33, R²=0.61, P<0.001

ΔDeveloped 2012-1974	β= +
Horton Overland Flow %	$\beta = -$
Bank_avg_angle	β=-
Bank_ht	β=-
FP_range_elev	$\beta = +$

Nitrogen: net bala	ance
n=31, <mark>R²=0.70</mark> , P<0.001	
ΔDeveloped 2012-1974	β= +
Horton Overland Flow %	β= –
K factor erodibility uppersoil	$\beta = +$
Sed_load_SPARROW	$\beta = +$
Soil permeability avg	$\beta = +$
Base Flow Index avg	β=-

Nitrogen: floodplain flux

n=33, R²=0.55, P<0.001

ΔDeveloped 2012-1974	β= +
K factor erodibility uppersoil	β= +
Soil permeability avg	β= +
Bank_avg_angle	β=-

Phosphorus: net balance n=31, R²=0.70, P<0.001

ΔDeveloped 2012-1974	β= +
Horton Overland Flow %	β= –
K factor erodibility uppersoi	$\beta = +$
Sed_load_SPARROW	$\beta = +$
PP: Piedmont	$\beta = -$
Q50	β=-

Phosphorus: floodplain flux

n=33, R²=0.79, P<0.001

ΔDeveloped 2012-1974	β= +
P_yield_SPARROW	β= +
N_appl_rate	β=-
NLCD_Ag_2011	β= +
Horton Overland Flow %	β=-
Bank_max_angle	β= -

Sediment: bank flux

n=31, <mark>R²=0.37</mark>, P=0.005

Bank_max_angle	β=
PPT_avg	β=
Over ratio	β=

Nitrogen: bank flux

n=31, R²=0.27, P=0.004 Land-use Production 1974 $\beta = -$

Phosphorus: bank flux

n=31, R²=0.55, P=0.002

Land-use Production 1974	β= –
NLCD_Ag_2011	$\beta = +$
Elevation-Relief Ratio	$\beta = +$
PP: Valley & Ridge	$\beta = +$
Dam density	$\beta = +$

Fluxes are predictable: <u>Watershed</u> **GIS-derived predictors** Stepwise multiple regressions (*P*-to-enter=0.10, R² change > 0.05):

Sediment: net balance

n=31, R²=0.55, P<0.001

ΔDeveloped 2012-1974	β= +
Horton Overland Flow %	β= –
Sed_load_SPARROW	β= +
K factor erodibility uppersoil	β= +

Nitrogen: net balancen=31, R²=0.66, P<0.001</td> $\Delta Developed 2012-1974$ $\beta = +$ Horton Overland Flow % $\beta = -$ K factor erodibility uppersoil $\beta = +$ Sed_load_SPARROW $\beta = +$ Soil permeability avg

Phosphorus: net balance n=31, R²=0.66, P<0.001

ΔDeveloped 2012-1974	β= +
Horton Overland Flow %	β=-
K factor erodibility uppersoil	$\beta = +$
Sed_load_SPARROW	$\beta = +$
PP: Piedmont	β=-

Sediment: floodplain flux

n=33, <mark>R²=0.46</mark>, P<0.001

ΔDeveloped 2012-1974	β= +
Horton Overland Flow %	β=-
K factor erodibility uppersoil	$\beta = +$

Nitrogen: floodplain flux

n=33, R²=0.41, P<0.001

ΔDeveloped 2012-1974	β=
PP: Coastal Plain	β=

Phosphorus: floodplain flux

n=33, R²=0.69, P<0.001

ΔDeveloped 2012-1974	β= +
P_yield_SPARROW	β= +
N_appl_rate	$\beta = -$
NLCD_Ag_2011	β= +
Horton Overland Flow %	β= –

Nitrogen: bank flux

n=31, R²=0.27, P=0.004 Land-use Production 1974 $\beta = -$

Phosphorus: bank flux

n=31, R²=0.55, P=0.002

Land-use Production 1974	β= –
NLCD_Ag_2011	$\beta = +$
Elevation-Relief Ratio	$\beta = +$
PP: Valley & Ridge	$\beta = +$
Dam density	$\beta = +$

Approaches for predicting the whole Chesapeake watershed

Valley & Ridge, Piedmont, and Coastal Plain

*	OPTION #1	Average: all 3 PP (for sediment, and all floodplain and bank fluxes)
*	OPTION #2	Average: each PP (for N and P net balance fluxes)
*	OPTION #3	Regression: Watershed+Reach predictors
*	OPTION #4	Regression: Watershed only predictors (where GIS Toolkit unavailable)
		Appalachian Plateau and Blue Ridge
*	OPTION #1	Average: Valley & Ridge and Piedmont
*	OPTION #3	Regression: Watershed+Reach predictors
*	OPTION #4	Regression: Watershed only predictors (where GIS Toolkit unavailable)

