Fishery ecosystem reference points for stock dynamics

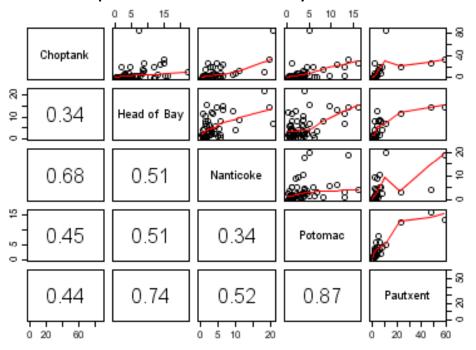
Thomas Miller
Chesapeake Biological Laboratory
Chair, Stock Dynamics QET

Home truths

- Informed decision making requires goals, status determination, and control rules that inform action
 - Indicators provide indication on current status and the trajectory of change
 - Reference points are elements of control rules that trigger action
- EBFM will require multiple indicators and reference points
- A variety of species respond to common environmental, habitat, exploitation and socioeconomic drivers, although their individual responses may differ.
- Indicators and reference point development focused on 5 keystone species
- Improvements in single species management will benefit EBFM, but by themselves will not "evolve" into EBFM

EBFM at the single species level

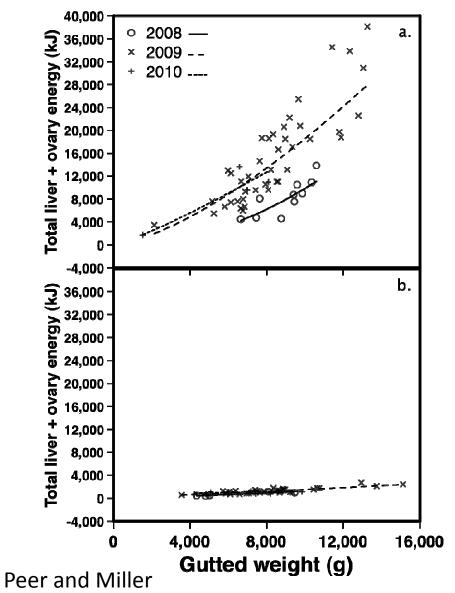
- Establish total mortality reference points (Z), not just fishing mortality (F) reference points
 - Z is often easier to measure than F
 - Z is what matters for sustainability, therefore setting the framework for EBFM
 - Reflects ecosystem considerations either implicitly or explicitly
 - Assess pattern of variability in Z
- Set F < M for all species
 - Considerable evidence of problems when F > M
 - Consider $F = x \cdot M$ policies

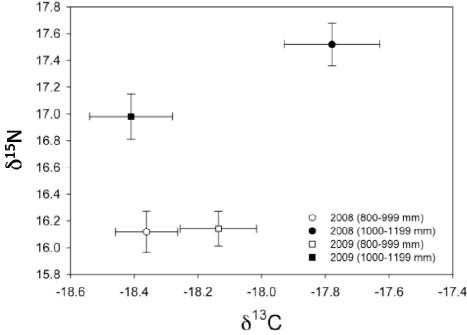

Abundance and structural reference points

- Establish abundance-based reference points for all species
 - Available for some species already, but all should be defensible, non-arbitrary goals
 - Higher N promotes reduced variability in recruitment
 - Higher N confers resilience to environmental stressors
- Consider population structure when establishing N-based reference points
 - Maintain and protect intra-population biodiversity
 - "Portfolio effect"

Population connectivity is common

- Demonstrated in white perch, striped bass. Likely present in menhaden, alosines and oysters
- Multiple sub-stocks provide insurance against failures of single year classes
- Establish sub-population reference points
- Explicit links to habitat fragmentation and habitat QET


Striped bass seine survey correlations



Age- and size-diversity indicators

- Maintain age diversity
 - Insurance against temporal variability
 - N-based or diversity based reference points possible
- Consider maternal effects
 - Some mothers are more "successful" than others
 - Clearly demonstrated in cod, & pacific rockfishes etc
 - Strong evidence in lab for striped bass
 - Growing evidence for striped bass in the field both inter- and intra-annually

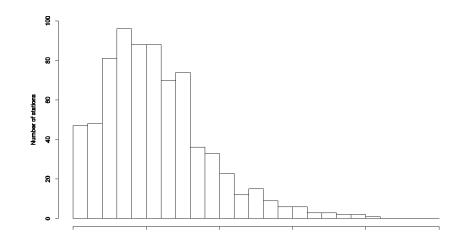
Maternal effects in striped bass

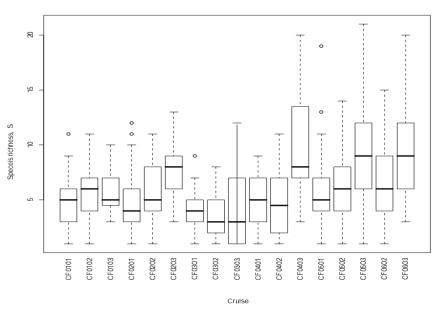
- Inter-annual differences in energetic investment in spawning
- Linked to inter-annual differences in previous feeding history
 - Large females in 2009 had a lower trophic position and more marinebased diets
 - Suggesting role of menhaden?

