Linking Eta to CMAQ for AQ Forecasting

Tanya L. Otte*
Atmospheric Sciences Modeling Division
NOAA - Air Resources Laboratory
Research Triangle Park, NC

* On assignment to the National Exposure Research Laboratory, U.S. EPA.

CMAQ Model Peer Review Meeting
R.T.P., NC
December 17, 2003

Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.
Practical and Technical Differences (1)

<table>
<thead>
<tr>
<th>Eta</th>
<th>CMAQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 layers</td>
<td>fewer (~22) layers</td>
</tr>
<tr>
<td>step-mountain vert.</td>
<td>terrain-following vert.</td>
</tr>
<tr>
<td>continental</td>
<td>northeast U.S.</td>
</tr>
<tr>
<td>rotated lat-lon</td>
<td>Lambert Conformal</td>
</tr>
<tr>
<td>Arakawa-E</td>
<td>Arakawa-C</td>
</tr>
<tr>
<td>$P_{TOP} = 25 \text{ hPa}$</td>
<td>$P_{TOP} = 100 \text{ hPa}$</td>
</tr>
</tbody>
</table>
Practical and Technical Differences (2)

<table>
<thead>
<tr>
<th></th>
<th>Eta</th>
<th>CMAQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-h output</td>
<td></td>
<td>1-h input</td>
</tr>
<tr>
<td>GRIB</td>
<td></td>
<td>I/O API (netCDF)</td>
</tr>
<tr>
<td>pressure-level output</td>
<td></td>
<td>terrain-following input</td>
</tr>
<tr>
<td>operational timelines</td>
<td></td>
<td>research environment</td>
</tr>
<tr>
<td>never linked to AQM</td>
<td></td>
<td>set up for MM5</td>
</tr>
<tr>
<td>one-shot simulation</td>
<td></td>
<td>adjust met as needed</td>
</tr>
</tbody>
</table>
Used by: MM5

Used by: Eta, NMM

Used by: CMAQ, RAMS
Technical Questions...

- Impact of multiple interpolations (horizontal and vertical structures) on mass conservation?
- Forecast model adequate input for CMAQ?
- Absence of FDDA through simulation?
- Handling different prognostic variables?
- CMAQ only “tuned” for MM5?
Why not use available Eta???

- Eta output processed at 3-h intervals for public
- Eta output generally available on pressure levels
- Several variables required for CMAQ not routinely available (e.g., PBL height, variables required for dry deposition velocity calculations)

- Thus...new software NOT “MCIP”
Eta-CMAQ AQF System

- Eta-12
- Eta Post
- PRDGEN
- PREMAQ
- CMAQ
- NetCDF to GRIB
- Verification Tools

Primary Components

- Modified by NOAA for AQF
- Developed by EPA for AQF
- Developed by NOAA for AQF

Modified by NOAA for AQF
Developed by EPA for AQF
Developed by NOAA for AQF
Changes to Eta at NCEP for AQF

- Hourly Eta output
- Hydrostatic σ-P structure to 100 hPa
- Additional forecast variables (PBL height, canopy conductance, plant canopy water, K_h, ...)
- New GRIB grids for AQF
Forecast Timeline

Day 1

- 48-hour CMAQ forecast required based on 12Z initialization to get desired 24-hour forecast period
- 24-hour CMAQ forecast for next day 04Z to 04Z (local midnight on East Coast)
- Extra 8 hours for 8-h avg O3
- Products by 1730Z

Day 2

- 30-hour CMAQ forecast required based on 06Z initialization to update current day forecast
- Update to CMAQ forecast for current day 06Z to 04Z (local midnight on East Coast)
- Extra 8 hours for 8-h avg O3
- Products by 1300Z
AQF Operational Timeline

Day 1: Forecast for Day 2

Day 2: Update Forecast for Day 2

Day 2: Forecast for Day 3

Day 3: Update Forecast for Day 3
Northeast U.S. Forecast Domain
AQF System Components

- **Eta Post**: Creates diagnostic variables and performs vertical interpolations from Eta to sigma
- **PRDGEN**: Performs horizontal interpolations to intermediate (Arakawa-A) grid
- **PREMAQ**: Uses Eta output to generate CMAQ-ready meteorology and emissions fields
- **NetCDF to GRIB**: Creates O_3 fields for users
Linking Eta to CMAQ: NCEP Software

- **Vertical interpolation – Eta Post**
 - Interpolates Eta output to 22 σ layers for CMAQ
 - ~12 layers below 2 km AGL
 - Lowest layer thickness ~39 m

- **Horizontal interpolation – PRDGEN**
 - Uses bi-linear interpolation and nearest neighbor
 - Interpolates to Arakawa-A, Lambert conformal grid for CMAQ model in Northeast U.S. domain
PREMAQ (Pre-processor for CMAQ)

- Equivalent to MCIP processor in standard CMAQ model system
- Places interpolated Eta data into required CMAQ variable structure
- Computes needed derived variables for CMAQ (e.g., air density, deposition velocity)
- New: calculates meteorologically-dependent emissions for CMAQ (biogenic, mobile source)
New in PREMAQ (vs. MCIP)

- GRIB reader (2-D slices vs. full 3-D fields, Arakawa-A)
- Grid geometry calculations
 - Different method of defining grids in GRIB
 - GRIB precision insufficient for lat/lon
- Modifications to use different suite of variables
- New dry deposition routine
- Streamlined to reduce extraneous output
- Meteorology-dependent emissions included
Emissions for AQF

Point Sources
Pre-computed temporal emissions factors with met-dependent plume rise effects calculated each hour

Area Sources
Pre-computed for each day of year

Mobile Sources
Pre-computed emissions factors from MOBILE 5b with hourly temperature-dependent effects

Biogenic Sources
BEIS-3 using Eta temperature and radiation