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INTRODUCTION 
 

Roadside ditches are depressions with defined beds and side slopes designed to convey stormwater away from 

transportation throughways. If not properly vegetated and maintained, these channels can serve as conduits for 

sediment, nutrients, and other contaminants into waterways. The Chesapeake Bay Program Partnership’s (CBP) 

Roadside Ditch Management Team (RDMT) aims to address the urgent need for an inventory of roadside ditches. An 

estimated extent of the existing ditch network will enable CBP and environmental planners to establish restoration 

priorities, recommend Best Management Practices (BMPs), and model potential sediment and nutrient reductions 

across the watershed.  

The RDMT has identified several priorities that need to be addressed to create a useable Bay-wide roadside ditch 

dataset. First, errors of commission should be minimized. It is important for consumers of the data to have a high 

degree of confidence in each ditch that is included in the dataset. Conservative results will better serve practitioners 

who are tasked with prioritizing ditches for restoration as well as appropriate treatments across large landscapes.  

Second, it is important that the ditches mapped in the dataset be contiguous and not fragmented. An ideal dataset 

would minimize commission errors as well as fragmentation of mapped ditches. This balance, while difficult achieve, is 

important for addressing a third priority: ditches mapped in the dataset should be hydrologically connected. 

Information about hydrologic connectivity to upstream and downstream waterways is valuable in prioritizing ditches 

for restoration treatment. Finally, the contributing area to each ditch should be calculated as this information is 

important for helping mangers decide on the types of BMPs that are most appropriate for treating the water 

conveyed by each ditch.  

Through a pilot study in two Pennsylvania counties, the Chesapeake Conservancy’s Conservation Innovation Center 

(CIC) has produced a dataset of roadside ditches while addressing the first two priorities listed above. CIC has tested a 

range of geospatial workflows aimed at limiting commission while emphasizing data contiguity and found that 

applying thresholds to a combination of flow accumulation, positive topographic openness, and topographic 

convergence index appears to perform best in achieving these goals. Because field-surveyed data related to the size 

and location of roadside ditches were not available to CIC, the performance of the dataset has been assessed using 

the visual interpretation of aerial imagery by analytical staff.  Recommended next steps include validating results with 

field-verified data, establishing a semi-automated approach for setting GIS data thresholds, developing an accuracy 

assessment methodology, and prioritizing ditches for restoration based on criteria set forth by the RDMT.  

BACKGROUND 
 

Roadside ditches are an agent of hydromodification and in many cases discharge into natural streams, effectively 

increasing the drainage density of a landscape (Buchanan et al. 2012). Poor placement, design, and maintenance of 

roadside ditches can lead to roadside ditches conveying sediment, nutrients, and other pollutants into streams and 

rivers (Falbo et al. 2013). As a result, roadside ditches are a key component of channel network maps. Proper 

detection and mapping of roadside ditches lays a foundation for studying their impact on the natural hydrologic and 

nutrient transport network. For this undertaking, it is important to integrate approaches that will yield the best results 

for ditch detection within any type of landscape.  

In recent years, high-resolution digital elevation models (DEMs) and other topographic information derived from light 

detection and ranging (LiDAR) technology have been useful in the detection of geomorphic and hydrologic features, 

such as channel networks (Passalacqua et al. 2012, Liu and Zhang 2011, Rapinel et al. 2015, James et al. 2007). The 

products of these automated techniques have helped to improve the efficiency and accuracy of watershed models 

that inform decisions for precision conservation (Abdel-Fattah et al. 2017). However, even with the increasing 

availability of high-resolution LiDAR data and advanced processing methods, the accurate extraction of natural and 

artificial channels still presents a challenge to modelers. The numerous factors influencing channel initiation can be 

highly variable and difficult to capture in a GIS environment. Furthermore, the accuracy of drainage network maps is 
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dependent upon the resolution and accuracy of the elevation model being used (Walker and Willgoose, 1999). In the 

Chesapeake Bay watershed, development of accurate channel maps is a high priority for researchers and restoration 

specialists aiming to improve water quality. 

