

Presentation of Final Report to Watershed Technical Workgroup

March 6, 2014
Marcia J. Degen, Ph.D., PE
VA Department of Health

Agenda

- OWTS Expert Panel charge and membership
- Baseline loadings from on-site systems
- BMP definitions and qualifying conditions
 - Proprietary and non-proprietary technologies
 - Exsitu (pretreatment) and insitu (soil treatment) technologies
- Future research and management recommendations

OWTS Panel Charge

- Initially convened in January 2012
- Review available science on the nitrogen removal performance of treatment practices
- Provide concise definitions and percent reductions for nitrogen load reduction practices
- Provide a definition for each treatment practice and the qualifying conditions under which credits can be received
- Only address TN reduction in treatment technologies, not in the soil between edge-of-system and edge-of-stream ("attenuation")

List of Panelists

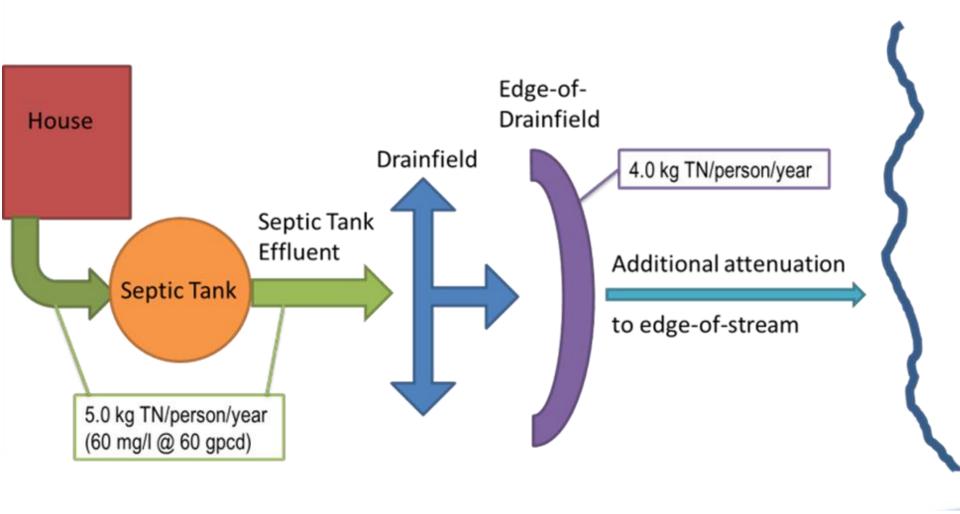
Panelist	Organization	
Jim Anderson	University of Minnesota	
Eric Aschenbach	Virginia Department of Health	
Jason Baumgartner	Delaware Department of Natural Resources and Environmental Control	
Derrick Caruthers	Delaware Department of Natural Resources and Environmental Control	
Marcia Degen	Virginia Department of Health	
Kitt Farrell-Poe	University of Arizona	
Joshua Flatley	Maryland Department of the Environment	
Robert Goo	U.S. Environmental Protection Agency	
Rick Hertges	West Virginia Health and Human Services	
Mike Hoover	North Carolina State University	
Joyce Hudson	U.S. Environmental Protection Agency	
Randy Miles	University of Missouri	
Jeff Moeller	Water Environment Research Foundation	
Dave Montali	West Virginia Department of Environmental Protection	
Sushama Pradhan	North Carolina State University	
Jay Prager	Maryland Department of the Environment	

