Forage indicators and consumption profiles for Chesapeake Bay fishes

Andre Buchheister
Ed Houde
Carlos Lozano

Presentation to Fisheries GIT
Dec 14, 2015
Outline

• Background & Objectives
• Result Highlights
• Discussion
 • Important findings
 • Main conclusions
 • Long-term, correlated shifts in prey abundances
 • Decline in total predatory demand from 2002-2014
 • Suite of forage indicators recommended
• Utility for managers
 • Basic information that was requested
 • Help prioritize prey groups
 • Foundation for future forage targets
 • Identify some challenges
2014 CBP Watershed Agreement & Forage Workshop

• Forage fish outcome:
 • “By 2016, develop a strategy for assessing the forage fish base available as food for predatory species in the Chesapeake Bay.”

• Priority research needs from Forage Workshop (Nov 2014)
 • Coordinated analysis of currently available data to develop forage metrics
 • Development of a suite of indicators useful for decision-making
 • Increased shallow water monitoring of forage and habitats

Ihde et al. 2015
Project Objectives

1. Develop a suite of forage indicators of key prey species in Ches. Bay
 • Track status of 14 forage groups through time

2. Evaluate population-scale consumption by six dominant predatory fishes
 • Identify temporal changes (2002-2014)
 • Compare relative importance of prey
 • Compare effects of different predators
Objective 1. Develop forage indicators

<table>
<thead>
<tr>
<th>Forage indicators</th>
<th>Description/justification</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Relative prey abundance or biomass</td>
<td>• Synthesis of survey-based indices
• Metric of prey standing stock</td>
<td>Indices: geometric mean or delta-GLM
Pooled indices: hierarchical analysis<sup>1</sup></td>
</tr>
<tr>
<td>2. Diet-based indices</td>
<td>• Predators as prey "samplers".
• Index of relative prey importance and availability from diets.
• Good for poorly sampled prey.</td>
<td>Delta-GAMM<sup>2</sup></td>
</tr>
<tr>
<td>3. Prey-predator ratios (PPR)</td>
<td>• Ratio of prey to predator indices.
• Index of relative prey availability.
• Accounting for density dependence.</td>
<td>Prey Index
Predator Index</td>
</tr>
<tr>
<td>4. Consumption-predator ratios (CPR)</td>
<td>• Ratio of population-scaled consumption to prey index.
• Index of predation intensity.</td>
<td>Consumption Index
Prey Index</td>
</tr>
</tbody>
</table>

¹Conn 2010, ²Buchheister and Latour In Press
Summary of indices and data sources

Pelagic Fishes

<table>
<thead>
<tr>
<th>Index type</th>
<th>Survey</th>
<th>Location</th>
<th>No.</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Abundance</td>
<td>1 MDDNR Seine</td>
<td>MD Tribs</td>
<td>X X X X X X</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>MDDNR Sum. Trawl</td>
<td>MD Tribs, bays</td>
<td>X</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>VIMS Juv Trawl</td>
<td>VA Tribs, mainstem</td>
<td>X X X X X</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>VIMS Seine</td>
<td>VA Tribs</td>
<td>X X X</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>CBP Benthos</td>
<td>Tribs, mainstem</td>
<td>X X X</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>TIES/CHESFIMS</td>
<td>Mainstem</td>
<td>X X X X X X X X</td>
<td>13</td>
</tr>
</tbody>
</table>

Demersal Fishes

<table>
<thead>
<tr>
<th>Index type</th>
<th>Survey</th>
<th>Location</th>
<th>No.</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Diet-based</td>
<td>ChesMMAP</td>
<td>Mainstem</td>
<td>X</td>
<td>13</td>
</tr>
<tr>
<td>3. Prey-Predator</td>
<td>ChesMMAP</td>
<td>Mainstem</td>
<td>X X X</td>
<td>13</td>
</tr>
<tr>
<td>4. Consumption</td>
<td>ChesMMAP</td>
<td>Mainstem</td>
<td>X X X</td>
<td>13</td>
</tr>
</tbody>
</table>

Benthic Inverts

<table>
<thead>
<tr>
<th>Fishes</th>
<th>Crust.</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>mysids</td>
<td>mantis</td>
<td>sand shrimp</td>
</tr>
<tr>
<td>polychaetes</td>
<td>bivalves</td>
<td>Macoma</td>
</tr>
</tbody>
</table>

Example of Abundance Indicator Calculation

Survey Index
- Survey 1
- Survey 2
- Survey 3

Species Index
- Anchovy
- Menhaden

Prey Group Index
- Pelagic Forage Fish
- Conn method
- Biomass weighting
Objective 2 – Develop consumption profile

- Calculate annual, bay-wide consumption of 10 key prey by 6 dominant predators

Key Predators (~80% of CM catch\(^1\))

- **Piscivores**
 - Striped bass
 - Summer flounder
 - Weakfish

- **Benthivores**
 - Atlantic croaker
 - White perch
 - Spot

\(^1\)Buchheister et al. 2013
Objective 2 – Develop consumption profile

Annual consumption by predator (C)

\[
\text{Annual consumption by predator (C)} = \sum_{\text{Size}} \sum_{\text{time}} \text{Per capita, daily consumption (c)} \times \text{Predator abundance (N)} \times \text{Time period (t)} \times \text{Diet proportion (D)}
\]

Evacuation rate model
Data inputs:
- Avg. stom. contents
- Water temp.

