Watershed Modeling for Nanosilver Risk Assessment

Amy Dale
Engineering and Public Policy

Elizabeth Casman, Ph.D.
Engineering and Public Policy

Gregory Lowry, Ph.D.
Civil and Environmental Engineering

Carnegie Mellon University

Quarterly Review
7-23-2013
Risk Assessment: Nanoparticles

- Nanotechnology is a multi-billion dollar industry

- Nanoparticles
 1. 1-100 nm
 2. Unique size-dependent properties

What are the implications of 2?
Nanosilver is the largest and fastest growing application of nanotechnology in consumer goods\(^1\)

- Broad-spectrum biocide
 - High surface-to-volume ratio \rightarrow rapid release of toxic Ag\(^+\)

- Fate and transport models needed to assess risk
Previous Work

Motivation

1. Environmental transformations determine nanosilver bioavailability and toxicity

Toxicity unknown ("particle effect?")

\[
\begin{align*}
\text{Ag}^0 & \xrightarrow{O_2, S_2} \text{Ag}_2S \text{ shell} \\
& \quad \text{(reduces dissolution)} \\
\text{O}_2 & \xrightarrow{S^{2-}} \text{Ag}_2S \\
\text{Ag}_{d^+} & \quad \text{Highly toxic, bioavailable} \\
\text{Ag}_{p^+} & \quad \text{"solid phase partitioning"} \\
& \quad \text{Non-toxic, not bioavailable}
\end{align*}
\]

2. Nanosilver aggregates with sediments. Sediment co-transport (advection, settling) and bed chemistry are key determinants of fate.
Adapt a conventional metal-sediment chemistry model (Di Toro et al., 1996) to describe chemical transformations of nanosilver in sediments.

Conceptual Model

Previous work

Conceptual Model

FeS Model

- Flux (J) of POC

 \[\text{CH}_2\text{O} + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} \]

 \[\text{FeS(s)} + \frac{9}{4}\text{O}_2 + \frac{3}{2}\text{H}_2\text{O} \rightarrow \text{FeOOH(s)} + 2\text{H}^+ + \text{SO}_4^{2-} \]

Anoxic Layer

- Particulate (Dₚ) & Diffusive Mixing (Dₐ)

 \[2\text{CH}_2\text{O} + \text{SO}_4^{2-} \rightarrow \text{S}^{2-} + 2\text{CO}_2 + 2\text{H}_2\text{O} \]

 \[\text{Fe}^{2+} + \text{S}^{2-} \rightarrow \text{FeS(s)} \]

Oxic Layer

- Flux (J) of O₂, NPs (Ag⁰ core + Ag₂S shell)

 \[\text{Oxidation:} \quad 2\text{Ag}^{0} + \frac{1}{2}\text{O}_2 + 2\text{H}^+ \rightarrow 2\text{Ag}^{+} + \text{H}_2\text{O} \]

 \[\text{Ag}_2\text{S (NP)} + 2\text{O}_2 \rightarrow 2\text{Ag}^{+} + \text{SO}_4^{2-} \]

 \[
 \text{Ag}_2\text{S (free)} + 2\text{O}_2 \rightarrow 2\text{Ag}^{+} + \text{SO}_4^{2-}
 \]

 \[
 2\text{Ag}^{+} + \text{FeS(s)} \rightarrow \text{Ag}_2\text{S (free)} + \text{Fe}^{2+}
 \]

 \[
 \text{Ag}^{+} \leftrightarrow \text{Ag} \equiv \text{POC, Ag} \equiv \text{FeOOH}
 \]

Silver Model

- Particulate (Dₚ) & Diffusive Mixing (Dₐ)

 \[2\text{Ag}^{+} + \text{FeS(s)} \rightarrow \text{Ag}_2\text{S (free)} + \text{Fe}^{2+} \]

 \[
 \text{Ag}^{+} \leftrightarrow \text{Ag} \equiv \text{POC, Ag} \equiv \text{FeOOH}
 \]

*Previous Work: Motivation | Objective | **Approach** | Key Findings*
Conclusion 1: Non-toxic Ag$_2$S dominates speciation, while toxic Ag$^+$ is present only at low concentrations (<0.01 wt-%)

Conclusion 2: Environmental conditions and seasonal variation are important!

- Eutrophic systems (e.g., low-lying lakes and wetlands) minimize toxic Ag$^+$ formation
- The half-life of typical sulfidized (85% Ag$_2$S) AgNPs in the sediment may vary from 5 years to over a century depending on redox conditions

But this model can’t tell us ...

- Predicted environmental concentrations
- Strengths and weaknesses of alternative risk management strategies
Current Work
Risk management and policy decisions often require a broader perspective.

