Generalized Additive Model (GAM) Development Briefing: Application to Tidal Water Quality

Water Quality GIT
Oct. 13, 2015

Rebecca Murphy (UMCES at CBPO)
Elgin Perry (statistical consultant)
Jeni Keisman (USGS)
Tidal Data Analysis: Where it fits

Through tidal data analysis:
1. Will see trends before seeing them in attainment metrics
2. Can identify finer spatial and temporal periods of change
3. Can statistically link trends to watershed factors and loads
Tidal Water Quality: Current Approach

• Seasonal Kendall used by CBP, MDDNR and VADEQ since 1990s for tidal water quality trend analysis

• Beneficial features:
 • Allows for identification of monotonic trends
 • Good for outliers
 • Does not require a distributional assumption

Seasonal Kendall-based trend maps
(Presented to WQGIT March 2015)

http://www.chesapeakebay.net/maps
Why a method change?

Based on lessons learned from current approach, looking for a method that:

- Is flexible enough to represent many possible patterns, *including trends that have changed direction over time*
- Is able to model non-linear relationships
- Generates a statistical confidence measure
- Can be used to test “factors affecting trends”
<table>
<thead>
<tr>
<th>Year</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>• Evaluations of trend method options at CBP and select GAMs as a viable option</td>
</tr>
<tr>
<td></td>
<td>• March: STAC workshop on Explaining Trends</td>
</tr>
<tr>
<td></td>
<td>• All year: Meetings with state partners who do current trend analysis and USGS-WRTDS team</td>
</tr>
<tr>
<td></td>
<td>• All year: Test GAM capabilities</td>
</tr>
<tr>
<td></td>
<td>• October: Introduce GAMs at WQGIT meeting</td>
</tr>
<tr>
<td>2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• All year: Continue to test GAMs and meet with state partners</td>
</tr>
<tr>
<td></td>
<td>• Spring: Mainstem pilot application and compare to SK</td>
</tr>
<tr>
<td></td>
<td>• Summer: Tributary pilot application and refining uncertainty output</td>
</tr>
<tr>
<td></td>
<td>• October: Present Version 1 method (1999-2014) to WQGIT</td>
</tr>
<tr>
<td></td>
<td>• December: Version 1 available in R tool</td>
</tr>
<tr>
<td>2015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Version 2 and 1985-2015 application</td>
</tr>
<tr>
<td></td>
<td>• Continue R&D applications to explaining trends project</td>
</tr>
</tbody>
</table>
Generalized Additive Model: A response variable is modeled as the sum of multiple functions of explanatory variables

Water quality =
linear(date) + s(date) + s(doy) + Interaction(date, doy)

s = spline smooth functions
doy = day of year
Generalized Additive Model: Represents a response variable as the sum of multiple functions of explanatory variables

Water quality =
linear(date) + s(date) + s(doy) + Interaction(date, doy)

Functions can be linear
Smoothly-varying non-linear “spline” functions
And multi-dimensional smooth functions

s = spline smooth functions
doy = day of year
GAM Version 1: Approach

TP = $\text{linear(date)} + s(date) + s(doy) + \text{Interaction(date, doy)}$

Example 1: A smooth seasonal cycle, but the overall trend is a linear decrease.
GAM Version 1: Approach

Secchi = linear(date) + s(date) + s(doy) + Interaction(date, doy)

Example 2: A significant, smoothly-varying pattern over time.
GAM Version 1: Approach

CHLA = linear(date) + s(date) + s(doy) + Interaction(date, doy)

Example 3: shape of the seasonal cycle is changing over time.
Fit GAMs to tidal data from 1999-2014
 • Both mainstem and tributary stations
 • Secchi disk depth; Surface and Bottom TN, TP, DO, and chlorophyll-a

Conducted GAM/Seasonal Kendall comparison for mainstem
 • Are the overall trend results going to change with GAMs?: NO
 • Any systematic differences appear to be when the data is non-linear

Developing ways to present and evaluate full set of output
1. Is there a trend over a given time period?
2. What does that pattern look like over time?
3. Is there a seasonal difference in the temporal patterns?

Question: How can we most effectively share these layers of information without being overly complicated?
GAM Version 1: Results

Layers of output:
1. Is there a trend over a given time period?
 - Identification and significance of long-term trends
 - Slope and direction of a trend

Example: TF1.4 TP Surface 1999-2014
Baseline log mean = -1.90
Current log mean = -2.26
Estimated log difference = -0.36
Std. Err. log difference = 0.060
Confidence interval for log difference = (-0.48, -0.25)
Difference p-value = <0.0001
Percent Change Estimate = -30.5 %
Layers of output:

2. What does the trend look like?
 - Pattern and confidence bounds on long-term temporal pattern
 - Significance of explanatory variables

Example: TF1.4 TP Surface 1999-2014

GAM output

<table>
<thead>
<tr>
<th>Source</th>
<th>edf</th>
<th>F-stat</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear(date)</td>
<td>1</td>
<td>5.71</td>
<td>0.018</td>
</tr>
<tr>
<td>s(date)</td>
<td>3.91</td>
<td>6.29</td>
<td><0.0001</td>
</tr>
<tr>
<td>s(doy)</td>
<td>3.89</td>
<td>8.84</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

AIC 10.4
root mean-square error = 0.24
adjusted r-square = 0.36
GAM Version 1: Results

Layers of output:
3. Is there a seasonal difference in the temporal trend?
Layers of output:

3. Is there a seasonal difference in the temporal trend?
Layers of output:

3. Is there a seasonal difference in the temporal trend?
3. Is there a seasonal difference in the temporal trend?
GAM Version 1: Results

Layers of output:

3. Is there a seasonal difference in the temporal trend?

GAM Trends for Surface Chlorophyll-a in the Chesapeake Bay: 1999-2014
1. Is there a trend over a given time period?
2. What does that pattern look like over time?
3. Is there a seasonal difference in the temporal patterns?
Next Steps

• Finish examining Version 1 results (2015)
• GAM tool in R (1st draft end 2015)
• Version 2 GAM approach for tidal stations (2016)
 • Finalize flow as explanatory variable
 • Application to 1985-present
• Applications for factors explaining trends (preliminary results 2016-’17):

1. Identify temporal trends across all tidal stations
2. Incorporate process-based knowledge
3. Build GAM models such as:
 Water quality = s(season) + s(river flow) + s(nutrient inputs) + s(climate)
Extra
Seasonal Kendall and GAM features/applications side-by-side

<table>
<thead>
<tr>
<th>Feature/Feature</th>
<th>SK</th>
<th>GAM V1</th>
<th>Future GAM versions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporal trend identification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identification and significance of long-term trends</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Slope and direction of a trend</td>
<td>x<sup>a</sup></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pattern and confidence bounds on long-term temporal pattern</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Significance of explanatory variables (e.g., date, season)</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Incremental periods with significant trends</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Accounting for residual temporal autocorrelation</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Application</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trends in mainstem and tributary 1999-2014 water quality data</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Account for step changes and varied detection limits (i.e., use all data 1985-present)</td>
<td>x<sup>b</sup></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Flow as an explanatory variable (optional)</td>
<td></td>
<td></td>
<td>x<sup>c</sup></td>
</tr>
<tr>
<td>Include other explanatory variables for hypothesis testing</td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

^a Sen slope test performs this for the SK approach
^b SK is applied to pre-1999 using data censoring and block-approaches
^c An approach is implemented, but some modifications are needed