A COMPARISON OF TWO METHODS OF MEASURING DISSOLVED ORGANIC CARBON

Betty Salley, Kevin Curling, and Bruce Neilson

March 1992

Special Scientific Report No. 128

Virginia Institute of Marine Science and School of Marine Science The College of William & Mary in Virginia Gloucester Point, VA 23062

A COMPARISON OF TWO METHODS OF MEASURING DISSOLVED ORGANIC CARBON

Betty Salley, Kevin Curling, and Bruce Neilson

March 1992

Special Scientific Report No. 128

Virginia Institute of Marine Science and School of Marine Science

The College of William & Mary in Virginia
Gloucester Point, VA 23062

TABLE OF CONTENTS

NTRODUCTION	1
ETHODS AND MATERIALS	2
OI Ampule Method	2 2 3 3
ESULTS AND DISCUSSION	8
Results	8 11 13 15
CONCLUSIONS AND RECOMMENDATIONS	16
EFERENCES	17
APPENDICES	
APPENDIX A. Tables of Statistics	18
PPENDIX B Graphical Display of Statistics	29

ACKNOWLEDGMENTS

The authors wish to thank Mr. Steve Sokolowski and the other members of the staff of the Applied Marine Research Laboratory at Old Dominion University for their cooperation in this study. We also would like to thank Dr. Michael Sieracki and Mrs. Carolyn Keefe for their helpful reviews and comments on the manuscript.

INTRODUCTION

During the summer of 1984, Virginia, Maryland, the District of Columbia, and the U.S. Environmental Protection Agency initiated a water quality monitoring program for Chesapeake Bay and its tributaries. Responsibility for sample collection and analysis in the Virginia portion of Chesapeake Bay is shared by the Virginia Institute of Marine Science (VIMS) and Old Dominion University (ODU). Since the beginning of the program, water samples from all Virginia mainstem Chesapeake Bay stations have been analyzed for dissolved organic carbon (DOC) by the Applied Marine Research Laboratory at ODU. The Nutrient Analysis Laboratory at VIMS acquired a dissolved carbon analyzer in late 1989 and began analyzing samples for DOC in January 1990. For the period January through June 1990, all of the water samples collected at VIMS' mainstem Chesapeake Bay monitoring stations were analyzed for DOC by both VIMS and ODU.

One of the stated purposes of the monitoring program is the development of a data base that will allow scientists (1) to determine if there have been changes in water quality with time, and (2) to postulate hypotheses concerning water quality processes. Clearly, methods changes may confound these efforts. The purpose of this study is to examine the data from the period when samples were analyzed using both DOC methods, so that differences related to changes in methods are made apparent to data users. The implications of these differences will be discussed briefly in the Results and Discussion section.

METHODS AND MATERIALS

The two laboratories employed different instruments that used different analytical approaches. ODU used an Oceanographic Instruments (OI) ampule TOC Analyzer. Beginning in January 1990, VIMS used a Shimadzu (Shim) TOC ASI-502, Automated. A description of the instruments, methods, and calibration procedures follows. Procedures for collecting and handling samples and for the analysis of the data also are included in this section.

OI Ampule Method: This OI method used a 5 ml sample, pH < 3, which was placed in an ampule and purged with ultrapure oxygen to remove the dissolved inorganic carbon (EPA, 1983; Method 415.1). One ml of saturated potassium persulfate and 200 ul of 10% phosphoric acid was added, the ampule sealed and autoclaved at 130° C for four hours. The remaining steps were carried out automatically by the instrument. The ampule was opened and the resultant CO_2 was carried through a nondispersive infrared detector (NDIR) by nitrogen gas.

The NDIR was calibrated with blanks, standards, and standard reference materials before samples were analyzed. Spiked samples and standards were interspersed among the field samples for internal quality control. Linear regression with the intercept set at zero was used to establish a standard response.

Shimadzu Automated TOC Analyzer: The Shimadzu method used high temperature (680° C) combustion with a platinum catalyst (Shimadzu, 1989). The sample was placed in a glass cup on a carousel, the carousel was loaded onto the instrument, and the instrument automatically processed the sample. Each sample, pH < 3, was sparged with ultralow carbon air to remove dissolved inorganic carbon (DIC). Then an 80 μl sample was autoinjected into the total carbon port. The resultant carbon was oxidized to CO2 and carried by ultralow carbon air through the NDIR.

The instrument's microprocessor used a two point curve to calculate the concentration for each sample. Each sample was injected three separate times and a coefficient of variation was calculated. If the coefficient of variation was large, the instrument made an additional

injection. If the results were still out-of-bounds, a fifth injection was made. The microprocessor chose which injections were used, and then calculated and printed the mean peak area, the standard deviation, and the coefficient of variation (Shimadzu, 1989).

With each set of samples (18 samples), five internal standards were used. A linear regression was calculated with the intercept set at zero. This regression was used to calculate the concentration of each sample. Spiked samples, standards, and standard reference materials were interspersed throughout the field samples for quality control.

Sample Collection and Handling: The samples were collected at 19 stations in lower Chesapeake Bay (see Figure 1) over a six month period, January through June 1990. Surveys occurred once per month in January, February, and March and twice per month in April, May, and June, for a total of nine cruises. At each station, vertical profiles of water temperature, salinity, pH, and dissolved oxygen were measured. Each water sample was analyzed for suspended solids, chlorophyll, and nutrient concentrations. During this six month period, each sample was analyzed for DOC using both methods.

When possible, the analyses were made on the same sample. That is, the VIMS laboratory withdrew an aliquot for its analysis and then sent the remainder of the field sample to ODU. In other instances the sample was split into two containers in the field, with one container returned to VIMS and the other sent to ODU. All DOC samples had acid added in the field (1 ml 6N $\rm H_2SO_4)$ to lower the pH to < 3.

Statistical Analysis: The data were organized and several statistical tests performed. The mean, maximum, and minimum concentrations and the standard deviation were determined for each DOC method, and for the difference (Shimadzu minus OI) between methods. An analysis of performed the Shimadzu (ANOVA) was on variance concentrations versus the OI concentrations and on the difference between methods (Shimadzu minus OI) versus the OI concentrations. The results were then plotted. tables of statistics for each of the nine cruises and for

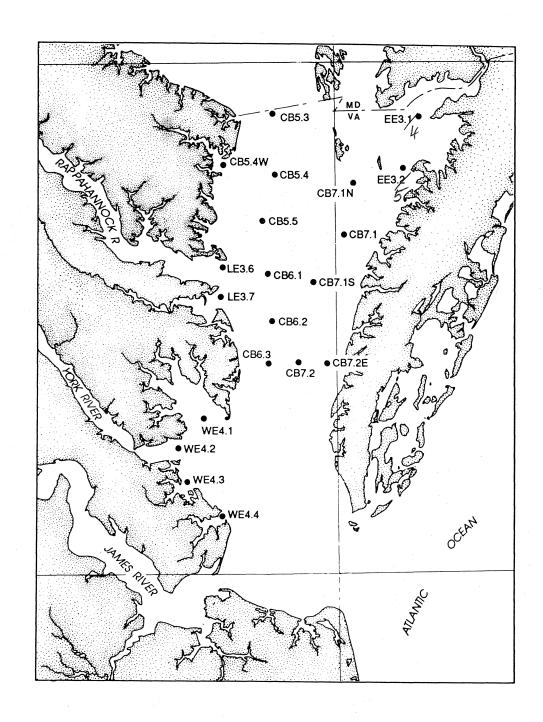


Figure 1. Map of lower Chesapeake Bay showing the 19 sampling stations.

the combined data set are included in Appendix A and the figures presenting the data are included in Appendix B.

The statistics are summarized, along with the mean, maximum, and minimum salinities, in Table 1. For the ANOVA's, the intercept, the slope of the regression, and r-squared values are given; both regressions use the OI DOC concentrations as the independent variable.

In keeping with the considerable attention given to quality control and quality assurance in the Chesapeake Bay monitoring program, about 96% of the OI samples and more than half of the Shimadzu samples were run in duplicate. To assess accuracy, an aliquot of a concentrated solution, or what is commonly referred to as a "spike", was added to water samples. A 3 mg-C/l spike was used with the Shimadzu and a 4 mg-C/l spike was used with the OI method. Relative percent recovery was calculated as:

Relative % Recovery = 100 x { CSS / (SPK + C) }

where CSS is the concentration of the spiked sample, SPK is the concentration of the spike, and C is the concentration of the sample (unspiked). It is believed that relative recovery allows for a more direct comparison of accuracy data when different spike concentrations are used.

