Factoring Climate Change into the Phase III WIP: CBP Programmatic Update

Climate Resiliency Workgroup

December 19, 2016

Mark Bennett

CBP Climate Resiliency Workgroup Co-Chair

Climate Change Decision-Making Timeline

Three Key Sets of Partnership Decisions:

- **December 2016**: Agreement on 1) climate change assessment procedures, 2) guiding principles, and 3) a range of options for how and when to factor climate change considerations into the jurisdictions' Phase III WIPs
- May 2017: How and when to incorporate climate change considerations into the Phase III WIPs as the partners work on the draft Phase III WIP planning targets due in June 2017
- December 2017: Final Phase III WIP planning targets fully reflecting partnership decisions regarding how and when to incorporate climate change considerations

Principals' Staff Committee Decisions

Approval of Guiding Principles

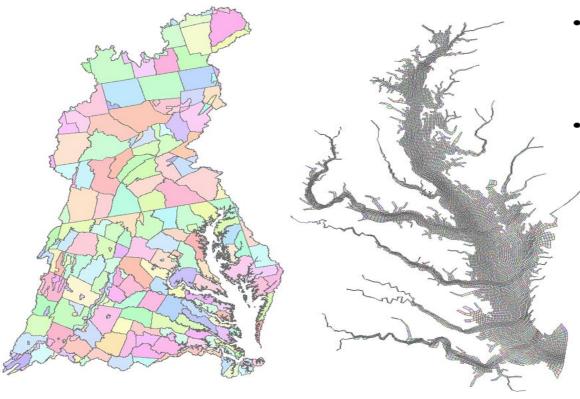
 Approval of Climate Assessment Procedures as recommended by the WQGIT and Management Board

 Narrowed down the current range of 7 options for factoring climate change into the Phase III WIPs

WQGIT and Management Recommended Climate Change Assessment Procedures

Partition the influence of climate change into separate elements:

Estuary


- Increased estuarine temperatures
- Sea level rise
- Loss of tidal wetlands

Watershed

- Increased temperatures/ evapotranspiration
- Precipitation change
- Storm intensity
- Run climate change scenarios based on estimated 2025 and 2050 conditions to assess impact on water quality standards (estuary) and watershed flows and loads (watershed)
- Run a range of scenarios to bound the range of uncertainty

Model Climate Inputs – Initial Scenario Runs

- Precipitation Volume
 - 2025: +3.1% (long term trends)
 - 2050: +7.3% (RCP* 4.5)
- Temperature: RCP 4.5
 - 2025: +1.05 °C
 - 2050: +2.08 °C
- CO₂ Concentration:
 Meinhausen, Malte, et al,
 (2011)
 - 2025: 427 ppm
 - 2050: 487 ppm

- Sea Level Rise: CRWG**
 - 2025: +0.3 m
 - 2050: +0.5 m
- Temperature: RCP
 - 4.5
 - 2025: +0.95 °C
 - 2050: +1.86

**Based upon guidance provided by the Climate Resiliency Workgroup

^{*}RCP 4.5 signifies a specific Representative Concentration Pathway scenario as defined by the Intergovernmental Panel on Climate Change

Early Climate Change Assessment Findings

Partition Climate Change Effects

Estuary

- Increased estuarine temperatures
- Sea level rise
- Loss of tidal wetlands

Early Findings:

- Little change in tidal wetlands until beyond 2050
- Water temperature increase effect on low dissolved oxygen offset by higher sea level, more mixing
- No strong evidence that climate change impacts the Bay's assimilative capacity

Watershed

- Storm intensity
- Increased temperatures/Evapotranspiration
- Precipitation change
- Watershed flows and loads

Early Findings:

- Increased in precipitation (+) and increased temperature (-) leads to an estimated 3% increase in river flows
- Currently estimating up to a 2% increase in nutrient loads and 5% increase in sediment loads by 2025

2025 Climate Inputs – Proposed Approach

Year	Variable	Input	Parameter	Sensitivity	Used for Uncertainty
	CO ₂	427 ppm	Stomatal resistance	very low	no
2025	Potential Evapotranspiration	Hamon Method	PET with high temperature response	high	yes
		Hargreaves Method	PET with moderate temperature response	high	yes
		RCP 2.6	Monthly median of 32 member ensemble of climate change models	low in tidal water; moderate as influence on PET	yes
	Temperature	RCP 4.5	Monthly median of 32 member ensemble of climate change models	low in tidal water; moderate as influence on PET	yes
		RCP 8.5	Monthly median of 32 member ensemble of climate change models	low in tidal water; moderate as influence on PET	yes
	Precipitation	Historical	With Observed Intensity	moderate	yes
		Historical	Without Intensity	moderate	yes
	Sea Level Rise	0.2 m	Bay Hydro Model	low	no
		0.3 m	Bay Hydro Model	low	no
		0.4 m	Bay Hydro Model	low	no