Ecosystem-based indicators and reference points

- Consider indicators and reference points at different levels
 - Species groups reflective of alternative "uses" involving specific interactions known to occur
 - E.g., menhaden striped basses
 - Ecosystem level reflective of emergent properties that arise only at this level
 - E.g., total system yield lower and less variable than the sum of the yields of individual species

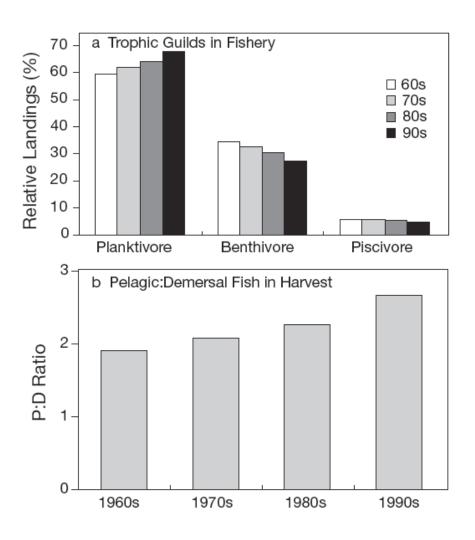
"Allocation" reference points


- Single species approach assumes all surplus production can be allocated to catch
- Ecosystem-based approach recognizes surplus production is required to support ecosystem services
 - Surplus production of prey should be allocated to support predators
 - Expressed as either a specification allocation (biomass) or an exploitation rate (M2)

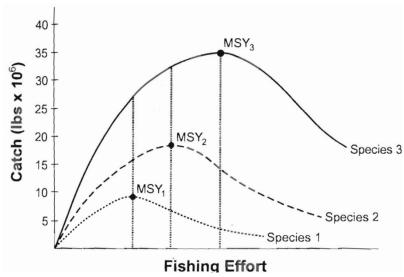

Striped bass / Menhaden

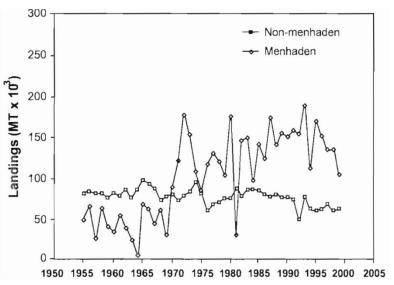
- Estimate the trophic demand of striped bass population as a function of their abundance
 - Using EwE evaluate the potential of the ratio of striped bass to menhaden as an indicator of status
 - What is the inherent variability in the ratio?
 - What levels of removals lead to "preferred" ratio?
 - How responsive is the ratio to changes in harvest of either striped bass or menhaden?
- Multispecies surplus production models offer one pathway to explore this interaction to develop reference points

System indicators


- Indicators of system status
 - Monitor diversity and evenness metrics of surveys and catch
 - History of analysis
 - Track multivariate Index of system status
- Indicators provide information on the direction of change

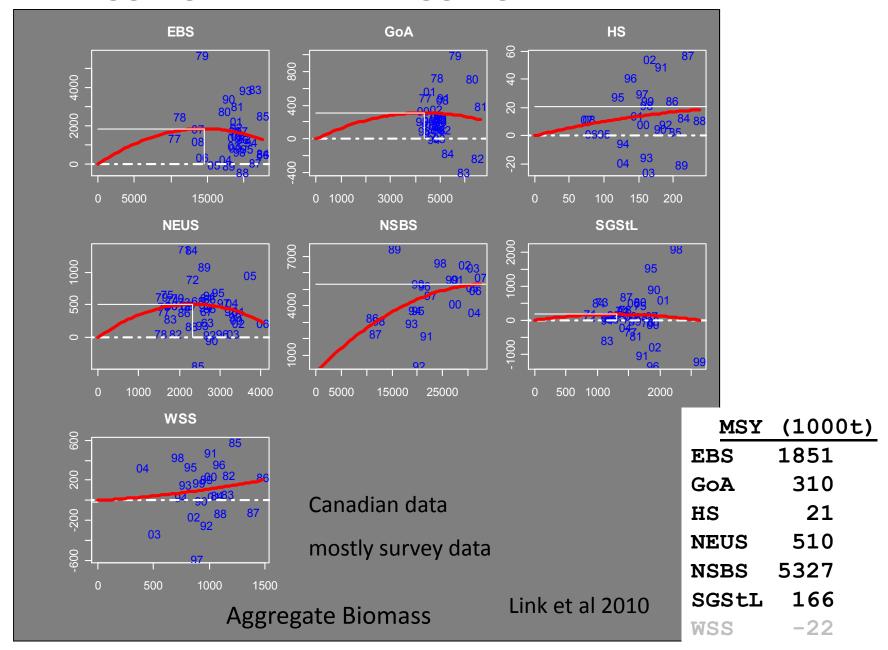
Miller et al 2007


Other possible system indicators



- Ratio of benthic: pelagic biomass as in indicator of eutrophication
- Size-spectra
 - The distribution of biomass by size class shows a predictable relationship
 - Deviations from the prediction may indicate distburbance

Ecosystem-based reference points


- EBFM involves trade-offs
- Ecosystem properties may not be the sum of its parts
 - Emergent properties
 - Aggregate catch is less variable than individual catch time series

FFEPTAP 2006

Aggregate ASP vs. aggregate biomass

Ecosystem-level reference points

- Promote application of aggregate surplus production modeling to generate ecosystem-level reference points
- As an interim establish an empirical system-level catch limit ~ 300,000 mt (CFEPTAP 2006).
 - Promotes explicit recognition of trade-offs
 - Recognizes system level limits to production

How to move forward

- Many of the proposed steps require improvements to fishery-dependent and fishery-independent data
 - Invest in data infrastructure
 - QA/QC on catch records
 - Improvement, standardization and rationalization of scientific surveys
 - Application of new technologies
- Many of these proposed steps involve enhancements to the regions ability to conduct stock assessments
 - Invest in capacity building
 - Student training
 - Staff development
 - Regional consortia