Previous studies into the use of high-resolution DEMs and geomorphic data helped inform decision-making for 

developing a scalable approach for ditch channel detection. Pirotti and Tarolli (2010) focused channel network 

extraction from LiDAR and investigated the use of landscape curvature as a means of identifying the key 

morphometric signatures associated with channelization. The results of their analysis suggested that the resultant 

channel networks are largely dependent on the window size used for calculating curvature and the threshold value 

used for distinguishing channelized from unchannelized features. Kiss (2004) analyzed the use of hydrological and 

morphological approaches, integrating different methods into the detection of drainage networks using DEMs. Flow 

accumulation, convergence index, and sediment flux calculation were amongst some of the methods reviewed in the 

study. The outcome of the study suggested the use of both hydrologic and morphologic approaches for effective 

delineation of drainage networks. The outcome of these studies proved useful in developing a roadside ditch 

extraction methodology.  

The study of roadside ditches is not a widely-explored topic. Limited academic research exists that discusses the 

mapping of roadside ditches. Additionally, the quality of LiDAR data varies across the Chesapeake Bay watershed; 

some regions lack coverage entirely while many others have LiDAR data that do not meet the minimum quality 

standards of USGS NGP and 3DEP programs (Heidemann 2012). CIC staff worked to overcome these challenges by 

coordinating with the RDMT to establish a working definition of what features can be considered roadside ditches, 

applying a variety of mapping methods derived from stream identification workflows, and testing their utility in 

delineating roadside ditches. 

METHODOLOGY 

Data and Study Area 
Located in Pennsylvania, Lancaster and York Counties make up the study area for the roadside ditch mapping analysis. 

Lancaster County is approximately 984 square miles in area with a land use breakdown of 53.6% agriculture, 17.1% 

woodlands, 5.5% open land, 4.1% open water, 14.6% residential areas and 1.3% commercial use. The other classes 

such as industrial sites, utility lines and transportation networks constitute less than 4% land use in the county (G. 

Mohler, personal communication, September 5th 2017). On average, Lancaster County receives about 1087 millimeters 

of precipitation per year. York County spans 911 square miles and, similarly to Lancaster County, is dominated by 

agricultural land use (65.5%). Residential (22.1%), commercial (3.2%), industrial (2.5%) and exempt areas such as parks, 

churches and schools (6.1%) comprise the remainder of the land area. York County receives about 1089 millimeters of 

precipitation per year, on average (J. Simora, personal communication, September 5th 2017). 

Two DEMs were created from 2008 LiDAR and 2015 LiDAR data. Both DEMs were created at a 1-meter spatial 

resolution using a natural neighbor interpolation method and served as the primary input for most of the feature 

extraction techniques used. The natural neighbor approach is an interpolation method based on a Voronoi partition 

of discrete spatial points. The method locates the closest subset of input samples (i.e. LiDAR points) to a query point 

(i.e. DEM pixel) and applies weights to them based on a proportionate area analysis in order to interpolate the value 

of the queried point (Ledoux and Gold, 2005). Compared to a TIN dataset or a nearest neighbor interpolation, natural 

neighbor interpolation produces smoother approximations of surface features. The CIC’s hypothesis is that smoother 

surface feature approximations allows for better and extraction of geomorphic features in the terrain.  

The two vintages of LiDAR were taken into consideration because while 2015 LiDAR is of higher quality (QL2) and is 

the more appealing choice for feature extraction, it is not available for the entire state of Pennsylvania. The lower-

quality 2008 LiDAR (QL3) is available state-wide and is likely to be the only option in the next several years if the 

analysis described here were to be conducted elsewhere in the state.  
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Pilot Area   
Due to the large size of the study area, nearly 2,000 square miles, a subset of the area was selected to test analyses 

and serve as a pilot for the study. The Little Conestoga Creek watershed, located west of Lancaster County, was 

selected as a pilot area. Little Conestoga Creek measures approximately 21.1 miles in length and is a tributary of the 

Conestoga River in Lancaster County (USGS, 2017).  

 

Figure 1. Map depicting location study area within the state of Pennsylvania (inset) and DEM for pilot area. NHD 

flowlines from National Hydrography Dataset (USGS, 2015). 

 

Digital Elevation Model Analysis 
The two DEMs created from 2008 and 2015 LiDAR were analyzed along with a 2008 Triangulated Irregular Network 

(TIN) dataset downloaded from the State of Pennsylvania’s GIS data hosting service, Pennsylvania Spatial Data Access 

(PASDA, 2017). The aesthetic quality as well as the accurate representation of ground features were taken into 

consideration when choosing a DEM dataset to use for the analysis.  
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Figure 2. Comparison highlighting the quality contrast between 2008 TIN Method and 2008 natural neighbor DEM. 

