The Conservation-of-MassPRIVATE 

Equation

The Model Grid


Application of the model requires division of the study system into a grid of discrete volumes or cells.  Although each volume is three-dimensional, the grid may be one-, two-, or three-dimensional, depending on the arrangement of the cells.  An example of a two-dimensional grid is shown as Figure 1.  This grid contains ten cells in the longitudinal dimension, one cell in the lateral dimension, and three cells in the vertical dimension.


Each cell in the grid is assigned a unique number or index (Figure 2).  Interfaces are numbered where flows pass between cells or where cells adjoin open boundaries.  Faces adjacent to solid boundaries are not numbered.  The grid is unstructured.  That is, the cell indices contain no information that indicates cell location in a three-dimensional coordinate system.  Neither is there a general relationship between the indices of adjacent cells or between cells and flow faces.  A connectivity or “map” file is required that locates cells and faces relative to each other.


The unstructured grid of discrete volumes provides maximum flexibility in coupling the water-quality model with hydrodynamic models.  No restriction is placed on cell shape or number of flow faces per cell.  A price is paid for the flexibility, however.  Model coding is more complex for the unstructured grid than for a structured grid.  Creation of the map file and coupling with a hydrodynamic model that operates on a structured grid are time-consuming, exacting tasks.  The procedure for coupling the eutrophication model with the structured CH3D-WES hydrodynamic model is described in an appendix to this manual.

The Conservation-of-Mass Equation


The foundation of CE-QUAL-ICM is the solution to the three-dimensional mass-conservation equation for a control volume.  CE-QUAL-ICM solves, for each volume and for each state variable, the equation:
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Vj = volume of jth control volume (m3)

Cj = concentration in jth control volume (gm m-3)

Qk = volumetric flow across flow face k of jth control volume (m3 sec-1)

Ck = concentration in flow across flow face k (gm m-3)

Ak = area of flow face k (m2)

Dk = diffusion coefficient at flow face k (m2 sec-1)

n = number of flow faces attached to jth control volume

Sj = external loads and kinetic sources and sinks in ith control volume



(gm sec-1)

t, x = temporal and spatial coordinates

Discretization of the Conservation Equation


Solution of the conservation-of-mass equation on a digital computer requires specification of parameter values and discretization of the continuous derivatives.  Numerous formulae for evaluation and discretization exist.  Formulae employed in CE-QUAL-ICM were selected based on computational efficiency and accuracy.


The conservation-of-mass equation is solved in two steps.  In the first step, an intermediate value is computed.  The intermediate value includes the effects of change in cell volume, longitudinal and lateral transport, and external loading. In the second step, the effects of vertical transport are computed.

Longitudinal and Lateral Advection


Solution to the conservation-of-mass equation in the longitudinal and lateral directions is via explicit time stepping.  That is:
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Cj* = concentration in jth control volume after volume change, loading, 
longitudinal/lateral transport processes

Vjt+Δt = volume of jth control volume at time t=Δt

Δt = discrete time step

nhf = number of longitudinal and lateral flow faces attached to jth control 
volume

The remaining parameters in Equation 2 are evaluated at time t.

Upwind Differencing.  Solution of Equation 2 requires evaluation of the Ck.  Two options are provided within CE-QUAL-ICM.  The first is backwards or upwind differencing.  In upwind differencing, concentration in the flow across any face is taken as concentration in the cell upstream of the face (Figure 3).  Upstream is defined relative to direction of the flow.  Upstream has no relation to the cell coordinate system.

QUICKEST.  A second approximation to Ck fits a parabola to concentration in three adjacent cells (Figure 3).  For uniform grid spacing:
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The approximation in Equation 3 is the basis of the QUICK (Quadratic Upstream Interpolation for Convective Kinematics) method.  An extension of QUICK for unsteady flows, QUICKEST (QUICK with Estimated Streaming Terms) is implemented in the model.  Details of QUICK and QUICKEST, including the QUICKEST formulae for unsteady flows on a non-uniform grid, are provided by Leonard (1979).  


Upwind differencing provides computational simplicity.  The upwind method is less accurate and less stable than QUICKEST, however.  The primary disadvantage of QUICKEST is that the method sometimes generates negative concentrations when advecting sharp concentration gradients.  A second disadvantage is that QUICKEST cannot be implemented on highly-irregular grids (e.g. finite element grids) in which two upstream cells cannot be readily identified.  


Detailed knowledge of the advective solution schemes are not necessary to execute the model.  The upwind and QUICKEST approximations were reviewed to indicate the information required by the model to compute advective transport in the longitudinal and lateral directions.  To compute advective transport in any cell, the model requires:

Cell volume.

Indices of longitudinal and lateral flow faces adjoining the cell.

Indices of adjoining and next-most adjoining cells.

Volumetric flow across the indexed flow faces.

Length of indexed cells.  


The required information is provided in the map, geometry, and

hydrodynamics files.  Formats of these files are detailed in subsequent chapters.