The accuracy and precision data for each cruise and for the combined data set are summarized in Table 2. The number of duplicate analyses, mean difference between duplicates, and standard deviation of the differences are given for both methods, along with the number of spiked samples, mean relative percent recovery, and standard deviation of the recovery values. Maximum and minimum values and the concentration of the spike also are included in the tables in Appendix B.

Summary of Salinity and DOC data for each cruise and the combined data set. Table 1:

CRITCE		113	113	114	116	117	118	110	120	121	ATT
Salinity	min	13.86	14.33	14.25	10.02	12.21	12.99	13.48	12.83	12.41	10.02
	тах	24.59	25.82	27.16	23.97	23.84	22.77	26.04	25.52	23.40	27.16
V	mean	19.17	18.48	17.76	18.13	17.40	17.48	18.20	17.49	17.69	17.94
Samples	N	50	51	52	53	52	49	48	49	49	453
DOC OI	min	2.680	2.590	2.275	2.475	2.315	2.530	2.620	2.345	2.595	2.275
-	max	4.630	4.720	5.015	6.705	4.965	5.330	7.295	8.005	9.820	9.820
	mean	3.459	3.536	3.243	3.731	3.545	3.769	4.122	3.837	4.458	3.737
	std	0.465	0.494	0.463	0.808	0.530	0.598	1.084	1.242	1.411	0.914
DOC	min	3.060	2.770	3.080	3.005	3.040	3.360	2.950	2.440	2.970	2.440
SHIMADZU	max	5.010	5.530	6.015	6.360	5.280	5.885	7.325	9.325	9.235	9.325
	mean	3.897	3.984	3.917	4.041	4.091	4.405	4.372	4.366	4.853	4.208
	std	0.518	0.507	0.483	0.660	0.484	0.519	0.940	1.455	1.389	0.893
Regression	Int	0.477	1.464	668.0	1.624	1.270	1.714	1.398	0.140	0.593	0.938
Shim/OI	Slope	0.989	0.713	0.931	0.648	962.0	0.714	0.727	1.101	0.956	0.875
	r_2	0.7876	0.4813	0.7961	0.6295	0.7606	0.6762	0.7069	0.8846	0.9417	0.8039
Difference	nim	-0.020	-0.735	090.0	-0.875	0.045	-0.330	-2.945	-1.900	-0.585	-2.945
(Snim - OI)	max	1.110	1.320	1.135	2.040	1.350	1.445	1.415	1.355	1.180	2.040
	mean	0.439	0.448	0.675	0.310	0.546	0.636	0.273	0.529	0.395	0.473
	std	0.239	0.392	0.220	0.492	0.260	0.341	0.587	0.510	0.341	0.411
Regression	Int	0.477	1.464	0.899	1.624	1.270	1.714	1.398	0.140	0.593	0.938
חווי סוו סו	slope	-0.011	-0.287	690.0-	-0.352	-0.204	-0.286	-0.273	0.101	-0.044	-0.125
	r_2	0.0005	0.1309	0.0211	0.3345	0.1732	0.2507	0.2538	0.0610	0.0338	0.0766

Table 2: Summary of Quality Control Data.

CRUISE		112	113	114	116	117	118	119	120	121	ALL
Precision											
(Dup Diff)								-			
IO	Z	46	48	20	20	20	49	46	47	48	434
	mean	0.202	0.221	0.095	0.100	0.082	0.124	0.146	0.083	0.111	0.129
	std	0.141	0.141	0.095	0.120	0.077	0.103	0.126	0.084	0.086	0.119
SHIMADZU	Z	10	30	25	35	30	6	27	44	26	236
	Mean	060.0	0.265	0.085	0.138	0.133	0.141	0.130	0.089	0.102	0.132
	std	0.099	0.161	0.051	0.132	0.135	0.156	0.111	0.076	0.091	0.126
Accuracy					÷						
% Recovery						*					
IO	z	<i>σ</i>	11	10	6	00	10	11	ω	10	85
	mean	101.98	98.80	99.73	99.34	95.60	98.92	99.22	98.68	100.10	99.18
	std	1.668	3.379	3.450	2.823	1.802	3.444	4.464	4.768	5.753	3.891
SHIMADZU	N	9	8	13	7	∞	9	10	9,	9	7.0
	Mean	100.92	101.78	102.25	100.16	99.55	06.86	100.30	98.86	98.67	100.40
	std	3.459	3.360	4.765	3.508	2.097	1.537	4.348	1.655	1.497	3.481

RESULTS AND DISCUSSION

Results: The mid-portion of Chesapeake Bay is mesohaline to polyhaline, and consequently, neither oceanic salinities nor freshwater were encountered. The mean salinity for the six months was just under 18 parts per thousand (ppt; see Table 1). The mean salinity for each cruise was about the same, with only the mean for the January cruise (#112) differing by more than about half a ppt from the overall mean.

The mean DOC concentration was 3.7 mg/l for the OI method and 4.2 for the Shimadzu (see Table 1). For both instruments, DOC concentrations ranged from just over 2 mg/l to just under 10 mg/l. The mean difference between methods was 0.473 mg/l, with the Shimadzu giving higher readings on the average.

A two-tailed t-test indicated that the difference between the means for the two methods was significant (alpha <0.1%). We note that the mean difference between duplicates for both instruments was 0.13 mg/l (see Table 2), whereas the mean instrument difference was 0.5 mg/l. Thus we conclude that the difference observed is in fact one that can be measured reliably.

For most of the individual cruises and the overall data set, the slope of the regression between the two methods is close to 1 and the r-squared values are above 0.7 (see Table 1). Similarly, for most of the individual cruises and the overall data set, the slope of the regression of difference on OI concentrations is close to zero and, as a consequence, the r-squared value is small. These observations suggest that the difference between the two methods is fairly constant.

The range of the differences was large, about 12 standard deviations. Some of these differences were believed to be outliers that should be deleted from the data set. The statistics and regressions were determined for two reduced data sets. For the first case, 3 samples (Difference = 2.040, -2.945, and -1.900 mg/l) were removed, and for the second case 10 samples were deleted from the data set. These ten samples had differences greater than 2.5 standard deviations (+ 1.028 mg/l) from the original

mean. The statistics for the original and reduced data sets are sumarized in Table 3.

When the outliers were removed from the data set, the variance of the samples of course decreased. In addition, the slope of the regression between methods approached one, the slope of the regression on differences approached zero, and the value of the mean difference increased to 0.5 mg/l. The data points and regression lines for the difference are shown in Figure 2 for each data set; the outliers that were deleted are indicated in the figures.

Table 3. The Effect of Removing Three and Ten Outliers on Statistical Properties and Regressions

1.	DAMA CEM	λΤΤ	LESS 3	LESS 10
	DATA SET	ALL	TESS 2	TE22 10
NUMBER		453	450	443
OI-DOC	Mean	3.737	3.727	3.697
SHIM-DOC	Mean	4.208	4.209	4.198
DIFFERENCE	Mean	0.473	0.482	0.501
SHIM - OI	Std Dev	0.411	0.355	0.324
REGRESSION	Intercept	0.938	0.808	0.696
SHIM on OI	Slope	0.875	0.913	0.947
	r^2	0.804	0.849	0.861
REGRESSION	Intercept	0.938	0.808	0.696
Diff on OI	Slope	-0.125	-0.087	-0.053
	r²	0.077	0.049	0.019

