Future Directions and the Importance of Scale in Estimating Atmospheric Nitrogen Loading to the Next Generation Chesapeake Bay Model

Jesse O. Bash1, Donna Schwede1, Christian Hogrefe1, Kristen Foley1

1U.S. EPA ORD/CEMM

June 8th
Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA.
Motivation

• Atmospheric nitrogen deposition contributes to surface water eutrophication and biodiversity loss

• Air quality models typically have a base resolution on the order of 1-36 km
 • Simulations at finer resolution are problematic due to bulk atmospheric physics parameterizations

• The next generation of distributed watershed models have a resolution in the tens of meters
 • Can we leverage sub-grid scale data to better match atmospheric loading to watershed models?
CMAQ v5.3

Deposition Updates

- Option to output land use specific deposition
 - Deposition fluxes estimated for each land use type
 - Land use based aggregation to the grid cell (NLCD or MODIS)
- More comprehensive parameterization of organic nitrogen chemistry and deposition
- Correction to coarse aerosol dry deposition
Wet Deposition Updates

- Annual 2016 model simulation
- CMAQ v5.3.1 precipitation was biased low compared to NADP/NTN observations in the summer months when deposition is usually the highest
- Model improvements due to updates to coarse aerosol treatment

<table>
<thead>
<tr>
<th>Species</th>
<th>CMAQ v5.2.1 NMB</th>
<th>CMAQ v5.3.1 NMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₃ Wet Deposition</td>
<td>-14.8%</td>
<td>-9.1%</td>
</tr>
<tr>
<td>NHₓ Wet Deposition</td>
<td>-50.0%</td>
<td>-43.7%</td>
</tr>
<tr>
<td>SO₄ Wet Deposition</td>
<td>-28.5%</td>
<td>-22.4%</td>
</tr>
<tr>
<td>Precipitation</td>
<td>5.0%</td>
<td>-9.6%</td>
</tr>
</tbody>
</table>
Planned simulations

• Dry deposition by land use planned for 2002-2017
 • CMAQ v5.3.2 simulations
 • MODIS 250 m base resolution
 • 12 km grid resolution
• Air Quality Modelling Evaluation International Initiative (AQMEII) Phase 4
 • Dry deposition intercomparison project (primarily for ozone) including simulations for 2010 and 2016 as well as box model comparisons with field data
 • CMAQ v5.3 deposition will be well evaluated
• Potential 1990 simulation being scoped
How can we leverage sub-grid cell data?
Disaggregating flux estimates

• Grid cell flux

\[Flux_{\text{Grid}} = \sum_{LU} Frac_{LU,\text{Grid}} Flux_{LU,\text{Grid}} \]

• Land use fraction

\[Frac_{LU,\text{grid}} = \frac{\sum_i LU_{i,30\text{m}}}{\text{Area}_{\text{Grid}}} \]

• Disaggregated Flux

\[Flux_{\text{Gri}} = \sum_{LU} \left(\frac{\sum_i Flux_{LU,\text{Grid}} LU_{i,30\text{m}}}{\text{Area}_{\text{Grid}}} \right) \]
Disaggregating Flux Estimates

- Developed an R script to disaggregate land use specific flux data
- Confirmed that the mass of the 30m disaggregated flux is equivalent to the 12 km grid cell flux
- 30 m fluxes estimated for CMAQ 5.3 July 2014 simulations at a 12 and 4 km resolution over the Chesapeake Bay Watershed
 - ~10 hours of processing time on one core for an annual simulation
 - Viable for production runs
 - Not exactly an exact comparison
 - 4 km used CMAQ v5.3 beta and 12km used CMAQ v5.3.1
Disaggregating flux estimates 12km
Disaggregating flux estimates 4km
12 km versus 4 km fluxes
12 km versus 4 km fluxes
Summary Part 1

- The land use specific fluxes can differ from grid cell fluxes by a factor of two
 - Forested land use types have the largest deposition fluxes
 - Highest deposition rates are where forested landscapes are collocated with high emission sources
- Deposition hot spots are focused around NH$_3$ emission sources
 - Higher levels of deposition are not seen in the I-95 corridor (a large NOx source)
 - NO$_x$ deposits relatively slowly
 - HNO$_3$ deposits quickly but is a secondary pollutant (formed downwind from sources)
- 12 km and 4 km simulations resulted in remarkably similar deposition totals over the domain
 - 4 km domain had more variability in deposition
Summary Part 2

• Improvements in modeled wet deposition when compared to NADP observations
 • Despite larger precipitation biases in the more recent WRF simulations used for the comparison
• Land use specific fluxes can be disaggregated and still maintain the model mass balance
 • Code has been developed to do this disaggregation
• Increased model spatial resolution primarily impacts reduced nitrogen deposition near ammonia emission sources and wet deposition
• Disaggregated 12 km model data captures much of the spatial variability of the 4 km simulations
COVID 19 and Air Quality

• NO$_2$ OMI and TROPOMI columns 10-12% lower in the US
 • Approximately 28% lower over major Northeastern Cities
• This change in emissions is likely to have an impact on atmospheric N deposition
• How do we translate the observational data into model emissions?
• Similar reductions not seen in PM$_{2.5}$

Bauwens et al. 2020 GRL DOI:10.1029/2020GL087978
COVID 19 and Emissions Modeling

- Where will emissions be reduced
 - Decrease in mobility has been documented
 - Other sectors?
- Likely to impact NO\textsubscript{2} emissions and HNO\textsubscript{3} deposition primarily
- Data is still coming in and being collected
 - Some will be delayed

2020 National Emissions Inventory

• National Emissions Inventories (NEI) are compiled every three years currently
 • 2020 is an NEI year
• Will not be a good base year due to COVID 19 and emission anomalies
• Emission activity data will be arriving late
 • Due to workplace disruptions from COVID 19
 • Typically about 2 years to compile data and estimate emissions for a public release
• Will be collaborating with a COVID modeling team