Longitudinal and Lateral Dispersion


Computation of longitudinal and lateral dispersion requires discrete approximation of the continuous derivative in the dispersion term of Equation 2.  The basic approximation is:
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Δx = distance between centers of two cells

A higher-order correction to the basic expression is computed when the QUICKEST scheme is employed.


Computation of longitudinal and lateral dispersion requires enumeration of the dispersion coefficient at each flow face.  No indexing information is required beyond that supplied for the advection terms.

Vertical Transport


Solution to the conservation-of-mass equation in the longitudinal and lateral directions is by an explicit method.  That is, all parameters in the discretized equation are evaluated at time t except the unknown C*.  The explicit method is suited for transport dominated by advection rather than diffusion or dispersion.  In the vertical direction, diffusion is a significant or dominant component of transport.  Solution of vertical transport by an explicit method requires a small time step and consumes large amounts of computer time.  In CE-QUAL-ICM, solution to vertical transport is by a partly- or fully-implicit scheme that practically frees the computation from stability conditions imposed by vertical transport.


The mass-conservation equation in the vertical direction (Figure 4) can be expressed:
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θ = implicit weighting factor (0 < θ < 1)

nvf = number of vertical faces

z = vertical coordinate


The implicit weighting factor, θ, determines whether vertical advection is computed explicitly (θ = 0), implicitly (θ = 1), or is weighted between the two extremes (0 < θ < 1).  Computational stability is enhanced as θ --> 1, at the expense of increased numerical diffusion.  The value θ = 0.75 is recommended.


Since vertical velocities are usually much less than longitudinal velocities, the enhanced accuracy of the QUICKEST scheme is not necessary.  The values of Ck and Ckt+Δt are computed by linear interpolation (Figure 4) between concentrations at the centers of adjoining cells:
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The spatial gradient in the diffusion term is evaluated by central difference (Equation 4) evaluated at time step t+Δt.


The solution scheme for vertical transport is an implicit scheme which means that the equation for concentration in any cell at time t+Δt (e.g. Equation 5) contains multiple unknowns.  Computation of concentration in any one cell requires solution of a set of simultaneous equations for concentrations in a column of cells extending from water surface to bottom.  Details of the solution scheme are not necessary to operate the model.  The user must provide, however, the following information required to compute vertical transport: 

Indices of all cells in a column.

Indices of vertical flow faces adjoining all cells in a column.

Volumes of all cells in a column.

Volumetric flow across the indexed flow faces.

Diffusion coefficients at indexed flow faces.

Length of indexed cells.  


The required information is provided in the map, geometry, and hydrodynamics files.  Formats of these files are detailed in subsequent chapters.  

Summary of Numerical Solution Scheme


The model solves the conservation-of-mass equation through a step-by-step procedure:

1) Evaluate internal sources and sinks.  These include kinetics transformations and sediment-water fluxes.  This step provides a partial computation of  Sj in Equation 1.

2) Add effects of external loads.  This step completes computation of  Sj in Equation 1.

3) Compute longitudinal and lateral advection and diffusion at all interfaces.  This step provides quantities required to solve Equation 2.

4) Compute concentration at time t+Δt in all cells resulting from volume changes, kinetics, external loads, and longitudinal/lateral transport.  This step is the solution to Equation 2.  For one- or two-dimensional (longitudinal/lateral) systems, solution of the conservation-of-mass equation is complete at this point.  For two- (longitudinal/ vertical) or three-dimensional systems, the result is an intermediate solution prior to computation of vertical transport.

5) Compute vertical transport from surface to bottom.  Computation is by columns.  Each cell at the water surface represents the top of one column.

Water-Quality Model Time Step


Temporal integration of the conservation-of-mass equation (1) is accomplished in discrete time steps Δt (Equations 2, 5).  Integration in discrete steps provides an approximation to the continuous solution of the original differential equation.  As Δt --> 0, the solution of the approximate equation converges on the solution of the continuous equation, although at great cost in computation time.  As Δt --> , computation time diminishes but the solution of the discrete equation diverges from solution of the continuous equation.  For sufficiently large Δt, the numerical solution may exhibit large oscillations or instabilities that produce computational failures.  The occurrence of instabilities is prevalent in explicit rather than implicit solution schemes.  Typical practice in numerical modeling is to select the largest time step possible, to minimize computation time, while remaining in predefined stability limits.

Vertical Transport


The implicit algorithm employed to compute transport in the vertical direction is stable for time step of any size when θ > 0.5 (Roache 1972).  Consequently, vertical transport is not considered in determination of the time step.

Longitudinal and Lateral Transport


Transport in the longitudinal and lateral directions is computed by explicit schemes that are subject to instabilities for large Δt.  The time step employed is determined by an “autostepping” algorithm.  The algorithm computes permissible time step based on flow, dispersion, and cell dimension.  As a consequence of autostepping, the time step varies throughout a model run.  The time step is always near the maximum permissible time step.  Autostepping minimizes computation time while meeting stability requirements.