Other Authors and Contributors

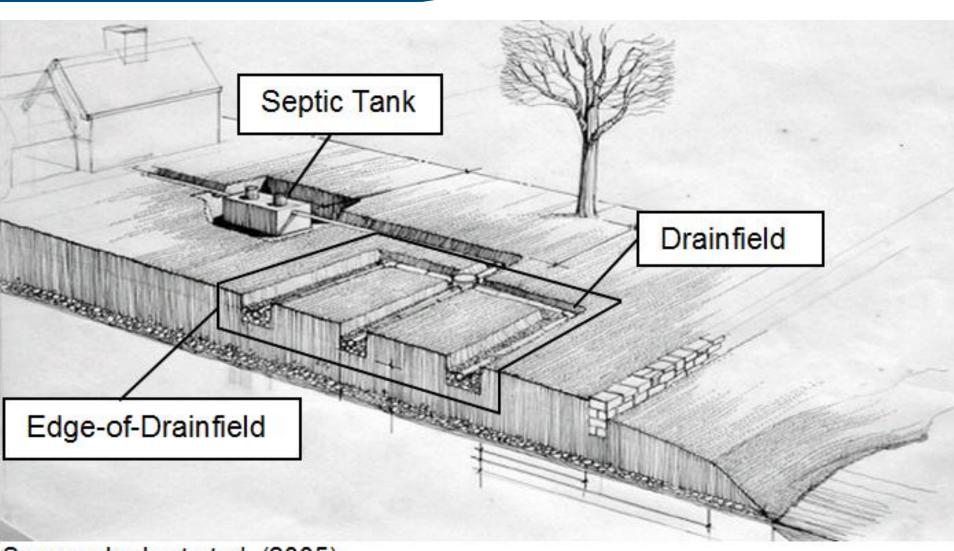
- Robert Adler EPA Region 1
- Jay Conta Virginia Tech
- Rich Piluk Anne Arundel County Health Department

Staff/Contractor Support

- Ning Zhou Virginia Tech
- Jeremy Hanson Chesapeake Research Consortium
- Victor D'Amato, Jim Kreissl, Mark Sievers Tetra Tech


Current Model Assumptions for Onsite

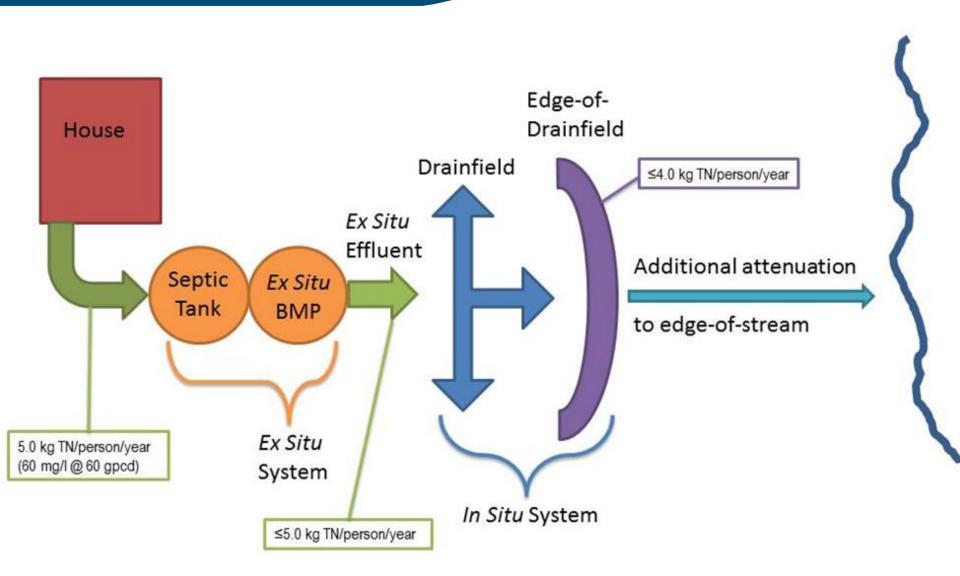
- Baseline condition
 - Conventional septic tank and drainfield
 - 4 kg TN/person/year at edge-of-drainfield
 - Assumed flow of 75 gpcpd + TN concentration of 39 mg/l
- 60 percent attenuation between drainfield and edge-of-stream
- Three BMPs
 - Connection to central sewer (100 percent reduction from on-site sector)
 - 50 percent denitrification system (50 percent reduction)
 - Routine septic tank pump-out (5 percent reduction)


Baseline Load Recommendations

- 5 kg TN/person/year in raw wastewater and STE
 - Assumed flow of 60 gpcpd
 - TN concentration of 60 mg/L in septic tank effluent (STE)
- 4 kg TN/person/year at edge-of-drainfield
 - 20 percent reduction in drainfield, average
- No attenuation recommendation

Baseline Load Recommendations

Baseline System



Source: Joubert et al. (2005)