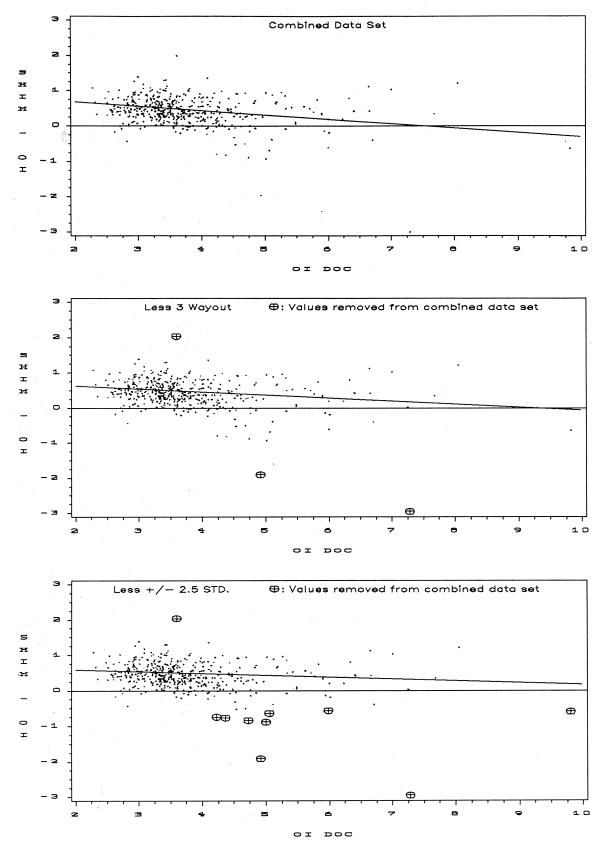
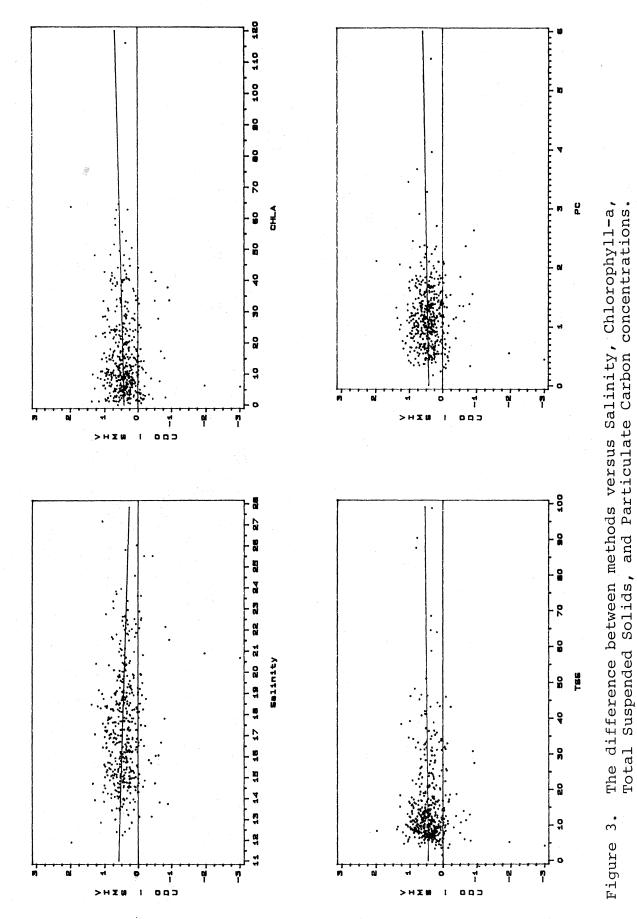


Figure 2. Variation of methods difference with (OI) DOC concentration & the effect of removing outliers


Correlations: The effects of salinity, chlorophyll-a (CHLOR-A), total suspended solids (TSS), and particulate carbon (PC) concentrations on the difference between methods were investigated using ANOVA. The slopes of the regressions for all of the factors were close to zero, and consequently so were the r-squared values. In Table 4 the maximum, minimum and mean concentrations for each variable, and the intercept, slope and r-squared value for the regression are listed. The methods differences versus salinity, chlorophyll-a, total suspended solids, and particulate carbon are plotted in Figure 3.

Note that for chlorophyll-a, TSS, and PC, the intercepts are all close to the mean difference of the complete data set (0.473 mg/l), the slopes are all close to zero and consequently, the r-squared values are small. Although the intercept for salinity (0.820 mg/l) is somewhat larger than those for the other variables, the slope again is very small. When one considers that the lowest salinity observed was about 12 ppt, extrapolation to zero salinity does not seem appropriate.

It appears that the difference between methods is not affected in any consistent manner by the amount of algae, particulate carbon, suspended solids, or salinity in the sample.

Table 4. Ranges and Means of Selected Environmental Variables and the Results of ANOVA Regression of The Variables on the Difference between Methods.

	CC	NCENTRAT	IONS		REGRESSIC	N
VARIABLE	Min	Mean	Max	Int.	Slope	r² .
SALINITY	11.88	17.36	27.17	0.820	-0.020	0.0175
CHLOR-A	0.00	16.11	115.93	0.438	0.002	0.0056
TSS	1.60	15.62	98.67	0.459	0.001	0.0007
PC	0.179	1.170	5.533	0.430	0.037	0.0026

Association: The data indicate that there is a measureable difference between the two analytical methods. Data users must be aware of the change in methods and may want to adjust the data. The need to account for the methods change is clear, but how that should be accomplished is not so clear.

In the preceding sections, the DOC measurements using the Shimadzu TOC analyzer were contrasted with those obtained using the OI instrument and using the OI measurements as the independent variable. Similarly, the difference between methods was contrasted with the OI measurements. This was done primarily because the OI instrument had been used since the beginning of the program. There is, however, no dependency between the two data sets. Rather for each data pair, there are two independent estimates of some unknown "true concentration." The "true concentrations" are random variables in the sense that these are natural samples and no effort was made to select or reject particular samples or types of samples. The data are not normally distributed, however. For this case, the functional regression provides a more appropriate association between the two data sets (Ricker, 1973).

The functional regression line lies between the regression lines obtained when one data set is assumed to depend on the other (See Figure 4). The equations for these three regression lines are given below. The intercept for the functional regression (0.563 mg/l) is somewhat larger than the mean difference (0.473 mg/l) between all 453 sample pairs. The slope of the functional regression is very close to one.

REGRESSION EQUATION

Functional SHIM = 0.563 + 0.976 (OI)

Linear - Shimadzu on OI
(OI = independent variable) SHIM = 0.938 + 0.875 (OI)

Linear - OI on Shimadzu
(Shimadzu = independent var.) SHIM = 0.141 + 1.089 (OI)

Ol vs. Shimadzu DOC Measurements

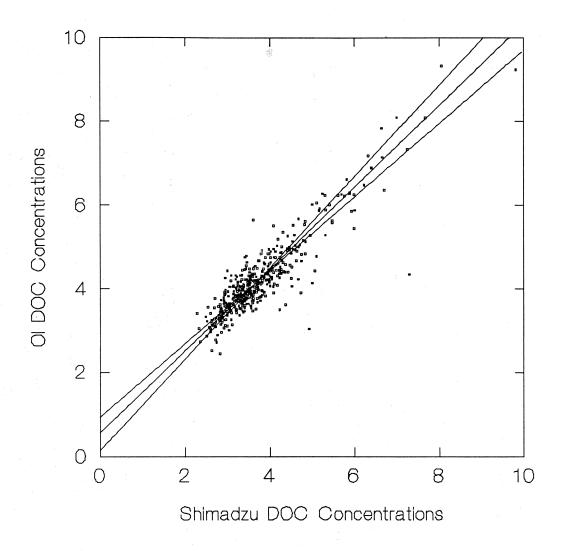


Figure 4. Comparison of Shimadzu and OI DOC measurements showing the functional regression and the two linear regression lines.

Differences among analytical methods Importance: confound use of data sets that involve different methods. A similar change (change of laboratory and method) may have contributed to erroneous interpretation of water quality data for Lake Erie (e.g., Shapiro and Swain, 1983). limitations of older methodologies for DOC determinations have been made known for many years (Sharp, Oceanographers are aware that new instruments (e.g., Sugimura & Suzuki, 1988) give higher readings than the older methods, and that this poses difficult questions for scientists working on global carbon budgets (Williams & Druffel, 1988). As best we can tell, no consensus has yet developed within the oceanographic scientific community regarding differences among methods, despite the importance of this issue.

Clearly this issue is important for those working in coastal and estuarine environments as well (Mantoura & Woodward, 1983). Studies at other marine institutions (Sharp, Suzuki, and Munday, 1988) and among the Chesapeake Bay monitoring labs suggest that the differences between methods are small for fresh and olighaline waters. Further study is needed to determine whether this effect is real and the reasons for any methods differences at higher salinities.

A recent workshop, however, suggests that the "variation thus appears to be attributable to operators rather than analyzers" (Williams, 1991). The issue is receiving considerable attention within the oceanographic community and scientists hope to resolve the issue in the near future. Analysts within the Chesapeake Bay water quality monitoring program should keep abreast of developments in the oceanographic community and make appropriate changes once there is consensus.

Data users should be made aware that differences between methods for dissolved organic carbon measurements are real and measureable and they should use the data accordingly.

CONCLUSIONS AND RECOMMENDATION

Determinations of dissolved organic carbon (DOC) concentrations for mesohaline and polyhaline samples will differ depending on the analytical method used. For the case at hand, the Shimadzu TOC analyzer gives results that are about 0.5 mg/l higher than those obtained using the Oceanographic Instruments ampule method. The mean methods difference was several times larger than the mean difference between duplicates for either method. Thus we conclude that the methods difference is measureable and real.