The 2008 natural neighbor DEM is more detailed compared to 2008 TIN dataset. 

 
 

Figure 3. Illustration of the two vintages of DEM created using the natural neighbor approach. The 2008 and 2015 

DEMs look very similar in terms of feature representation. However, the 2015 dataset produces smoother and better-

defined features than the 2008 dataset.  

 

While the 2008 DEM dataset was a clear improvement over the TIN dataset, it was coarser than the 2015 DEM. The 

2015 DEM represented features smoother and with more definition and was ultimately chosen for this pilot area 

analysis.  

DEM Preprocessing  
Preprocessing the DEM involves breaching and smoothing the DEM by filling the depressions or pits that obstruct 

flow. It ensures that the DEM used is hydrologically conditioned (i.e. water can flow freely from any cell in the DEM 

grid to an outlet cell). See Figure 4, below, for an illustration of the breaching procedure. The DEM was breached in 

SAGA v.4.0 and pit-filled in ESRI ArcMap 10.5.1.  
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Figure 4. Illustration of the breaching stage in preprocessing a DEM. Breach channel is visible, allowing flow to 

continue from upstream to downstream across the obstruction. 

Supporting Data 
Other datasets that were incorporated into the analysis were the road right-of-way layer (CBP, 2015) for both 

counties, the “roads” land cover class from the 2013 Pennsylvania land cover and a 2015 roads layer hosted by PASDA 

which represented the most updated road layer at the time. These supporting datasets were primarily used to limit 

the extent of the analysis to regions immediately adjacent to roads. See Table 1, below, for a list of all datasets used in 

this analysis and their sources.   

Table 1. Compiled list of all datasets used in the roadside ditch extraction analysis. 

 Data Data Source 

2008 LiDAR & TIN Dataset PAMAP Program  

2015 LiDAR (NJ/PA Sandy LiDAR) US Geological Survey(USGS) 

2013 Pennsylvania Land Cover University of Vermont Spatial Analysis Laboratory  

2015 Lancaster County Roads Shapefile Lancaster County GIS Program 

Lancaster & York County Road Right-of-Way(ROW) Chesapeake Bay Program (CBP) 

Lancaster & York County HUC-10 Boundaries USGS National Hydrologic Dataset (NHD) 

 

Data Analysis 
For this study, roadside ditches were defined as narrow channels alongside roads and within the road right-of-way 

characterized by their convergent shape, with slopes on either side that facilitate collection and conveyance of water 

from roads. It is important to add that sole dependence on flow accumulation for ditch delineation along roadsides is 

not recommended as increased flow is not always indicative of the presence of a roadside ditch. Consequently, other 

terrain variables were considered in conjunction with flow accumulation to delineate ditches.  These included flow 

accumulation, convergence index, and topographic openness. Below is a detailed explanation of each of these 

metrics.   

Flow Accumulation 
The calculation of flow direction and flow accumulation (Figure 5) are fundamental to delineating the drainage 

network. A single-flow-direction algorithm was used in this analysis. Commonly referred to as “D8”, this algorithm 

estimates the direction of flow from a grid cell to one of its eight surrounding cells based on the direction of the 

steepest downward slope (O’Callaghan and Mark, 1984). Using this flow direction layer, a flow accumulation layer can 
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be created that sums the number of upslope cells that contribute flow to each downslope cell in a raster. Stream 

channels and drainage networks can be delineated by applying a threshold to the flow accumulation.  

 

Figure 5. Illustration of outputs from D8 flow direction (left) and unthresholded flow accumulation (right) calculations. 

Convergence Index 

The convergence index (Figure 6a) is a morphometric variable (Equation 1, below) that relates the aspect of eight 

surrounding cells to a center cell. Negative values are indicative of divergent terrain, positive values are indicative of 

convergent terrain, and a value of 0 is indicative of a planar surface. The index was calculated in SAGA v4.0 and the 

output was given in percentage. The percentage value is a measure of the aspect i.e. the percentage of surrounding 

cells pointing to the center cell. This index is calculated using the equation: 

Equation 1. 

 

Here θ, is the average slope aspect of the surrounding cells relative to the focal cell. In the context of its functionality, 

it is quite similar to planform curvature.    