Other issues:

- Intensive land-use on floodplain (e.g. urban, row crop)
- Channelized/leveed rivers
- ✤ Headwaters

Predicting fluxes: Difficult Run pilot

Regression

Mainstem X-section *net sediment balance* predicted (R²=0.57, P=0.007) by:

> Channel width Floodplain elevation range

Flux calculations: g m⁻¹ yr⁻¹

Floodplain: vertical change rate * bulk density * total floodplain width $(m yr^{-1})$ $(g cm^{-3})$ (m)

Bank: lateral change rate * bulk density * bank height * 2 * correction

Net balance: Floodplain flux – Bank flux

USGS Chesapeake Floodplain Network

Goal:

Measure and predict the sediment/N/P balance of streams and rivers (sink or source of floodplain and banks) in entire Chesapeake watershed

Chesapeake Geomorphic GIS toolkit: Channel x-section analysis

Bank locations based on slope breaks Width: 13.61 m 3.5 Depth: 0.94 m 3 2.5 Elevation (m) 2 1.5 0.5 0 50 60 70 80 90 100 110 Distance (m)

≈USGS

Fluvial Geomorphic Characteristic

- Bank height
- Bank angle
- Channel width
- Channel profile slope
- Floodplain width
- Floodplain elevation range
- Floodplain elevation StDev
- Valley width
- Drainage area

Measured vs. GIS geomorphology: evaluating Toolkit performance

Understanding and scaling transport processes thru watersheds

Alluvial sediment exchange

Upland erosion

79% of P load and 28% of N load to Chesapeake Bay is particulate (Noe and Hupp 2009, from Langland et al. 2006)

Big picture of approach for sediment modeling

Any and every reach: alluvial geometry, upland flux, bank flux, floodplain flux

USGS Chesapeake Floodplain Network

- We can measure and model if streams and rivers are sinks for sediment and associated particulate N and P over long time scales
- The Chesapeake watershed is mostly in 'equilibrium' for sediment fluvial exchange; but some floodplains are strongly depositional
- Fluxes of sediment and nutrients were similar in Valley & Ridge and Piedmont physiographic provinces (and sediment in Coastal Plain), indicating limited control of regional geology over alluvial sediment exchange.
- Measured rates of floodplain depositional flux of N and P were typical of the Mid-Atlantic and Southeastern U.S.
- Regional floodplain, bank, and net fluxes of sediment and nutrients were predictable using a combination of reach geomorphology and watershed characteristics (all of which could be estimated in GIS).
- Floodplains are hotspots in the landscape for sediment and nutrient sinks and sources, influencing river loads to the Chesapeake Bay.
- Chesapeake GIS toolkit and database should be valuable tool for additional research on transport processes and stream condition and health.

We can measure and predict the important role of floodplain/bank sediment exchange in Chesapeake watersheds

Morgan Creek, MD

Model Summary ⁹										
						Change Statistics				
			Adjusted	Std. Error of	R Square					Durbin-
Model	R	R Square	R Square	the Estimate	Change	F Change	df 1	df 2	Sig. F Change	Watson
1	.416 ^a	.173	.144	205.45703	.173	6.055	1	29	.020	
2	.531 ^b	.282	.230	194.83627	.109	4.248	1	28	.049	
3	.616 ^c	.379	.310	184.46894	.097	4.236	1	27	.049	
4	.736 ^d	.542	.471	161.51628	.163	9.219	1	26	.005	
5	.781 ^e	.610	.532	151.97766	.068	4.366	1	25	.047	
6	.809 ^f	.654	.568	146.01814	.044	3.082	1	24	.092	2.327

a. Predictors: (Constant), FPdiv BNK

b. Predictors: (Constant), FPdiv BNK, FPdiv CH

C. Predictors: (Constant), FPdiv BNK, FPdiv CH, KFACT_UP

d. Predictors: (Constant), FPdiv BNK, FPdivCH, KFACT_UP, PERMAVE

e. Predictors: (Constant), FPdiv BNK, FPdivCH, KFACT_UP, PERMAVE, RRMEDIAN_30M

f.Predictors: (Constant), FPdiv BNK, FPdiv CH, KFACT_UP, PERMAVE, RRMEDIAN_30M, BFAREA