Onsite BMP Categories

- Exsitu BMP or Treatment BMP
 - BMP efficiency assessed at end of process prior to soil application
 - Reduction based on baseline effluent TN of 5 kg/person/year
- Insitu BMP or Soil BMP
 - Reduction based on TN removal beyond baseline 20 percent reduction or 4 kg/person/year at edge-of-drainfield
- Combined Exsitu with Insitu BMPs
 - Reduction based on TN of 4 kg/person/year at edge-of-drainfield
 - Assume consistent TN reduction across the soil treatment system, regardless of exsitu effluent characteristics

Onsite System with BMP

Best Management Practices

- Performance of recommended BMPs is well-supported by science and verifiable data
 - Ongoing sampling and analysis for each system is not recommended for verification
- Recommendations intended to complement existing state regulations and policies
 - Design and management criteria, beyond minimum standards
 - Initial set of BMPs suggested by states
- Recognition that biological nitrogen removal performance can be variable
 - Require minimum USEPA Level 2 management model (operators, permits)
 - Suggestions for overarching management activities to promote effective BNR

Best Management Practices

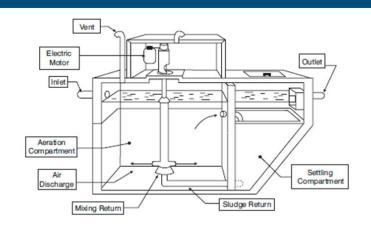
Exsitu (treatment) system components

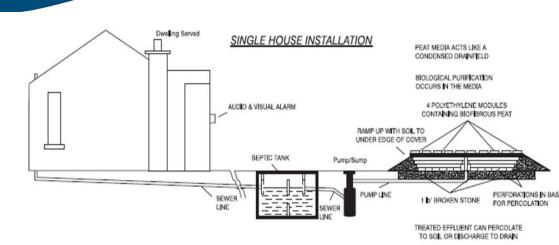
- NSF Standard 40 Class I secondary systems or equivalent
- Intermittent (single-pass) media filters
- Constructed wetlands (vegetated submerged beds)
- Recirculating media filters (RMFs)
- Anne Arundel County Integrated Fixed-Film Activated Sludge (IFAS)
- Proprietary ex situ treatment systems

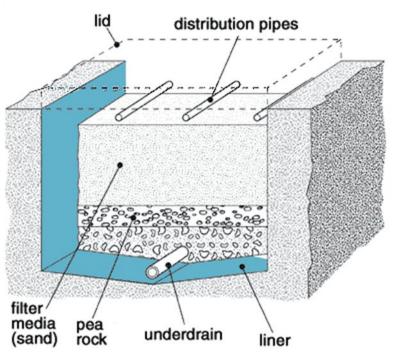
Insitu (soil treatment) system components

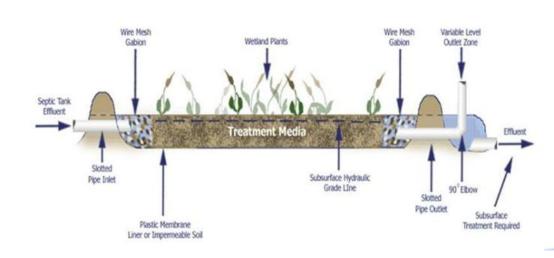
- Shallow-placed, pressure-dosed dispersal
- Elevated sand mounds
- Permeable reactive barriers