 

Figure 6. (a) 100% negative convergence (b) 0% even slope (planar surface) (c) 100% positive convergence (Conrad, 

2001).  
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Topographic Openness  
Topographic openness is a morphometric index that utilizes the line of sight principle to express the degree of 

dominance or enclosure of a location on an irregular surface (Yokoyama et al., 2002). Openness is calculated using the 

average of the maximum unobstructed viewing angles from a central point within a given radial distance, measured in 

eight azimuthal directions. The viewing angle is measured from zenith (i.e. above ground) in the case of positive 

openness, or from nadir (i.e. below ground) in the case of negative openness (Figures 7 & 8).  

The positive openness, ρ rad, of a location within a specified radius, rad, is calculated as:  

Equation 2. 

 

While the negative openness, η rad, within a specified radius is calculated as: 

Equation 3. 

 

 

Figure 7. Illustration of positive openness (left) and negative openness (right) where L is the radial limit of calculation 

(Yokoyama et al., 2002). 

 

Figure 8. Illustration of high and low scores for positive and negative openness (Yokoyama et al., 2002). 
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Alternative methods considered 
To complement the results of the initial analysis, additional terrain variables were investigated. These methods were 

not included in the final methodology but were helpful in narrowing down the approaches undertaken.  Brief 

explanations for these methods are given below because the CIC believes that with more research and more literature 

guidance, these methods can be used to improve current ditch mapping efforts. These methods include:  

Topographic Wetness Index 
Topographic wetness index (TWI) is a function that relates specific catchment area and slope of the terrain. The 

equation for calculating TWI can be seen below in Equation 4 where α is the catchment area and β is the slope of the 

terrain (Beven and Kirby, 1979). TWI can be used to identify areas vulnerable to saturation and liable to produce 

surface runoff. In the context of this analysis, TWI was calculated to investigate a possible relationship between 

regions with a high wetness index and the presence of ditches in these regions. The hypothesis was that there would 

be a positive correlation between regions with high wetness and presence of roadside ditches. 

Equation 4. 

 

Profile Curvature 
Profile Curvature is the rate of change of slope of a surface along the direction of maximum slope. It influences the 

flow velocity across the surface. A negative profile curvature indicates the surface is upwardly convex and associated 

with increasing flow velocity. A positive profile curvature indicates an upwardly concave surface and represents a 

deceleration of flow along the surface. Our hypothesis is that in calculating profile curvature, roadside ditches would 

exhibit high positive profile curvature, indicating that the surface of roadside ditches display upward concavity. 

Plan Curvature 
Plan Curvature is the curvature perpendicular to the direction of the maximum slope. Plan curvature is good for 

detailing the convergence and divergence of flow across a surface. Positive plan curvature value indicates that the 

surface is horizontally convex at the specified cell while a negative value would indicate that the surface is horizontally 

concave at the specified cell. A value of zero indicates surface linearity. Plan curvature is beneficial for differentiating 

between valleys and ridges. Our hypothesis suggests that using plan curvature will not yield any useful results for 

delineating ditches.  

Total Curvature  
Total Curvature is the second derivative of slope. It is the combination of plan and profile curvature and defines the 

general curvature of the surface. Positive curvature values represent more convex surfaces, negative curvature values 

represent the more concave surfaces such as valleys and zero values are indicative of flat surfaces. Our hypothesis 

suggests that ditches will exhibit negative curvature values due to their concave nature.  

Terrain Ruggedness Index 
Terrain Ruggedness Index is an index that expresses the magnitude of elevation difference between contiguous cells 

in DEM grid. This index calculates the standard deviation of the adjacent cell values from the central cell. This 

approach is good for detecting and measuring and topographic heterogeneity. In measuring the ruggedness index 

relative to ditch delineation, it was posited that ditch channels would display similar patterns of terrain heterogeneity 

across the landscape.  

Terrain Surface Convexity 

Terrain Surface Convexity defines the ratio of cells with positive surface curvature values to the total number of cells 

within a specified radius. Its basic measurement is similar to that of convergence index, however, the difference is 

outlined in its calculation. While the convergence index calculates the general convergence of adjacent cells to the 
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focal cell, the percentage surface convexity is only calculated for cells within the specified radius. Our hypothesis is 

that is ditches will display low convexity values which would correspond to high values of concavity.  