The difference between methods varied little over the time period (January to June, 1990) or with salinity, although the range of salinities encountered in this study was limited (12 to 27 ppt). The difference varied only slightly with the concentrations of DOC (range = 2 to 10 mg-C/l), chlorophyll-a (range = 0 to 116 μ g/l), particulate carbon (range = 0.18 to 1.17 mg/l), and total suspended solids (range = 1.6 to 15.6 mg/l). Thus we conclude that the methods difference is constant, at least for the conditions encountered in this study.

If data users wish to adjust either data set, the functional regression is recommended. The equation giving the "best association" between the two methods is:

SHIM =
$$0.563 + 0.976$$
 (OI),

where SHIM is the DOC concentration in mg/l using the Shimadzu analyzer and OI is the DOC concentration in mg/l measured with the Oceanographic Instruments ampule method.

REFERENCES

Mantoura, R. F. C. and E. M. S. Woodward, 1983. Conservative behaviour of riverine dissolved organic carbon in the Severn Estuary: chemical and geochemical implications. Geochimica et Cosmochimica Acta, 47:1293-1309.

Ricker, W. E., 1973. Linear Regressions in Fishery Research. Journal Fisheries Research Board of Canada, Vol. 30, No. 3, pp 409-434.

Shapiro, J. & Swain, E. B., 1983. Lessons from the Silica "Decline" in Lake Michigan. Science 223:457-459.

Sharp, J. H., 1973. Total organic carbon in seawater - comparison of measurements using persulfate oxidation and high temperature combustion. Marine Chemistry, 1, 211-229.

Sharp, J. H., Suzuki, Y. & Munday, W. L. 1988. Inter comparison of dissolved organic carbon analyses in estuarine and coastal waters of the North Atlantic Ocean. **EOS**, 69,1134.

Shimadzu Corporation, 1989. Instruction Manual, Total Organic Carbon Analyzer, Auto Sample Injection, Model ASI-502, CM 393-070 and 638,90887. Kyoto, Japan.

Sugimura, Y. & Suzuki, Y. 1988. A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Marine Chemistry, 24, 105-131.

US Environmental Protection Agency, 1983. Methods for Chemical Analysis of Water and Wastes. Environmental Reseach Center, Cincinnati, Ohio.

Williams, P. M. and E. R. M. Druffel, 1988. Dissolved Organic Matter in the Ocean: Comments on a Controversy. Oceanography, 1:1, 14-17.

APPENDIX A. Tables of Statistics

Tables of statistics are given for each monitoring cruise (Tables A1 - A9) and for the combined data set (Table A10). The information presented in the tables includes:

- (1) Statistics on DOC concentrations for each method and for the difference between methods;
- (2) Results of ANOVA regressions of Shimadzu measurements on OI DOC measurements;
- (3) Results of ANOVA regressions of the difference between methods (Shimadzu OI) on OI DOC measurements; and
- (4) QA/QC information.

Table A1: BAY112; January 8 - 9, 1990

	<u>N</u>	Mean	Std.Dev.	Min.	Max.
SHIM DOC	50	3.897	0.518	3.060	5.010
OI DOC	50	3.459	0.465	2.680	4.630
SHIM - OI	50	0.439	0.239	-0.020	1.110

DOC Methods Comparisions

A 3. T	OVA
ΔΝ.	() V A

Source	<u>DF</u>	Sum Squares	Mean Square	<u>F</u>
Regression	1	10.347	10.347	177.96
Deviation	48	2.791	0.058	
Total	49	13.137		

Linear Regression:

Y = 0.477 + 0.989 * X

Y = SHIM DOC X = OI DOC

 $r^2 = 0.7876$

DOC Methods Differences

ANOVA

Source	<u>DF</u>	Sum Squares	Mean Square	<u>F</u>
Regression	1	0.001	0.001	0.022
Deviation	48	2.791	0.058	
Total	49	2.792		

Linear Regression:

Y = 0.477 - 0.011 * X

Y = DOC Difference (SHIM - OI)

X = OI DOC $r_2 = 0.0005$

			QA/QC			
Instrument: OI	<u>N</u>	Mean	<u>St</u>	d.Dev.	Min.	Max.
Duplicate Diff.	46	0.202	0.3	141	0.000	0.770
Rel. Per. Recovery	, 8	101.984	1.6	3 68	99.933	103.951
Recovered Conc.	8	4.151	0.3	128	3.995	4.320
Instrument: SHIM	<u>N</u>	Mean	St	d.Dev.	Min.	Max.
Duplicate Diff.	10	0.090	0.0	099	0.010	0.340
Rel. Per. Recovery	6	100.925	3.4	459	96.165	105.928
Recovered Conc.	6	3.077	0.5	258	2.740	3.460

Table A2: BAY113; February 5 - 6, 1990

	<u>N</u>	Mean	Std.Dev.	Min.	Max.
SHIM DOC	51	3.984	0.507	2.770	5.530
OI DOC	51	3.536	0.494	2.590	4.720
SHIM - OI	51	0.448	0.392	-0.735	1.320

DOC Methods Comparisions ANOVA

		- Au	10 111	
Source	$\overline{\mathbf{DF}}$	Sum Squares	Mean Square	<u>F</u>
Regression	1	6.190	6.190	45.47
Deviation	49	6.670	0.136	
Total	50	12.860		

DOC Methods Differences

ANOVA

		AHOVA					
Source	<u>DF</u>	Sum Squares	Mean Square	$\underline{\mathbf{F}}$			
Regression	1	1.005	1.005	7.380			
Deviation	49	6.670	0.136				
Total	50	7.674					

Linear Regression: Y = 1.464 - 0.287 * X

D

Y = DOC Difference (SHIM - OI)

X = OI DOC $r^2 = 0.1309$

			QA/QC		
Inst: OI	<u>N</u>	<u>Mean</u>	Std.Dev.	Min.	Max.
Duplicate Diff.	48	0.221	0.141	0.000	0.470
Rel. Per. Recovery	11	98.799	3.379	92.168	103.194
Recovered Conc.	11	3.901	0.263	3.355	4.225
Inst: SHIM	<u>N</u>	Mean	Std.Dev.	Min.	Max.
Duplicate Diff.	30	0.265	0.161	0.020	0.530
Rel. Per. Recovery	8	101.776	3.360	97.540	106.973
Recovered Conc.	8	3.121	0.230	2.830	3.470

Table A3: BAY114; March 5 - 6, 1990

	<u>N</u>	<u>Mean</u>	Std.Dev.	Min.	Max.
SHIM DOC	52	3.917	0.483	3.080	6.015
OI DOC	52	3.243	0.463	2.275	5.015
SHIM - OI	52	0.675	0.220	0.060	1.135
		DOC Methods	•	e.	
Source	$\underline{\mathbf{DF}}$	Sum S	quares Me	an Square	<u>F</u>
Regression	1	9.4	162	9.462	195.18
Deviation	50	2.4	24	0.048	
Total	51	11.8	886		

Linear Regression:

Y = 0.899 + 0.931 * X

Y = SHIM DOCX = OI DOC $r^2 = 0.7961$

DOC Methods Differences

Source	<u>DF</u>	ANOVA Sum Squares	Mean Square	<u>F</u>
Regression	1	0.052	0.052	1.078
Deviation	50	2.424	0.048	
Total	51	2.476		

Linear Regression:

Y = 0.899 - 0.069 * X

Y = DOC Difference (SHIM - OI)

X = OI DOC $r^2 = 0.0211$

		QA/Q	C		
Inst: OI	<u>N</u>	Mean	Std.Dev.	Min.	Max.
Duplicate Diff.	50	0.095	0.095	0.000	0.420
Rel. Per. Recovery	10	99.734	3.450	95.334	104.318
Recovered Conc.	10	3.975	0.256	3.630	4.310
Inst: SHIM	N	Mean	Std.Dev.	Min.	Max.
Duplicate Diff.	25	0.085	0.051	0.010	0.260
Rel. Per. Recovery	13	102.247	4.765	96.125	115.920
Recovered Conc.	13	3.147	0.317	2.690	4.030

Table A4: BAY116; April 9 - 13, 1990

Duplicate Diff.

Rel. Per. Recovery Recovered Conc.