Example BMP Outline

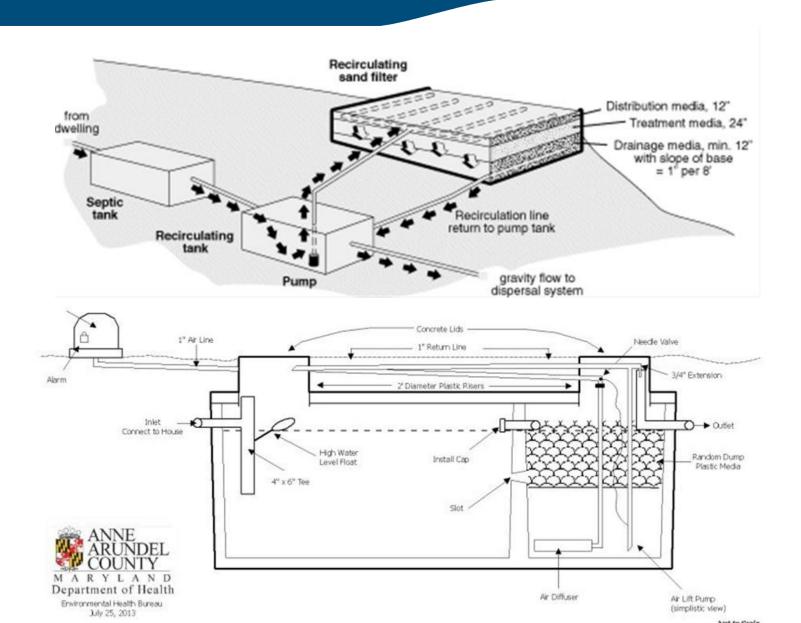

3.	.4	Secondary Treatment Systems Certified Under NSF Standard 40 Class I or Equivalent	32
	3.4.1	Detailed Definition of Practice	32
	3.4.2	Nitrogen Load Reduction and Recommended Credit	33
	3.4.3	Ancillary Issues and Interactions with Other Practices	34
	3.4.4	Design and Installation Criteria	35
	3.4.5	Temporal Performance	35
	3.4.6	Recommended Management Requirements	35
	3.4.7	Review Timeline and Recommendations	35


Exsitu (Treatment) BMP Summary


Table ES-1. Summary of BMP Recommendations for Ex Situ Unit Processes.


Best Management Practice	Qualifying Conditions	Ex Situ Reduction Credit ¹
Septic tank (baseline practice)	N/A	0
NSF 40 Class I Equivalent Secondary Systems	 Certified as Class I under NSF International Standard 40 or similar (e.g., CAN/BNQ 3680-600, CEN Standard 12566-3) Design, installation, and operation in accordance with manufacturer recommendations and state or local regulation 	20%
Intermittent media filters	 Timer-based flow equalization with 12–24 doses/day 2' depth (sand) media ES = 0.5–1.0 mm; UC ≤ 4.0; < 0.5% passing #200 sieve HLR ≤ 2 gpd/sf OLR ≤ 5 lb BOD/1,000 sf Uniform, pressurized distribution ≤ 6 sf/orifice 	20%
Constructed wetlands	 ≤2' depth media ES = 40–80 mm inlet/outlet; ES = 20–30 mm treatment zone, extending 0.1 m above water level Length-to-Width ratio < 10:1 Surface Area ≥ 54 sf/PE Width between 0.56 and 1.31 feet/PE Outlet structure allows for variable flooding depth 6" top layer of planting media 	20%

Exsitu BMPs



No Scale

Exsitu BMP Summary

Best Management Practice	Qualifying Conditions	Ex Situ Reduction Credit ¹
 Timer-based flow equalization with 24–48 doses/day 2' depth media Sand media: ES = 1.0–5.0 mm; UC ≤ 2.5; < 0.5% passing #200 sieve; HLR ≤ 5 gpd/sf; OLR ≤ 5 lb BOD/1,000 sf Gravel media: ES = 5.0–20 mm; UC ≤ 2.5; < 0.5% passing #200 sieve; HLR ≤ 15 gpd/sf; OLR ≤ 15 lb BOD/1000 sf Uniform, pressurized distribution ≤ 6 sf/orifice Device capable of recirculating 3–5 times forward flow bacto anoxic zone 		50%
Anne Arundel County IFAS	 2-day HRT anoxic chamber 1-day HRT aerobic chamber with ≥ 600 sf surface area fixed-film media Aeration device capable of maintaining 3.0 mg/L DO Device capable of recirculating 3–5 times forward flow back to anoxic zone Alarm for aeration device fault 	50%
Proprietary treatment systems	NSF 245 certification or similar Technology-specific Percent removal based on qualifying third-party field testing	≥ 50%