Upwind Differencing.  The stability requirement for explicit solution to the one-dimensional mass-conservation equation, employing upwind differencing for the advective term, is (Leonard 1979):
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Δt = time step (T)

Δx = cell length (L)

u = velocity (L T-1)

D = diffusion coefficient (L2 T-1)


The autostepping algorithm examines velocity, diffusion, and cell length (equivalent to Qj / Aj, Dj, and δxj in Equation 2) at each flow face of the water-quality model control volumes.  Allowable time step is computed at each face.  The flow face with the most restrictive time step determines the time step for the entire system.  The time step is set at a user-specified fraction, α, of the maximum allowed.

QUICKEST.  Inspection of the stability region of the one-dimensional QUICKEST algorithm (Leonard 1979) indicates sufficient conditions are:
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and
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The autostepping algorithm examines velocity, diffusion, and cell length at each flow face of the water quality model control volumes.  Allowable time step at each face is determined as:
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α = constant that insures time step is less than maximum allowed (0.95)


The flow face with the most restrictive time step determines the time step for the entire system.


The model stability requirements for the QUICKEST algorithm are less restrictive than the stability requirements for upwind differencing.  As a consequence, time steps are larger and computation time is reduced when the user specifies QUICKEST rather than upwind differencing.  The model stability requirements for QUICKEST also provide a conservative evaluation of the time step.  The actual stability region for QUICKEST (Leonard 1979) extends beyond the region employed in the model.


The criteria expressed in Equations 7 and 10 are for one-dimensional solutions to the mass-conservation equation.  Stability requirements for two-dimensional solutions differ from requirements for one-dimensional solutions.  The unstructured grid and the solution algorithms employed in the model greatly complicate application of two-dimensional criteria.  We have thus far found application of the one-dimensional criteria at all flow faces is sufficient to determine the time step in multi-dimensional applications.

Boundary Conditions


Boundary conditions must be specified at the flow faces along the edges of the grid.  Through these faces, material is exchanged with the environment outside the model domain.  Boundary flow faces are allowed only at the longitudinal and lateral limits of the grid.  No flow is allowed through the surface and bottom.  Cell faces at the water surface and bottom are not indexed.  Neither are cell faces indexed along longitudinal and lateral edges of the grid through which flow does not occur.


Treatment of open boundary conditions requires selection of the numerical scheme and specification of concentration in the environment beyond the grid.

Numerical Treatment


Open boundaries are specified as "left-flow boundaries" or "right-flow boundaries" (Figure 5).  Left- and right-flow boundaries are defined according to the cell numbering scheme in the map file.  The designation is independent of flow direction, which may be into or out of the grid.


The model employs upwind differencing at all flow boundaries.  Upwind differencing occurs whether or not the QUICKEST scheme is specified for advection within the interior of the grid.  Upwind differencing is appropriate treatment for inflows that occur at estuarine fall lines and at tributary entry

points.  Upwind differencing ensures that the concentration of flow entering the grid is the specified boundary concentration.  If QUICKEST were employed at an inflow boundary, the three-point weighting scheme would compute an influence of concentration within the system on concentration entering the system.


Upwind differencing is also employed at outflow boundaries.  Employment of upwind differencing means that concentration in flow leaving the system is not influenced by concentrations outside the system.  Upwind differencing exactly simulates conditions at an outflow such as a spillway.  An advantage of upwind differencing at outflows is that the user need not specify 

a concentration outside the model domain.


Longitudinal and lateral dispersion are set to zero at inflow and outflow boundaries.  Absence of dispersion is appropriate at inflow locations such as fall lines and tributary entry points.  Absence of dispersion at outflows frees the user from specification of concentration outside the model domain.

Concentration in Inflows


Concentration in flow entering the system across open boundaries must be provided to the model.  In most cases, such as fall lines and tributary entry points, the concentration is specified by the user.

Concentration in Outflows


Concentration in flow leaving the system across open boundaries is specified by the model as the concentration in the cell adjoining the boundary.  No user specification of concentration is required.

Timing


User-specified boundary concentrations may be updated at arbitrary times during a model run.  Two options are available for specification of boundary concentrations between updates (Figure 6).  If the "step-function" option is selected, boundary concentrations are immediately assume the updated concentration and remain constant until the next update.  If the "interpolate" option is selected, boundary concentrations are linearly interpolated between updates.
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Figure 1.  Two-dimensional model grid (elevation)
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Figure 2.  Cell and interface numbering scheme
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Figure 3.  Upwind and QUICK advection schemes
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Figure 4.  Vertical advection scheme
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Figure 5.  Left- and right-flow boundaries
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Figure 6.  Step-function and interpolated boundary conditions

The Conservation of Mass Equation



_1132121089

_1132121935

_1132122223

_1132121091

_1132121092

_1132121093

_1132121090

_1132121086

_1132121088

_1132121085