9. Dependent Variable: Site_balance_Sed_Kgmy r

ANO VA ⁹							
Model		Sum of	df	Mean Square	F	Sig	
1	Regression	255613.6	1	255613.594	6.055	.020 ^a	
	Residual	1224165	29	42212.590			
	Total	1479779	30				
2	Regression	416865.8	2	208432.921	5.491	.010 ^b	
	Residual	1062913	28	37961.174			
	Total	1479779	30				
3	Regression	561001.3	3	187000.449	5.495	.004 ^c	
	Residual	918777.4	27	34028.791			
	Total	1479779	30				
4	Regression	801503.4	4	200375.861	7.681	.000 ^d	
	Residual	678275.3	26	26087.510			
	Total	1479779	30				
5	Regression	902348.5	5	180469.694	7.813	.000 ^e	
	Residual	577430.2	25	23097.209			
	Total	1479779	30				
6	Regression	968067.6	6	161344.594	7.567	.000 ^f	
	Residual	511711.1	24	21321.297			
	Total	1479779	30				

a. Predictors: (Constant), FPdiv BNK

b. Predictors: (Constant), FPdiv BNK, FPdivCH

c. Predictors: (Constant), FPdiv BNK, FPdivCH, KFACT_UP

d. Predictors: (Constant), FPdiv BNK, FPdivCH, KFACT_UP, PERMAVE

e. Predictors: (Constant), FPdiv BNK, FPdivCH, KFACT_UP, PERMAVE, RRMEDIAN 30M

f · Predictors: (Constant), FPdiv BNK, FPdiv CH, KFACT_UP, PERMAVE, RRMEDIAN 30M, BFAREA

9. Dependent Variable: Site_balance_Sed_Kgmyr

Coefficients								
		Unstandardized Coefficients		Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	.296	48.062		.006	.995		
	FPdivBNK	.722	.293	.416	2.461	.020	1.000	1.000
2	(Constant)	46.899	50.878		.922	.365		
	FPdivBNK	2.121	.734	1.221	2.891	.007	.144	6.952
	FPdivCH	-47.258	22.930	870	-2.061	.049	.144	6.952
3	(Constant)	-355.588	201.409		-1.765	.089		
	FPdivBNK	2.173	.695	1.251	3.126	.004	.144	6.961
	FPdivCH	-53.097	21.894	978	-2.425	.022	.141	7.070
	KFACT_UP	1481.687	719.936	.322	2.058	.049	.937	1.067
4	(Constant)	-1145.718	314.353		-3.645	.001		
	FPdivBNK	2.025	.611	1.166	3.317	.003	.143	7.005
	FPdivCH	-48.084	19.241	886	-2.499	.019	.140	7.123
	KFACT_UP	3230.318	853.829	.703	3.783	.001	.511	1.958
	PERMAVE	91.524	30.143	.559	3.036	.005	.521	1.919
5	(Constant)	-1559.690	356.008		-4.381	.000		
	FPdivBNK	2.074	.575	1.194	3.607	.001	.143	7.017
	FPdivCH	-39.065	18.612	719	-2.099	.046	.133	7.528
	KFACT_UP	4645.501	1050.790	1.011	4.421	.000	.299	3.349
	PERMAVE	143.698	37.788	.877	3.803	.001	.294	3.407
	RRMEDIAN_30M	-519.665	248.700	415	-2.090	.047	.396	2.527
6	(Constant)	-1607.339	343.123		-4.684	.000		
	FPdivBNK	1.882	.563	1.083	3.342	.003	.137	7.291
	FPdivCH	-33.144	18.197	610	-1.821	.081	.128	7.795
	KFACT_UP	5240.687	1064.984	1.140	4.921	.000	.268	3.726
	PERMAVE	165.801	38.427	1.012	4.315	.000	.262	3.816
	RRMEDIAN_30M	-830.959	297.548	664	-2.793	.010	.255	3.919
	BFAREA	-1.802	1.027	293	-1.756	.092	.518	1.929

V&R + Piedmont fluxes are predictable (and available in GIS) Stepwise multiple regressions:

Set of predictors	Statistics		Fluxes			
		Net sediment balance	Floodplain sediment flux	Bank sediment flux		
Geomorphology	R ² P-to-enter Predictors <0.05	0.15 1. Bank Height	0.54 1. Channel width ÷ Floodplain width 2. Bank height	0.35 1. Floodplain width		
only	P-to-enter <0.10 R ² Predictors	0.15 1. Bank Height	0.54 1. Channel width ÷ Floodplain width 2. Bank height	0.41 1. Floodplain width 2. Channel width		
	P-to-enter R ² <0.05 Predictors	0.23 1. Dam #	0.20 1. Dam #	0.00 None		
Watershed only	P-to-enter <0.10 R ² Predictors	0.23 1. Dam #	0.20 1. Dam #	0.22 1. Stream power index (Q50) 2. Forest land-use 2011		
Geomorphology +	R ² Predictors	0.23 1. Dam #	0.72 1. Channel width ÷ Floodplain width 2. Bank height 3. Physiographic province 4. Production land-use 2012	0.57 1. Floodplain width 2. Elevation-Relief Ratio 3. Channel width ÷ Floodplain width		
Watershed	P-to-enter <0.10	 Dam # Channel width ÷ Floodplain width Floodplain width ÷ Bank height Elevation-Relief Ratio 	 Channel width ÷ Floodplain width Bank height Physiographic province Production land-use 2012 K factor 	 Floodplain width Channel width ÷ Floodplain width P application Impervious 2006/2011 R factor Dam storage 		