Exsitu BMPs

Best Management Practices

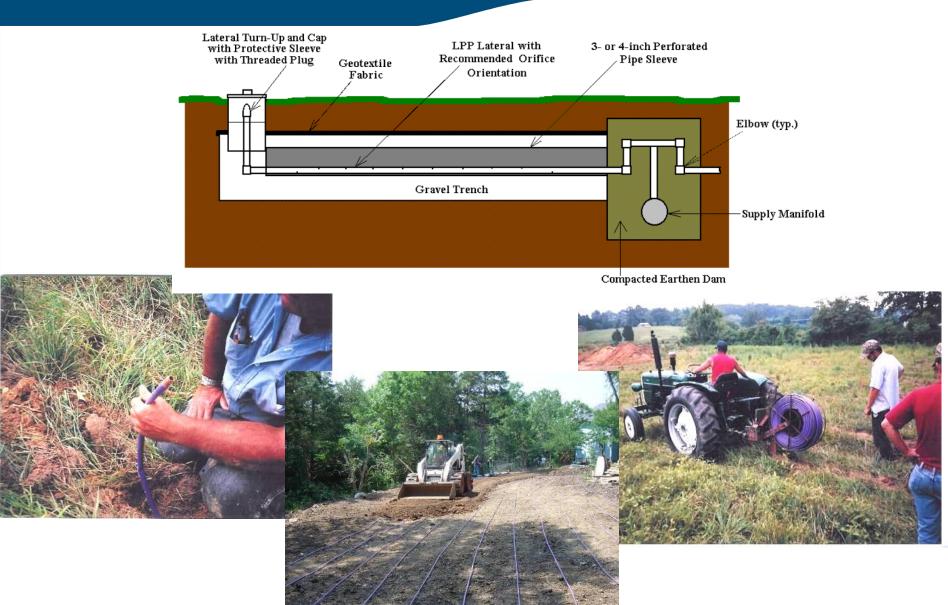
Proprietary Exsitu Treatment BMPs

- Developed, marketed, and constructed by a manufacturer
- Manufacturer responsibility for system design, installation, and ongoing management
- Standardized design and construction and little variability between the same model
- Recommend two-step credit assignment protocol: provisional testing (e.g., NSF Standard 245) followed by third-party field testing
- TN reduction credit of 50 percent, unless managed according to min. EPA Level 3

Nonproprietary Exsitu Treatment BMPs

- Designed on case-by-case basis for each site using nonspecific and readily available materials and mechanical equipment
- Local design and material variations common
- Two-step protocol for design and verification of individual BMP

Exsitu BMPs



Best Management Practice	Qualifying Conditions	In Situ Reduction Credit ¹
Conventional system (baseline practice)	N/A	20%
Shallow-placed, pressure-dosed dispersal	 Drip or LPD installed within 12" of grade in natural surface horizon (e.g. A or A/B) Credit not provided where sand or loamy sand soils predominate within 12" below effluent dispersal depth Lines placed on contour Drip requires prefiltration system, automatic flush cycle, flow equalization, air release valves LPD requires: working pressure head of 2–5', dosing volume of 7–10 times distribution system piping, lateral flushing provisions, max flow variation of 10% for each lateral 	50%
Elevated sand mounds	 Installation on intact natural surface horizon (e.g. A or A/B) Scarify surface of soil under mound Uniform, pressurized distribution ≤ 6 sf/orifice Minimum 0.5' (for secondary treated effluent) or 2' (for STE) layer of sand: ASTM C33; ≤ 20% by weight > 2 mm; D10 = 0.15 to 0.3 mm; UC = 4 to 6 Max. top of sand ALR = 1 gpd/sf for STE, 2 gpd/sf for secondary 6–12" loamy cover layer Credit not provided where sand or loamy sand soils predominate within 12" below mound 	50%
Permeable reactive barriers	Site-specific	Case-by- case

Insitu BMPs

Net N Reduction of Combined BMPs

- All onsite systems consist of some type of treatment and soil dispersal system
- Have to look at the whole system to assess the final N reduction
- Many combinations available
 - Septic tank effluent + drip
 - TL2 + drip
 - 50% N reducing unit + mound
 - etc

Baseline Defined

- BMPs are given credit for N reduction BEYOND the baseline condition
- The baseline condition is a conventional septic tank and drainfield.
- All BMPs have to be compared to the baseline condition to determine the NET N Reduction
- Baseline condition is measured at edge of drainfield
- From model: edge of drainfield = 9 lb/person/yr or 4 kg /person/year

