Creating Meteorology for CMAQ

Tanya L. Otte*
Atmospheric Sciences Modeling Division
NOAA – Air Resources Laboratory
Research Triangle Park, NC

* On assignment to the National Exposure Research Laboratory, U.S. EPA

CMAQ Model Peer Review
17-18 December 2003

Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.
Meteorology Inputs for AQ Models

- Simple AQ models: diagnostic techniques for met
- RADM: Initialize with 4-D met model output where FDDA used for “dynamic analysis”
- CMAQ: Same as RADM, but enhanced (off-line) coupling between met and chemistry models
- Prognostic met models now standard input for state-of-science Eulerian chemistry models
Meteorology: Strong Influence on AQM

- Literature frequently cites influence of met model output on AQM simulation (cf., Seaman, AE, 2000; Pielke and Uliasz, AE, 1998)
- Errors in met simulation of winds, temperatures, clouds, PBL evolution, surface fluxes, precipitation reflected in AQM simulations
- Thus…important for AQ research to also pursue improvements in met models!
Meteorology Models and CMAQ

- CMAQ “generalized coordinate” (Byun, JAS, 1999) for maximum compatibility with input met model
- Handful of met models linked to CMAQ: MM5 (hydro), MM5 (non-hydro), RAMS, Eta
- Others independently by users (MC2, REMO)
- In practice, MM5 (non-hydro) generally used, and WRF planned
About MM5...

- Makes use of 3-D equations for:
 - Momentum
 - Thermodynamics
 - Moisture
- Non-hydrostatic model: pressure, temperature, and density defined by reference state and perturbations from reference state
About MM5… (continued)

- State variables are:
 - Temperature
 - Mixing Ratio
 - Grid-relative wind components
 - Pressure

- State variables are mass-weighted with a modified surface pressure
About MM5… (continued)

- Vertical coordinate is terrain-following σ, a function of reference pressure (a.k.a., σ-Z)
- FDDA via nudging used for AQM
- In AMD, usually use $\sim 30 \, \sigma$ layers with ~ 5 layers in lowest 200 m
- Output in binary “MM5” format (not I/O API, like CMAQ programs)
Inputs to MM5

- Soil Texture
- Elevation
- Land Use
- Vegetation
- Parent domain
- Coarse Met
- SST
- Snow
- Obs
- User Defs
- Tables
Simulation Length

- MM5 Simulation (108 hours)
- Data available for CCTM (96 hours)
- 12 hours to allow clouds and other processes to spin up in MM5
MM5 Output Variables Used in CMAQ

- Wind Components (U, V, W)
- Temperature (3-D, ground, soil)
- Moisture Mixing Ratios (Q_v, Q_r, Q_c, Q_s, Q_i, ...)
- Pressure ("surface" and perturbation)
- PBL Parameters (PBL height, u^*, MOL, heat fluxes)
- Precipitation
- Static Variables (latitude, land use, ...)
- Others as needed...e.g., with Pleim-Xiu LSM
Linking Meteorology to Chemistry

- Currently done “off-line”
- Use CMAQ pre-processor, **MCIP**, which…
 - Retrieves prognostic meteorology variables
 - Diagnoses additional state variables for CMAQ
 - Transforms fields to generalized vertical coordinate
 - Interpolates fields to Arakawa-C grid
 - Calculates dry deposition velocities
 - Writes meteorology in I/O API format (std for CMAQ)
MCIP Version 2

- Major update to original MCIP software
 - Supports MM5v2 and MM5v3
 - “Pass-through” for PBL variables
 - Supports Pleim-Xiu LSM
 - Improved dry deposition routines
 - User-friendly

- Current release is MCIPv2.2 (June 2003)
Planned Upgrades to MCIP

- Improve linkage with MM5
 - NOAH LSM
 - Add’l prognostic fields (e.g., 2-m temperatures)
 - TKE PBL
 - Graupel-based microphysics
- Linkage with WRF
Meteorology Research Topics

- Pleim-Xiu LSM … in MM5v3.4 and beyond
- Linkage with Eta and WRF
- “Fine-Scale” (~1 km) Modeling
- FDDA Strategies
- Evaluation Methods
- On-Line Chemistry
Why use a UCP?