Chesapeake Geomorphic GIS toolkit: Analyzing (LIDAR) DEMs to estimate geometry of alluvial system

Can vary:

- Linear fit length, spacing, width, point spacing

- Width limited to catchment boundary

Chesapeake Geomorphic GIS toolkit:

Fluvial Geomorphic Characteristics:

- Bank height
- Bank angle
- Channel width
- Channel profile slope
- Floodplain width
- Floodplain elevation range
- Floodplain elevation StDev
- Valley width
- Drainage area

Chesapeake Geomorphic GIS toolkit: Field vs. GIS validation

Patuxent River near Unity MD

Big picture of approach for sediment modeling

Any and every reach: alluvial geometry, upland flux, bank flux, floodplain flux

USGS Chesapeake Floodplain Network

What's next:

<u>Completed:</u>

1.	Validate GIS geomorphology (VR & PIED) using field geomorphology.	Nov 2015			
2.	Calculation of Coastal Plain long-term fluxes.	Dec 2015			
3.	Regress VR & PIED fluxes using GIS geomorphology.	Dec 2015			
4.	GIS geomorphology database ready (VR & PIED)	Jan 2016			
5.	GIS geomorphology database complete (~90%; CP and Shenandoah added).	Apr 2016			
6.	Regress VR & PIED & CP fluxes using GIS geomorphology + watershed characteristics.	Apr 2016			
7.	Extrapolate bank and floodplain sediment fluxes to all of VR & PIED & CP	May 2016			
	1. Summed by NHD+ catchment				
	2. Maps by reach of fluxes				
8.	Add SW VA and WV LiDAR gap (100% of watershed complete)	Jan 2017			
9.	Measure contemporary fluxes 3-yr post installation and 2019				
	repeat.				
×I	ISGS				

Sediment Delivery to Simulated Rivers

USGS Chesapeake Floodplain Network vs. other studies

Floodplain flux rates are typical

USGS Chesapeake Floodplain Network: example site

South Fork Quantico Creek layout

SFQ T1.5L BANK

SFQ T1.5R BANK

SFQ T1 PIN5 SFQ T1 PIN6 SFQ T1 PIN7 SFQ T1 PIN8

9/2014

gage

2 1994

SFQ T1 PIN9

SFQ T2 PIN1 SFQ T2 PIN3 SFQ T2 PIN3 SFQ T2 PIN4 SFQ T2 PIN5

SFQ T2 PINGFQ T2L BANK SFQ T2 PIN7 SFQ T2 PIN8 SFQ T2 PIN9

SFQ T2 PIN10

Google earth

USGS Chesapeake Floodplain Network Measurements:

<u>Sediment budget terms</u> (45 sites) Contemporary (pin) floodplain and bank flux Long-term (dendro) floodplain and bank flux In-channel sediment storage volumes

<u>Geomorphic measurements</u> (45 sites) X-section survey (channel, banks, floodplain) Longitudinal survey (tie to gage, reach slope) Channel bed particle size

<u>Biogeochemistry</u> (45 sites) Soil/sediment TN, TP, TOC, LOI, particle size Soil/sediment biogeochemical processes

<u>Age Distributions (</u>6 sites) In-channel (bomb radiocarbon, Be-7, Pb-210) Floodplain (Be-7, Pb-210, OSL, radiocarbon)

Scaling to the whole Chesapeake watershed: measuring and predicting bank and floodplain rates Steps Products

Dynamic exchange of sediment + nutrients = hotspot

Average hectare of floodplain traps 72X the sediment load generated by hectare of watershed

Indicator of importance to watershed loads

The importance of floodplains to WQ in the Chesapeake watershed

Predictability of functions

Schenk et al. 2013, ESP&L

Gellis et al. 2015, SIR

Only 3 Piedmont watersheds!

→ Not expected to be general, but shows promise of approach:
Easy geomorphic metrics may be predictive

Noe and Hupp 2005 Noe and Hupp 2007 Gellis et al. 2008 Hogan and Walbridge 2009 Noe and Hupp 2009

Schenk and Hupp 2009 Kroes and Hupp 2010 Hupp et al. 2013 Schenk et al. 2013 Noe et al. 2013a Noe et al. 2013b Gellis et al. 2015