			*		
	<u>N</u>	Mean	Std.Dev.	Min.	Max.
SHIM DOC	53	4.041	0.660	3.005	6.360
OI DOC	53	3.731	0.808	2.475	6.705
SHIM - OI	53	0.310	0.492	-0.875	2.040
			Comparisions OVA		
Source	<u>DF</u>	Sum S	quares Mea	an Square	<u>F</u>
Regression	1	14.:	252	14.252	86.637
Deviation	51			0.165	
Total	52		642	0.100	
Total	02	22.	042		
Linear Regression:	Y = 1.624 +	0.648 * X			. 4
		SHIM DOC			
		DI DOC			3
		0.6295			
	r = 0	0.0290			
			s Differences		
			OVA		
Source	$\overline{ ext{DF}}$	<u>Sum S</u>	quares Mea	in Square	$\underline{\mathbf{F}}$
•					0.5.004
Regression	1		217	4.217	25.634
Deviation	51		390	0.165	
Total	52	12.	607		
	A STATE OF THE STA				*
Linear Regression:	Y = 1.624 - 0				
	Y = I	OOC Difference	e (SHIM - OI)		
	X = 0	OI DOC			
	$r^2 = 0$	0.3345			
		,			
		QA	/QC		
Inst: OI	<u>N</u>	Mean	Std.Dev.	Min.	Max.
msc. OI	<u> </u>	<u> </u>	Dou.Dev.	141111.	<u>max.</u>
Duplicate Diff.	50	0.100	0.120	0.000	0.480
Rel. Per. Recovery	9	99.345	2.823	96.190	103.569
Recovered Conc.	9	3.939	0.219	3.700	4.255
					~ ~
Inst: SHIM	<u>N</u>	Mean	Std.Dev.	Min.	<u>Max.</u>

0.138

100.155

3.016

0.132

3.508

0.241

0.010

96.931

2.780

35

7

7

0.520

105.933

3.410

Table A5: BAY117; April 16 - 17, 1990

14310 1201 2211111,	p	.,				
	N	Mean	Std.Dev.	Min.	Max.	
SHIM DOC	52	4.091	0.484	3.040	5.280	
OI DOC	52	3.545	0.530	2.315	4.965	
SHIM - OI	52	0.546	0.260	0.045	1.350	
		DOC Methods Comparisions ANOVA				
Source	<u>DF</u>	Sum S	quares Me	ean Square	<u>F</u>	
Regression	1	9.0	180	9.080	158.87	
Deviation	50	2.8		0.057	100.07	
Total	51	11.9		0.001		
Total	91	11.	700			
Linear Regression	Y = 1.270 +	0.796 * X				
Diffeat Regression		SHIM DOC				
		OI DOC				
		0.7606				
	•					
		DOC Method	s Differences			
		ANC				
Source	$\overline{\mathbf{DF}}$	Sum S	quares Me	ean Square	$\underline{\mathbf{F}}$	
		•			_	
Regression	1	0.5	98	0.598	10.471	
Deviation	50	2.8	58	0.057		
Total	51	3.4	56			
Linear Regression:	Y = 1.270 -	0.204 * X				
	Y =	DOC Difference	e (SHIM - OI)			
		OI DOC				
	$r^2 =$	0.1732				
		QA/	QC			
				~ ~.		
Inst: OI	<u>N</u>	Mean	Std.Dev.	$\underline{\mathbf{Min.}}$	Max.	
Decelled Diff	50	0.000	0.077	0.000	0.260	
Duplicate Diff.	50	0.082	0.077	0.000	0.360	
Rel. Per. Recovery	8	95.604	1.802	92.658	97.813	
Recovered Conc.	8	3.663	0.141	3.420	3.820	
Inst: SHIM	<u>N</u>	<u>Mean</u>	Std.Dev.	Min.	Max.	
IIISU. DIIIIVI	14	Mean	DM.Dev.	141111.	Max.	
Duplicate Diff.	30	0.133	0.135	0.010	0.500	
Rel. Per. Recovery	8	99.547	2.097	95.759	101.770	
Recovered Conc.	8	2.965	0.147	2.690	3.120	
recovered Conc.	O ,	2.000	0.141	2.000	0.120	

Table A6: BAY118; May 14 - 15, 1990

	<u>N</u>	Mean	Std.Dev	Min.	Max.
SHIM DOC	49	4.405	0.519	3.360	5.885
OI DOC	49	3.769	0.598	2.530	5.330
SHIM - OI	49	0.636	0.341	-0.330	1.445
			ls Comparision	ns	
Source	<u>DF</u>		Squares	Mean Square	<u>F</u>
Regression	1	8	.742	8.742	98.137
Deviation	47	4	.187	0.089	
Total	48	12	2.929		
Linear Regression:	Y = 1.714 +	- 0.714 * X			
	Y =	SHIM DOC			
		OI DOC			
•		0.6762			

		DOC Methods Differen ANOVA	ces	
Source	<u>DF</u>	Sum Squares	Mean Square	<u>F</u>
Regression	1	1.401	1.401	15.728
Deviation	47	4.187	0.089	
Total	48	5.588		
Linear Regression:	Y = 1.714 - 0.5	286 * X		
	Y = D	OC Difference (SHIM -	OI)	
	X = O	I DOC		
	$r^2=0.$	2507		

		QA/Q	C		
Inst: OI	<u>N</u>	Mean	Std.Dev.	Min.	Max.
Duplicate Diff.	49	0.124	0.103	0.000	0.380
Rel. Per. Recovery	10	98.919	3.444	90.340	102.643
Recovered Conc.	10	3.900	0.300	3.120	4.180
Inst: SHIM	<u>N</u>	Mean	Std.Dev.	Min.	Max.
Duplicate Diff.	9	0.141	0.156	0.000	0.480
Rel. Per. Recovery	6	98.900	1.537	96.658	100.949
Recovered Conc.	6	2.917	0.116	2.750	3.070

Table A7: BAY119; May 29 - June 1, 1990

	<u>N</u>	<u>Mean</u>	Std.Dev.	Min.	Max.
SHIM DOC	49	4,372	0.940	2.950	7.325
				2.620	7.295
OI DOC	48	4.122	1.084		i de la companya de
SHIM - OI	48	0.273	0.587	-2.945	1.415
		DOC Methods (
Source	DF	Sum Sq		Iean Square	<u>F</u>
<u> </u>		<u> </u>			-
Regression	1	29.1	78	29.178	110.95
Deviation	46	12.0	97	0.263	
Total	47	41.2			
Total	41	41.2	10		
Linear Regression:	Y = 1.398 + 0	727 * X			
Bilical Reglession.		SHIM DOC			
		DI DOC			
	$\mathbf{r}^2 = 0$	0.7069			
		DOC Methods	Differences		
		ANO			
Source	$\overline{\mathbf{DF}}$	Sum Sq		Iean Square	\mathbf{F}
Source	DI	<u>Dum bq</u>	uares 1	ican oquare	<u> </u>
Domession	1	4.11	ıs	4.115	15.647
Regression					10.041
Deviation	46	12.0		0.263	
Total	47	16.2	12		
Linear Regression:	Y = 1.398 - 0	.273 * X			
	Y = I	OOC Difference	(SHIM - OI)		
		DI DOC			
			44 - 12 - 1		
	$\mathbf{r} = \mathbf{t}$).2538			
	•				
		QA/Q			
Inst: OI	<u>N</u>	Mean	Std.Dev.	Min.	<u>Max.</u>
					-
Duplicate Diff.	46	0.146	0.126	0.010	0.540
Rel. Per. Recovery	11	99.223	4.464	93.298	106.813
•		3.929		3.375	4.495
Recovered Conc.	11	5.929	0.367	ა.ა / ა	4.450
				3.51	3.6
Inst: SHIM	<u>N</u>	<u>Mean</u>	Std.Dev.	Min.	<u>Max.</u>
talia (in territoria) de la compansión de					

0.130

100.295

3.011

0.111

4.348

0.306

0.010

94.844

2.570

27

10

10

Duplicate Diff.

Rel. Per. Recovery

Recovered Conc.