4-13% of AgNP mass enters the stream directly from sewage overflows at end-of-life.²³

In the WWTP, > 90% of AgNP mass exits with STP sludge.⁴

>50% of STP sludge is applied to crops as biosolids (E.U., U.S.).³

In the WWTP, < 10% of AgNP mass exits with STP effluent.⁴

runoff during storm events
Model nanosilver transport and chemical transformations in a watershed basin, accounting for stream loadings from point sources (WWTPs, CSOs) and non-point sources (agricultural runoff from land-applied biosolids)
Modeling Nanosilver Transformations in Freshwater Sediments

Approach
Conceptual Model

Hydrological Model

- *land control files*
- *non-point sources*
- *Land Simulation*
- *river control files*
- *point sources*
- *River Simulation*

Phase 5 WSM

Creates HSPF control files from a library of Fortran g77 scripts and ASCII files containing parameter definitions, parameter values, formatting instructions, geographic data, etc.

HSPF

Performs the operations specified in the control files for all land and river segments in the basin.

Contaminant Fate Model

- Hydrology
- Annual variation in water quality constituents (*temp, pH, DO*)
- Stream loadings from NPS, PS

Approach

- Sediment transport
- Contaminant transport
- Contaminant chemistry in river and sediment bed
What does this get us?

- Bounds on the predicted environmental concentrations of AgNPs and reaction byproducts
 - Do we exceed water quality standards or toxicity thresholds?
 - What are the expected loadings to the estuary?
- Understanding of the relative impact of point and non-point sources on river and bed concentrations
 - Comparison of alternative land use best management practices on the reduction of stream loadings
 - How does land type (e.g., degree of urbanization) affect loadings?
- Understanding of where AgNPs accumulate and the impact of transient bed storage on fate
- Framework generalizable to other metal and metal oxide NPs (CuO, ZnO)
- Ability to include biouptake and ecotox submodels in the future
What does this get us?

- Bounds on the predicted environmental concentrations of AgNPs and reaction byproducts
 - Do we exceed water quality standards or toxicity thresholds?
 - What are the expected loadings to the estuary?

- Understanding of the relative impact of point and non-point sources on river and bed concentrations
 - Comparison of alternative land use best management practices on the reduction of stream loadings
 - How does land type (e.g., degree of urbanization) affect loadings?

- Understanding of where AgNPs accumulate and the impact of transient bed storage on fate

- Framework generalizable to other metal and metal oxide NPs (CuO, ZnO)

- Ability to include biouptake and ecotox submodels in the future
What does this get us?

- Bounds on the predicted environmental concentrations of AgNPs and reaction byproducts
 - Do we exceed water quality standards or toxicity thresholds?
 - What are the expected loadings to the estuary?

- Understanding of the relative impact of point and non-point sources on river and bed concentrations
 - Comparison of alternative land use best management practices on the reduction of stream loadings
 - How does land type (e.g., degree of urbanization) affect loadings?

- Understanding of where AgNPs accumulate and the impact of transient bed storage on fate

- Framework generalizable to other metal and metal oxide NPs (CuO, ZnO)

- Ability to include biouptake and ecotox submodels in the future
What does this get us?

- Bounds on the predicted environmental concentrations of AgNPs and reaction byproducts
 - Do we exceed water quality standards or toxicity thresholds?
 - What are the expected loadings to the estuary?

- Understanding of the relative impact of point and non-point sources on river and bed concentrations
 - Comparison of alternative land use best management practices on the reduction of stream loadings
 - How does land type (e.g., degree of urbanization) affect loadings?

- Understanding of where AgNPs accumulate and the impact of transient bed storage on fate

- Framework generalizable to other metal and metal oxide NPs (CuO, ZnO)

- Ability to include biouptake and ecotox submodels in the future
What does this get us?

- Bounds on the predicted environmental concentrations of AgNPs and reaction byproducts
 - Do we exceed water quality standards or toxicity thresholds?
 - What are the expected loadings to the estuary?

- Understanding of the relative impact of point and non-point sources on river and bed concentrations
 - Comparison of alternative land use best management practices on the reduction of stream loadings
 - How does land type (e.g., degree of urbanization) affect loadings?

- Understanding of where AgNPs accumulate and the impact of transient bed storage on fate

- Framework generalizable to other metal and metal oxide NPs (CuO, ZnO)

- Ability to include biouptake and ecotox submodels in the future
Thank You

Acknowledgements

CBPO Modeling Team

- 2011-2013 NSF NEEP IGERT Fellowship
- 2011-2014 ARCS Scholarship
- 2013 Anchor QEA Scholarship