Net N Reduction Example

Proposed: NSF 40 treatment system PLUS shallow drip

```
5 kg TN → NSF 40 unit
NSF 40 unit reduces the TN by 20%
TN out to drainfield → 4 kg TN
4 kg TN → shallow drip
shallow drip reduces TN by 50%
TN to edge of drainfield → 2 kg TN
```

NET TN Reduction ((4-2)/4) x 100 = 50%

Net N Reduction Example

Proposed: Septic tank with shallow drip

```
5 kg TN → Septic Tank
Septic Tank reduces the TN by 0%
TN out to drainfield → 5 kg TN
5 kg TN → shallow drip
shallow drip reduces TN by 50%
TN to edge of drainfield → 2.5 kg TN
```

NET TN Reduction ((4-2.5)/4) \times **100 = 38%**

Combined Exsitu and Insitu BMPs

Net Edge of Drainfield N Load and Percent Reduction

In Situ Practice Ex Situ Practice	Conventional Baseline	Shallow, Pressure Dosed	Elevated Mound
Septic tank baseline	4.0 kg/p/yr (0%)	2.5 kg/p/yr (38%)	2.5 kg/p/yr (38%)
NSF 40 Class I Secondary Systems	3.2 kg/p/yr (20%)	2.0 kg/p/yr (50%)	2.0 kg/p/yr (50%)
Intermittent Media Filter	3.2 kg/p/yr (20%)	2.0 kg/p/yr (50%)	2.0 kg/p/yr (50%)
Vegetated Submerged Bed	3.2 kg/p/yr (20%)	2.0 kg/p/yr (50%)	2.0 kg/p/yr (50%)
Anne Arundel Co. IFAS	2.0 kg/p/yr (50%)	1.25 kg/p/yr (69%)	1.25 kg/p/yr (69%)
Recirculating Media Filter	2.0 kg/p/yr (50%)	1.25 kg/p/yr (69%)	1.25 kg/p/yr (69%)

Treatment and Soil Based BMP Combinations and Resulting Net TN Reduction

Treatment Unit Gross TN Reduction	Soil Dispersal Gross TN Reduction	Net TN Reduction of Combined System
Septic Tank (0 %)	Gravity drainfield (20%)	0%
Septic Tank (0 %)	 Shallow placed pressure dosed(50%) Elevated Sand Mounds (50%) 	38%
 Single Pass Sand filter (20%) Constructed Wetlands (20%) NSF 40Treatment Unit (20%) 	Gravity drainfield (20%)	20%
 Single Pass Sand filter (20%) Constructed Wetlands (20%) NSF 40 Treatment Unit (20%) 	 Shallow placed pressure dosed(50%) Elevated Sand Mounds (50%) 	50%
 Recirculating Sand/Gravel Filter (50%) Proprietary N Removal Systems (50%) Anne Arundel IFAS (50%) 	Gravity drainfield (20%)	50%
 Recirculating Sand/Gravel Filter (50%) Proprietary N Removal Systems (50%) Anne Arundel IFAS (50%) 	 Shallow placed pressure dosed (50%) Elevated Sand Mounds (50%) 	69%

Combined BMPs

Treatment	Soil Dispersal	Net N Reduction
20%	20%	20%
20%	50%	50%
50%	20%	50%
50%	50%	69%

Reevaluation of Septic Tank Pumpout BMP

- The Panel was asked to revisit the existing Septic Tank Pumpout BMP to verify if the reduction of 5% was valid.
- Appendix C contains the evaluation
- A 5% reduction was re-justified with conditions:
 - Good for the year the pumpout occurs
 - Frequency of 1/5 years or greater
 - Conventional systems only to avoid double counting N reductions

Research and Management Recommendations

Alkalinity control

- Critical for effective nitrification (50 mg/L recommended in final effluent)
- R&D for simple, inexpensive alkalinity control would help optimize TN removal and could justify higher credits in future

BMP sampling

- Not recommended to be mandatory for verification
- However, widespread BMP implementation offers opportunity for data collection

Data sharing and reciprocity

- EPA-OWM offered to facilitate
- Also addressed at July 2013 SORA/NEHA conference

Variable baseline and BMP performance by soil type

- Consider including soil type as predictor of TN reduction performance
- Defer to future attenuation expert panel