0.420

111.078

3.750

Table A8: BAY120; June 11 - 13, 1990

	<u>N</u>	Mean	Std.Dev.	Min.	Max.
SHIM DOC	49	4.366	1.455	2.440	9.325
OI DOC	49	3.837	1.242	2.345	8.055
SHIM - OI	49	0.529	0.510	-1.900	1.355

DOC Methods Comparisions

Source	<u>DF</u>	ANOVA Sum Squares	Mean Square	<u>F</u>	
Regression	1	89.861	89.861	360.37	
Deviation	47	11.720	0.249		
Total	48	101.581			

Linear Regression: Y =

Y = 0.140 + 1.101 * X

Y = SHIM DOC X = OI DOC $r^2 = 0.8846$

DOC Methods Differences

		ANOVA		
Source	$\underline{\mathbf{DF}}$	Sum Squares	Mean Square	<u>r</u>
Regression	1	0.761	0.761	3.051
Deviation	47	11.720	0.249	
Total	48	12.481		
Linear Regression:	$V = 0.140 \pm 0.10$	11 * X		

Y = DOC Difference (SHIM - OI)

X = OI DOC $r^2 = 0.0610$

		QA/Q	2C		
Inst: OI	<u>N</u>	Mean	Std.Dev.	Min.	Max.
Duplicate Diff.	47	0.083	0.084	0.000	0.420
Rel. Per. Recovery	8	98.679	4.768	87.324	101.530
Recovered Conc.	8	3.903	0.362	3.055	4.145
Inst: SHIM	<u>N</u>	Mean	Std.Dev.	Min.	Max.
Duplicate Diff.	44	0.089	0.076	0.000	0.310
Rel. Per. Recovery	6	98.864	1.655	96.204	100.753
Recovered Conc.	6	2.907	0.130	2.710	3.050

Table A9: BAY121; June 25 - 26, 1990

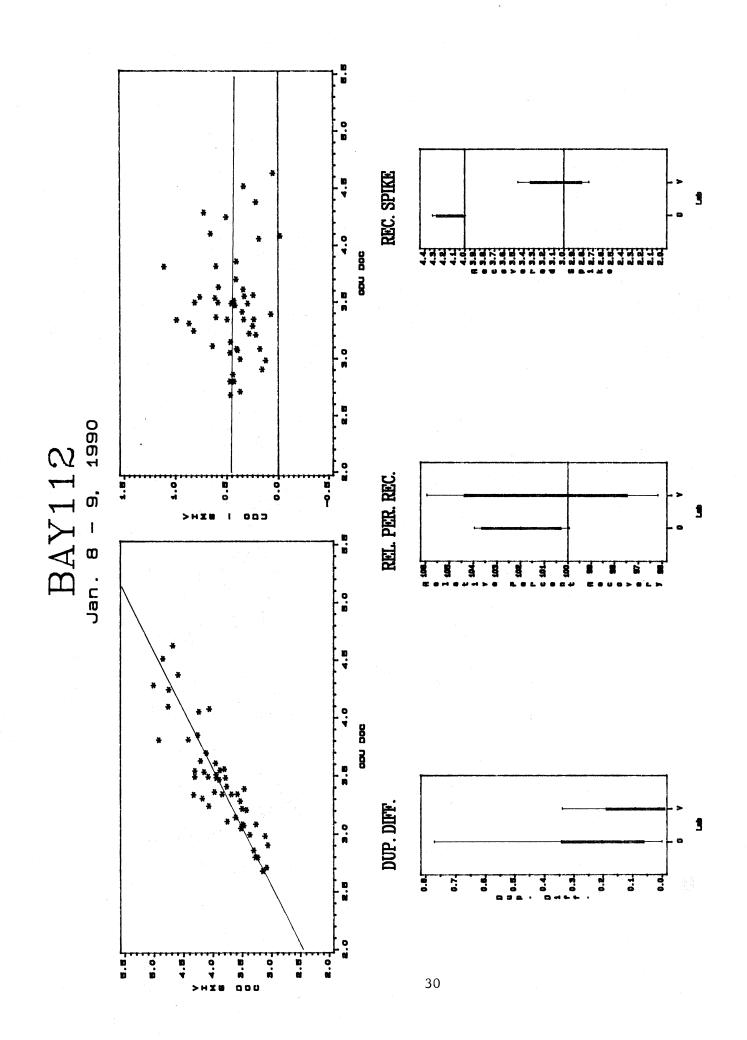
	_				
	<u>N</u>	Mean	Std.Dev.	Min.	Max.
SHIM DOC	49	4.853	1.389	2.970	9.235
OI DOC	49	4.458	1.411	2.595	9.820
SHIM - OI	49	0.395	0.341	-0.585	1.180
Similar - O1	40	0.000	0.041	0.000	1.100
		DOC Methods ANO			
Source	<u>DF</u>	Sum So	uares <u>Me</u>	an Square	$\underline{\mathbf{F}}$
Regression	1 :	87.2	30	87.230	759.23
Deviation	47	5.40		0.115	
Total	48	92.6			
Linear Regression:	X = C	0.956 * X SHIM DOC DI DOC 0.9417			
		•			
		DOC Methods		•	
		ANO		_	
Source	$\overline{\mathbf{DF}}$	Sum Sc	<u>juares Me</u>	an Square	$\underline{\mathbf{F}}$
Regression	1	0.18	89	0.189	1.644
Deviation	47	5.40		0.115	2.011
Total	48	5.58		0.220	
10001	10	0.00			
Linear Regression:		OOC Difference OI DOC	(SHIM - OI)		
		0.4.//	20		
Inst: OI	NT.	QA/0	-	M:-	Mari
inst: Oi	<u>N</u>	Mean	Std.Dev.	Min.	Max.
Duplicate Diff.	48	0.111	0.086	0.000	0.370
Rel. Per. Recovery	10	100.096	5.753	90.261	107.869
Recovered Conc.	10	3.992	0.463	3.290	4.615
2,000,0104 00,101		0.002		0.200	2.020
Inst: SHIM	<u>N</u>	Mean	Std.Dev.	Min.	Max.
Duplicate Diff.	26	0.102	0.091	0.000	0.360
Rel. Per. Recovery	6	98.671	1.497	96.446	100.554
Recovered Conc.	6	2.903	0.109	2.780	3.060
	J	-			

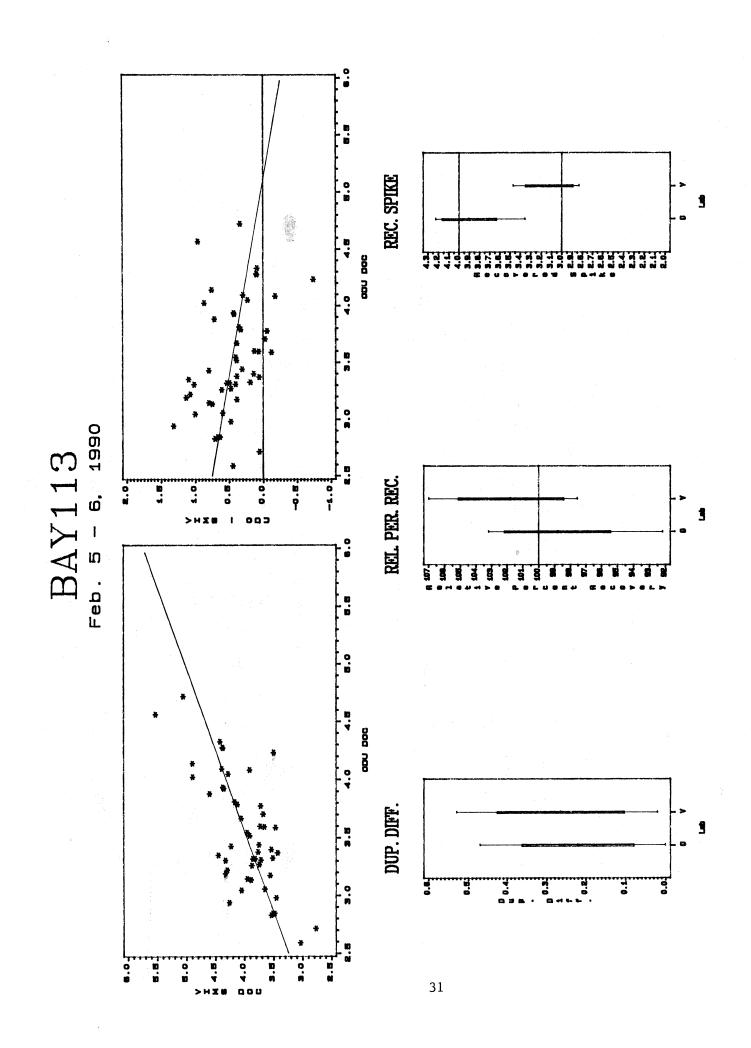
Table A10: Combined Data Set; January - June, 1990