Area-swept estimates
- No efficiency, selectivity
- Conservative estimates

6-month seasons
Index (higher abund.)
Non-Index

Gut contents

Predator-specific size classes
- S: <30 cm
- M: 30-50 cm
- L: >50 cm

Approach accounts for:
- Predator size
- Diet shifts
- “Seasons” (e.g., migration)
- Temperature

E.g., Link and Sosebee 2008, Overholtz and Link 2007

*All data from the ChesMMAP survey
Objective 1 Results
Forage Indicators
1. Abundance indices – Fish species

- **Pelagic Fishes**
 - Menhaden, YOY
 - Spot, YOY
 - Silverside
 - Anchorovy

- **Demersal Fishes**
 - Weakfish, YOY
 - Croaker, YOY
 - Blueback, YOY
 - Alewife, YOY

- Low-frequency, correlated patterns for some (menhaden, spot, silversides; weakfish & croaker)
1. Biomass indices – Invertebrate groups

- Both relatively stable
- Greater biomass of bivalves than worms
- More bivalves in upper bay
1. Pooled Biomass Indices – By prey groups

- Biomass-weighted estimates for each general prey group
- Pelagic fish index lower since mid 1990s; little trend in others
2. Diet-based indices (Examples)

- Substantial decline in mysids
- Evidence of “pulses” in some years (e.g., sand shrimp)
3. Prey-Predator Ratios (Striped bass example)

- Weak or no patterns (due to short time series)
- But, detected “pulse” years of relatively higher prey
- More informative at longer time scales\(^1\)

\(^1\)Uphoff et al. 2015 – MD DNR Report
4. Consumption-Prey Ratios = \[
\frac{\text{Total Prey Consumption}}{\text{Prey Abund. Index}}
\]

- Decline in bivalves & polychaetes, due mostly to croaker (see Obj. 2)
Objective 2 Results
Consumption Profiles
Calculation Example (Stripers, 6-mo. Index period)

b) Daily per capita Consumption
- S
- M
- L

\[X \]

\[X \ 6 \text{ mo.} \]

c) Abundance

\[\text{Min. Abundance (millions)} \]

\[\text{2002} \quad 2006 \quad 2010 \quad 2014 \]

\[\text{2002} \quad 2006 \quad 2010 \quad 2014 \]

\[\text{Error bars} = \text{SE} \]

\[\text{d) Scaled Consumption} \]

- Importance of accounting for size:
 - High per capita consumption
 - Low abundance
 - Also, diet shifts...

\[= \]

\[\text{Pop-level scaled C (mt)} \]

\[\text{2002} \quad 2006 \quad 2010 \quad 2014 \]
Calculation Example (Stripers, 6-mo. Index period)

Apportion consumption based on diet:

- Account for dietary changes with size and by year
- E.g., Striper switch to menhaden from anchovy.
Total Annual consumption (Striped bass)

- Relatively stable consumption and prey contributions
- >50% anchovy and menhaden
Total Annual Consumption (Summer flounder)

- Declines in total consumption (>10x) by croaker and flounder
Consumption by predator guilds

- Declines in total C; importance of benthos for all preds
• Declines in total C (esp. croaker); relative increase in stripers

Which predators are consuming the most?
Main Conclusions
Important findings

1. Lower pelagic fish biomass index since mid 1990s
2. Interannual variability in abundance
3. “Pulses” in forage consumption
4. Mysid decline in recent years
5. Prey groups ranked most important in a given year:
 • Polychaetes
 • Anchovy
 • Menhaden
 • Mysids
Main Conclusions

1. **Long-term, correlated shifts in prey abundances** (e.g., menhaden, spot, silversides)
 - Links to climate and environment (AMO, temp, precipitation)\(^1\)
 - Possibly different ecosystem states affecting groups of fishes

2. **Decline in total predatory demand from 2002-2014** (croaker, flounder, weakfish, spot)
 - Driven by lower predator abundances, particularly croaker
 - Does not appear to be prey-driven
 - Possible ties to climate/environment/habitat\(^2\)

3. **Suite of forage indicators recommended**
 - Needed for complementary perspectives on complex dynamics
 - E.g., changes in prey & pred abundance, changes in consumption, cryptic prey
 - Abundance (or biomass) indicators insufficient
 - Longer time-series ideal

Utility for managers

1. Information on interannual changes in the relative abundance, availability, importance, and predation intensity for key groups

2. Help prioritize prey groups based on mgmt. goals

3. Foundation for identifying possible target values for selected forage indicators

4. Concerns/challenges
 - State shifts in the system can affect baselines and attainable forage conditions
 - Need to understand the drivers of forage changes & links to predators
 - System is complex and predators are generalists; ideal forage conditions likely dynamic
Acknowledgements

• Funding: Chesapeake Bay Trust and EPA
• Survey managers and personnel
 • MDDNR Seine (Eric Durrell)
 • MDDNR Summer Trawl (Chris Walstrum)
 • VIMS Juvenile Trawl (Mary Fabrizio, Troy Tuckey)
 • VIMS Seine (Mary Fabrizio, Troy Tuckey)
 • CBP Benthos (Mike Lane)
 • TIES/CHESFIMS (Tom Miller)
 • ChesMMAP (Chris Bonzek, Rob Latour, Jim Gartland)
• Assistance
 • Other survey managers contacted for information
 • Tom Ihde
 • Jim Uphoff