- Want to improve urban simulations for ~1 km
- Parameterized roughness may not adequately account for heterogeneities in urban areas
- UCP allows for more specific treatment of urban contributions to dynamics and thermodynamics
- Ultimately want to run CMAQ to simulate photochemical pollutant species at that scale
Practical Difficulties for UCP in MM5

- Land Use – need more urban “stratification”
- Morphology – need realistic database
- Surface Properties – tabular OK?
- Drag Coefficient – appropriate setting here?
- Vertical Resolution Increase
- Verification Data – field study data?
About the UCP

- Based on Brown and Williams “drag approach”
- Applied in 1.3-km and 1-km MM5 simulations
- Directly impacts grid cells with non-zero urban
- Drag and TKE effects due to urban structures
- Anthropogenic heat as time-varying function
- Extinction of radiation in city canyons
- Roof top contribution by temperature proxy
Implementing the UCP in MM5

- 40 layers: 12 in lowest 100 m
 - Typical setup has 30 layers, 3 in lowest 100 m
- Updates U, V, TKE in Gayno-Seaman PBL
- Energy modifications in RRTM, solve, slab
- Uses fractional land use categories
- Added new “urban zones” definitions
Pseudo-Morphology for Philadelphia
Temperature at Urban Site (ILG)
VWD RMSE at Five Urban Sites

![Graph showing RMSE values over time](image)
Summary of UCP

- UCP at 1.3-km tends to produce desired effects
 - Changes to wind, TKE, temperature
- UCP tends to be superior to 40-layer run without UCP and 30-layer run without UCP
- Comparisons with surface obs, PBL heights, and wind tunnel profiles all favorable for UCP
- Encouraging results…continue to pursue research
Advanced UCP

- Extend drag approach to all roughness elements inside canopy (buildings and vegetation)
- Couple drag approach to urban soil model (SM2-U from French SUB-MESO)
- Applied to both urban and rural areas
- Use actual urban morphology database
Meteorology Model Evaluation

- Many objective and subjective methods
- No “absolutely right” answer (issues with representativeness of obs on grid)
- Different methods for different scales
- Influence of spatio-temporal data density
- Statistics not only criteria for success… must still reproduce mesoscale circulations and other physical structures
Model Evaluation Methods

- Subjectively use visualization programs for meteorological “soundness”
- Statistical comparison to observations
 - Want to use all observations in model
 - May lose independent data set
- Satellite, Radar, Rain Gage
- Inferences from other “signatures” (e.g., sea breeze from ozone drop-off)
Automated Model Evaluation Tool

Observations
MADIS – BUFR – TEXT

Meteorology Model
MM5 – Eta – WRF

Observation-Model Matching Module

Model Evaluation Database
Record
Model, Station, Network, Lat-Lon, Date-Time, Elev., Landuse, Obs, Model Value

Queries Obs-Model pairs based on Criteria

Statistics are stored back into the database

Comprehensive Statistics Module

Model Performance Summary Report

Interactive Web-Based Interface
- Customized Statistics Queries
- Interactive Plots and Maps
Meteorology Evaluation Variables

- **Surface**: Temperature, Moisture, Wind Speed/Direction, Precipitation, Solar Radiation
- **Boundary Layer**: PBL height; near-surface Wind, Temperature, and Moisture profiles
- **Upper-air**: Wind, Temperature, and Moisture
Objective Evaluation Techniques

- Summary statistics (e.g., absolute error, bias, RMSE)
- Pattern matching statistics (e.g., index of agreement)

- Statistical summary available for:
 - Full-domain (all stations at all times for each variable)
 - Geographical subsets including individual stations
 - Observation networks
 - Temporal analysis: diurnal, monthly, seasonal periods
 - Weather conditions (e.g., hot or rainy weather)
Example: Eta (July-August 2003)
Met. Modeling Challenges for AQM

- Land-Surface and PBL modeling
- Fine-resolution modeling
 - Convection: parameterize vs. resolve
 - PBL: parameterize vs. LES
 - UCP
 - Point of diminishing returns???
- Radiation schemes and cloud simulations
- Nudging (special data, “boundaries”, WRF)
- Hardware to run “big” problem