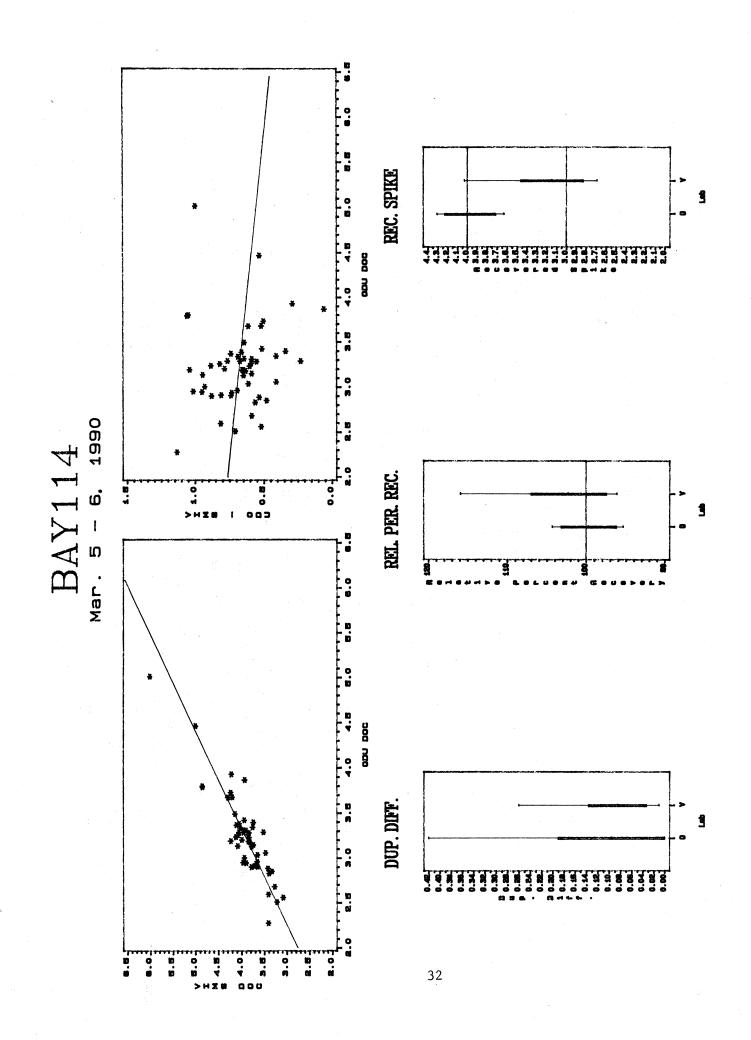
	NT:		Ct 1 D	Min	Mon ·
	<u>N</u>	Mean	Std.Dev.	Min.	Max.
SHIM DOC	454	4.208	0.893	2.440	9.325
OI DOC	453	3.737	0.914	2.275	9.820
SHIM - OI	453	0.473	0.411	-2.945	2.040
]	DOC Method	s Comparision	ıs	
•		AN	OVA		
Source	<u>DF</u>	Sum S	<u>Squares</u>	Mean Square	<u>F</u>
Regression	. 1	289	9.439	289.439	1849.16
Deviation	451	70	.593	0.157	
Total	452	360	0.032		
Linear Regression:	Y = 0.938 + 0	.875 * X		•	
	Y = S	HIM DOC			
	X = O	I DOC			
	$\mathbf{r}^2 = 0$.8039	tik i j		
		DOC M. I	ı D.W		

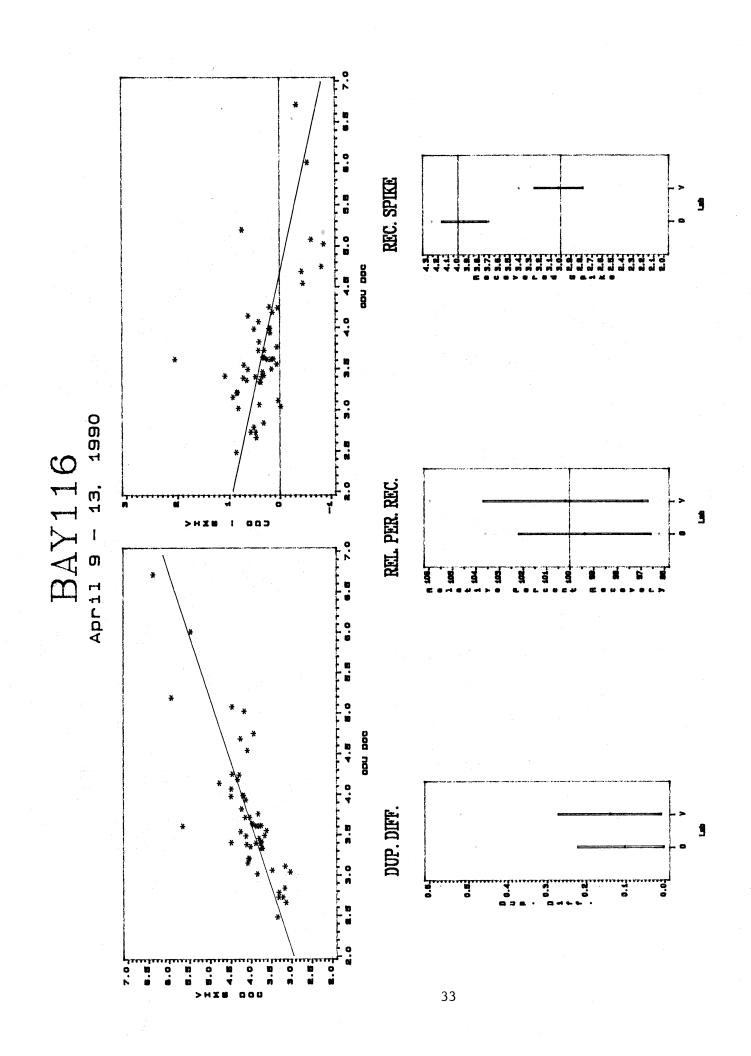
DOC	Metho	ds Dif	ferences
-----	-------	--------	----------

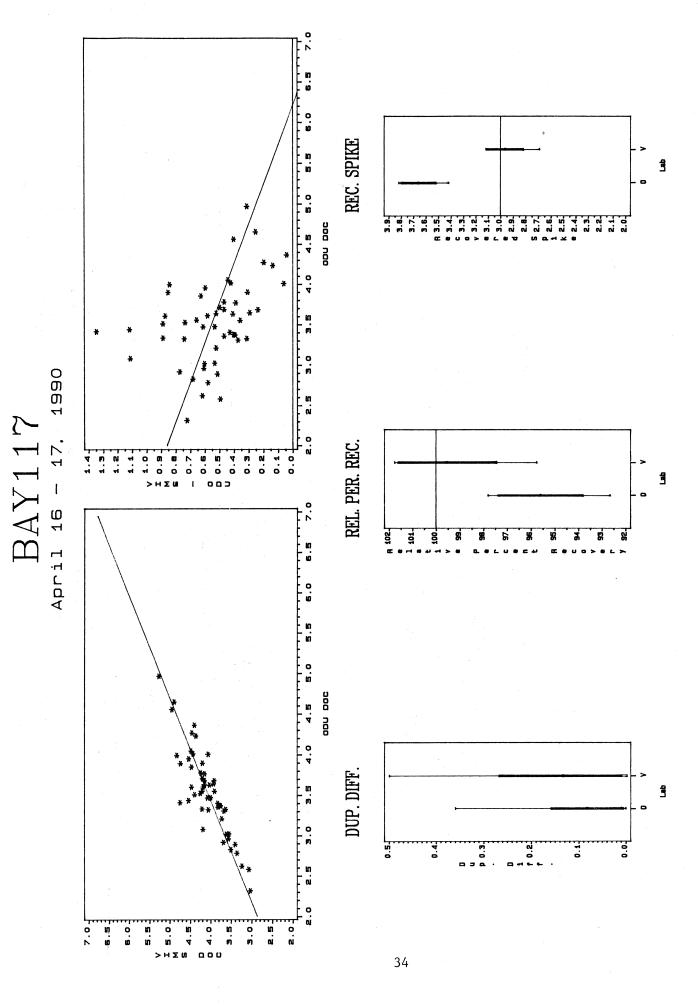
<u>DF</u>	ANOVA Sum Squares	Mean Square	<u>F</u>
1	5.859	5.859	37.431
451	70.593	0.157	
452	76.451		
Y = DC	OC Difference (SHIM -	OI)	
		ANOVA <u>DF</u> Sum Squares 1 5.859 451 70.593 452 76.451 Y = 0.938 - 0.125 * X	DF Sum Squares Mean Square 1 5.859 5.859 451 70.593 0.157 452 76.451 Y = 0.938 - 0.125 * X Y = DOC Difference (SHIM - OI)