Key:

Recommended approach

Useful to examine range of uncertainty

Full uncertainty approach

2050 Climate Inputs - Proposed Approach

Year	Variable	Input	Parameter	Sensitivity	Used for Uncertainty
2050	CO ₂	487 ppm	Stomatal resistance	very low	no
	Potential Evapotranspiration	Hamon Method	PET with high temperature response	high	yes
		Hargreaves Method	PET with moderate temperature response	high	yes
	Temperature	RCP 2.6	Monthly median of 32 member ensemble of climate change models	low in tidal water; moderate as influence on PET	yes
		RCP 4.5	Monthly median of 32 member ensemble of climate change models	low in tidal water; moderate as influence on PET	yes
		RCP 8.5	Monthly median of 32 member ensemble of climate change models	low in tidal water; moderate as influence on PET	yes
		RCP 2.6*	10 percentile of precip w/ observed intensity	moderate	yes
			10 percentile of precip w/o observed intensity	moderate	yes
			median precip w/ observed intensity	moderate	yes
	Precipitation		median precip w/ observed intensity	moderate	yes
			90 percentile of precip w/ observed intensity	moderate	yes
			90 percentile of precip w/o observed intensity	moderate	yes
		RCP 4.5*	With Observed Intensity	moderate	yes
			Without Intensity	moderate	yes
		RCP 8.5*	With Observed Intensity	moderate	yes (w/90 percentile)
			Without Intensity	moderate	yes
		0.3 m	Bay Hydro Model	low	no
	Sea Level Rise	0.5 m	Bay Hydro Model	low	no
		0.8 m	Bay Hydro Model	low	no

Key: Recommended approach Useful to examine range of uncertainty Full uncertainty approach

* Each 2.6, 4.5, and 8.5 RCP scenario for 2050 is generated from a 32 member ensemble of climate change models with assessments of the 10 percentile precipitation, median precipitation, and 90 percentile precipitation.

Modeling Summary

- Scientific peer reviews of the representation of climate change by the CBP models will be conducted by the CBP Scientific and Technical Advisory Committee (STAC).
- This is a work in progress. Still to come are additional Phase 6 Watershed Model climate change scenarios that can be used to inform decision making and develop the uncertainty analysis.
- The Bay Model hydrodynamic simulation of the 2025 sea level rise has just been competed.

Guiding Principles

WIP Development:

- Capitalize on "Co-Benefits"
- Account for and integrate planning and consideration of existing stressors
- Align with existing climate resiliency plans and strategies
- Manage for risk and plan for uncertainty
- Engage local agencies and leaders

WIP Implementation:

- Reduce vulnerability
- Build in flexibility and adaptability
- Adaptively manage

Three Categories of Options

Quantitative

Qualitative

Deferred implementation

Quantitative Options

Option 1: Assimilative capacity

Option 2: Base conditions

Option 4: Margin of safety

Qualitative Options

Option 5: BMP optimization (WIP development)

Option 6: Adaptively manage (2-year milestones)

Option 7: Programmatic with set expectations

Deferred Implementation Option

Option 3: Commit with deferred implementation

Quantitative Options – PSC Decision

Option 1: Assimilative capacity

Option 2: Base conditions

Option 4: Margin of safety

Qualitative Options – PSC Decision

Option 5: BMP optimization (WIP development)

Option 6: Adaptively manage (2-year milestones)

Option 7: Programmatic with set expectations

Combined Option

Options 5,6 & 7: Revised Language

- During each two-year milestone development period, jurisdictions would consider new information on the performance of BMPs and the programs that support them, including the contribution of seasonal, inter-annual climate variability and weather extremes on BMP performance.
- When there is a detectable impact on the effectiveness of a BMP or programmatic performance, jurisdictions would use this information to re-prioritize their actions to implement in the Phase III WIPs that will better mitigate the anticipated increased in nitrogen, phosphorus or sediment.

Climate Change Decision-Making Timeline

Three Key Sets of Partnership Decisions:

- **December 2016**: Agreement on 1) climate change assessment procedures, 2) guiding principles, and 3) range of options for how and when to factor climate change considerations into the jurisdictions' Phase III WIPs
- May 2017: How and when to incorporate climate change considerations into the Phase III WIPs as the partners work on the draft Phase III WIP planning targets due in June 2017
- December 2017: Final Phase III WIP planning targets fully reflecting partnership decisions regarding how and when to incorporate climate change considerations