A History of Nutrient and Sediment Inputs to Chesapeake Bay, 1985-2016:

Three decades of monitoring and coordinated restoration in the Chesapeake Watershed

Joel D. Blomquist, Rosemary M. Fanelli, Jeni Keisman, Qian Zhang, Doug L. Moyer and Michael J. Langland

Purpose

- Provide feedback on net observed changes in inputs to Chesapeake Bay
- 2. Clarify technical trend jargon for fluvial systems
- Help bridge the understanding of watershed changes with estuarine response

Scope

- 1. River Monitoring¹ (RIM 1985-2016)
- Watershed models (WSM6.0³) (SPARROW²)
- 3. Wastewater inputs (CBPO³)
- 4. Atmospheric Deposition (NADP³)

¹ Moyer, D.L., Langland, M.J., Blomquist, J.D., and Yang, Guoxiang, 2017, Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2016, U.S. Geological Survey data release, https://doi.org/10.5066/F7RR1X68.

² Ator, S.W., Brakebill, J.W., and Blomquist, J.D., 2011, Sources, fate, and transport of nitrogen and phosphorus in the Chesapeake Bay watershed—An empirical model: U.S. Geological Survey Scientific Investigations Report 2011–5167, 27 p.

3 Chesapeake Bay Program Office, 2018.

Average Inputs to Chesapeake Bay

Phosphorus

Nitrogen

Sediment

Expected Total Nutrient and Sediment Reduction Due to Agricultural and Developed BMPs

Preliminary information-Subject to revision. Not for citation or distribution.

Flow Normalized Loads

PATUXENT RIVER AT BOWIE MD TOTAL NITROGEN

Characterizing Observed Changes in Annual Load

Test / Slope Estimate	Pros	Cons		
Mann Kendall / Sen Slope	 Robust nonparametric trend test on annual data. Slope scaled to annual time series 	Limited power relative to sampled observations		
Seasonal Kendall / Seasonal Sen Slope	 Robust nonparametric trend test on seasonal (monthly) data. Increased power in trend detection (12 seasons per year) 	 Slope is scaled to monthly observation Slope is insensitive to seasons with large change 		

Trends in Observed Loads

PATUXENT RIVER AT BOWIE MD TOTAL NITROGEN

Sen Slope -0.012 Mkg/yr, MK p=0.003

Seasonal Sen Slope -0.0013 Mkg/yr, SK p<0.00001

Trends in Observed Loads

JAMES RIVER AT CARTERSVILLE, VA TOTAL NITROGEN

Trends in Observed Loads

SUSQUEHANNA RIVER AT CONOWINGO, MD SUSPENDED SEDIMENT

Summary of Observed and Flow-Normalized Change

	Total Nitrogen		Total Phosphorus		Suspended Sediment	
	Observed	Flow-	Observed	<u>Flow-</u>	Observed	Flow-
	Observed	Normalized	Observed	Normalized	Observed	Normalized
	<u>Slope</u>	<u>Slope</u>	<u>Slope</u>	<u>Slope</u>	<u>Slope</u>	<u>Slope</u>
Choptank	0.00406	0.00701	0.000453	0.00586	0.0332	-1.06
Susquehanna	-0.378	-10.1	0.6	2.03	0.00227	1660
Patuxent	-0.013	-0.816	-0.000497	-0.082	0.462	-13.3
Potomac	-0.0475	-2.33	-0.00285	-0.325	-10.7	-891
Rappahannock	0.00305	-0.541	0.00393	0.0653	2.83	85.1
Mattaponi	-0.00333	0.00792	0.000409	0.0277	0.351	20
Pamunkey	0.000243	-0.0213	-0.0000166	-0.000218	0.00737	-0.39
James	-0.0587	-1.12	-0.0269	-0.626	-11.3	163
Appomattox	-0.00499	-0.0153	-0.000193	0.0228	-0.135	0.205
Slope reported	in million kg/yr					

Decreasing Increasing

Load vs. Flow Weighted Concentration Trend

Susquehanna River at Conowingo, Md.

Flow-Weighted Concentration = <u>True Condition Load</u> Annual Flow

Summary of Flow Weighted Concentration Trends

	Mean annual FWC, mg L-1			Change in FWC, mg L-1		
	P00600	P00665	P80154	P00600	P00665	P80154
Choptank	1.7	0.1	16	0.12	0.021	0.57
Susquehanna	1.7	0.07	43	-0.18	1.00E-04	-0.47
Patuxent	2.2	0.17	68	-0.69	-0.05	1.1
Potomac	2	0.15	110	-0.13	-0.012	-2.9
Rappahannock	1.2	0.19	140	-0.039	0.0047	6.03
Pamunkey	0.74	0.09	44	0.015	0.014	5.3
Mattoponi	0.6	0.06	14	-0.018	-0.0007	0.049
James	0.78	0.17	110	-0.11	-0.061	-0.55
Appomattox	0.61	0.06	15	-0.004	0.0054	-0.83

A History of Nutrient and Sediment Inputs to Chesapeake Bay: 1985-2016

ESTIMATED LOADS DOWNSTREAM FROM MONITORING

Unmonitored Nonpoint source Nitrogen

From CBP WSM 6.0 Calibration runs

Unmonitored Nonpoint source Phosphorus

From CBP WSM 6.0 Calibration runs

Unmonitored Nonpoint source Suspended Sediment

From CBP WSM 6.0 Calibration runs

Direct Nitrogen Deposition to Tidal Waters

Wastewater Load Reduction

- Downstream from Stream Monitoring
- Upstream from Stream Monitoring

Nitrogen Sources

Nitrogen non-point source delivered yield (kg/ha)

30% of area delivers 36% of TN load (<13.3 kg/ha)

10% of area delivers 40% of TN load (max 92.0 kg/ha)

Phosphorus Yields

- 80% of area delivers 39% of TP load (<0.42 kg/ha)
- 15% of area delivers 33% of TP load (<1.15 kg/ha)
- 5% of area delivers 28% of TP load (max 9.12 kg/ha)

Summary of Findings

- Observed long-term trends in loads at times differ from flow-normalized trend estimate.
- Realized changes are often considerably smaller than flow-normalized results suggest.
- Interannual variations in weather and streamflow can mask real changes in mass flux delivery to the bay.
- Flow-Weighted concentration trends indicate a real difference in the quality of water entering the bay.

Implications from measures of progress

- Eastern Shore NPS show little change, yet Choptank River continues to Show increasing trends.
- Watershed model results for the Western shore shows continued slight increases in loads, which are consistent with development in unmonitored regions.
- Sediment and phosphorus trends at the Susquehanna River at Conowingo suggest that impacts of reservoir infill on Chesapeake Bay are largely episodic.