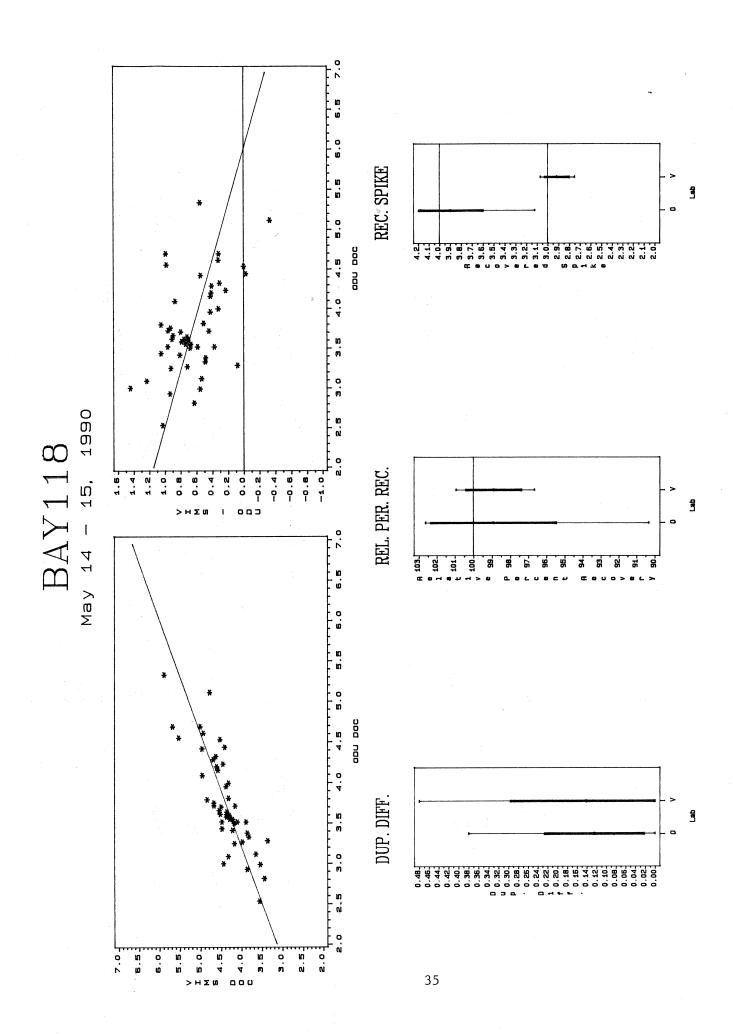

X = OI DOC $x^2 = 0.0766$

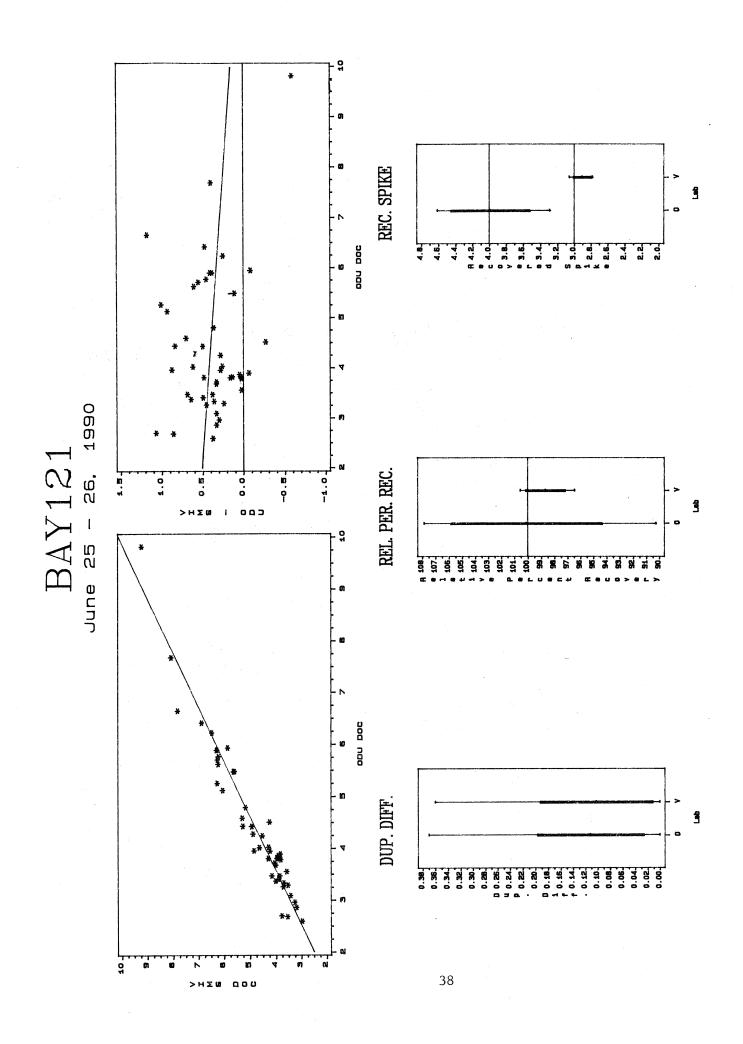

QA/QC					
Inst: OI	<u>N</u>	Mean	Std.Dev.	Min.	Max.
Duplicate Diff.	434	0.129	0.119	0.000	0.770
Rel. Per. Recovery	85	99.176	3.891	87.324	107.869
Recovered Conc.	85	3.929	0.308	3.055	4.615
Inst: SHIM	<u>N</u>	Mean	Std.Dev.	Min.	Max.
Duplicate Diff.	236	0.132	0.126	0.000	0.530
Rel. Per. Recovery	70	100.400	3.481	94.844	115.920
Recovered Conc.	70	3.023	0.241	2.570	4.030

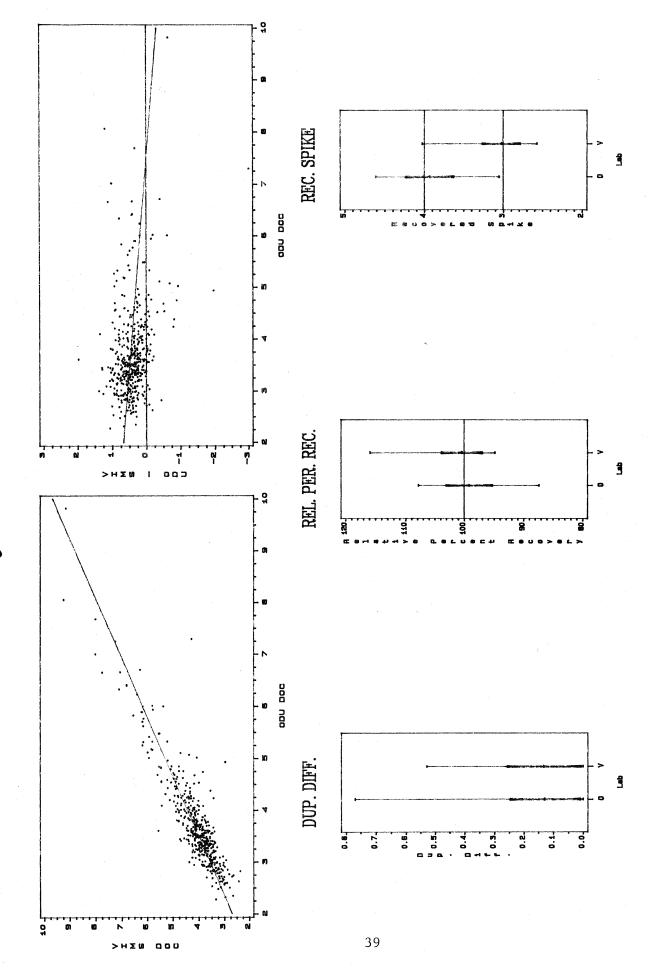

APPENDIX B. GRAPHICAL DISPLAY OF STATISTICS


The data have been plotted for each monitoring cruise (BAY 112 to BAY 120) and for the combined data set (January - June, 1990). The figures include:


- (1) VIMS DOC concentrations (using the Shimadzu method) versus ODU DOC concentrations (using the OI method);
- (2) The difference between methods (VIMS ODU,
 that is, Shimadzu OI) versus ODU DOC
 concentrations (using the OI method);
- (3) Box-and-whisker diagrams showing QA/QC information for both ODU (0) and VIMS (V); The boxes represent +/- one standard deviation from the mean, and the whiskers represent the maximum and minimum values.
- (3a) The difference between duplicate samples;
- (3b) The relative percent recovery (See text for definition of this term); and
- (3c) The recovery of the spike.







REC. SPIKE 900 DOG 1990 $\mathrm{BAY119}$ REL. PER. REC. £. 3 000 29 May 000 nao 3.0 9.03 4 36

January - June, 1990