RESULTS AND DISCUSSION 
The total length of extracted roadside ditches for the subset of the study area was approximately 34,762 meters (21.6 

miles) with an average length of 115 meters (~0.07 miles). The density of ditches per square mile was measured at 

0.33 miles of ditches per square mile. The observed density of the roadside ditches in the pilot watershed was highest 

around farms or agricultural regions where the land was being drained for crop cultivation. There was not a significant 

number of roadside ditches observed within suburban residential regions. Connectivity of roadside ditches to streams 

and other waterways was not analyzed. On a county scale, Lancaster County had a total ditch length of approximately 

240,247 meters (149 miles) with an average length of 91 meters (~0.06 miles) while York County had a total ditch 

length of approximately 277,740 meters (173 miles) with an average length of 88 meters (~0.05 miles). Lancaster 

County had a density of approximately 0.15 miles of ditches per square mile while York County had a density of 

approximately 0.19 miles of ditches per square mile.  

Defining Thresholds  
In deriving the right threshold values, topographic openness and convergence index were calculated on raw DEMs. 

This was done because breaching and pit filling alter the values within the DEM thereby decreasing the likelihood of 

detecting geomorphic features needed for delineating roadside ditch channels. Preprocessing the DEM is only 

advisable for the calculation of flow direction and flow accumulation because of its function in conditioning the DEM 

for hydrologic analysis. All data was subsequently clipped to the road ROW to confine data to the extent of the 

analysis.  See Table 2 below for a detailed list of threshold values applied to terrain variables.  

The threshold for positive openness was calculated by the analyzing the distribution of values, identifying a 

breakpoint, and rounding to two decimal places (Figure 9). A threshold of 1,000 square meters was applied to the 

flow accumulation to delineate the drainage network within the road right-of-way.  Using data breakpoints to 

establish thresholds was successful at distinguishing statistically homogenous features from dissimilar features within 

roadsides. Roadside ditches in this case were assumed to have homogeneous characteristics that distinguish them 

from other ground features along road edges.  

Roadside ditches were estimated to exist between features on road edges that exhibited -75% and -25% 

convergence. The ditches mapped exhibited negative convergence indicating that values surrounding the center cells 

(ditches) were of higher elevation values, which followed this project’s definition for roadside ditches. The results 

suggest that the development of thresholds was effective in extracting ditch extents as well as their orientation.  

Table 2. Table detailing threshold values of variables used in delineating roadside ditches 

Variables  Threshold Values Units 

Flow Accumulation ≥ 1000 Square meters 

Convergence Index  -75 ≤ CI ≥ -25 Percent 

Positive Openness ≤ 1.45 Radians 
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Figure 9. Graph highlighting breakpoints for positive openness used to derive thresholds 

Filtering and Noise Reduction  
To reduce noise and spottiness of the data, a generalization algorithm was developed and applied to extracted ditch 

features. This involved calculating the mean distance between fragmented sections of ditches, expanding the ditch 

network by the calculated mean distance, and then thinning it back down to a single pixel width to arrive at a more 

contiguous network.  

The application of thresholds and use of ancillary datasets like road and right-of-way boundaries was useful in 

constraining the analysis and reducing noise to produce neater results. However, the results are dependent on the 

accuracy of layers used for filtering noise. In examining the Lancaster county road edges polygon and the road class 

from Pennsylvania land cover, discrepancies were found in the extent of mapped roads. The datasets were combined 

into one layer to more effectively map the entire extent of the road network.   

 

Figure 14. Illustration of discrepancy in coverage extent between 2013 Land cover and 2015 PASDA road datasets.  
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Contiguous groups of cells comprising each roadside ditch channel were then analyzed individually. Channel statistics 

were calculated to derive the mean length, minimum length, maximum length and standard deviation of all identified 

channels. All ditch channels with lengths less than the average length calculated were excluded from the final ditch 

data inventory. This was done under the assumption that extracted channels less than the mean length are more likely 

to be a result of noise rather than actual roadside ditches (Figure 10). The final dataset was converted to a polyline, 

smoothed, and filtered to remove any ditches which were visually determined to be inaccurate.  

 

Figure 10. Illustration of average length criteria used to distinguish ditches from noise  

Exclusion of Alternative Methods 

The results of the alternative methods described above were not conclusive enough to be factored into the results 

dataset. Curvature and ruggedness indices produced spotty data that, when compared side-by-side with openness, 

did not provide significant improvements to the final dataset. See Figures 11 through 13 below for a comparison of 

different terrain variables and datasets used. 
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Figure 11. Plan and Profile curvature clipped to road right-of-way extent. Noise/spottiness is more predominant in 

the plan curvature output, making it unsuitable for use in roadside ditch detection. 

 

Figure 12. Outputs from positive and negative topographic openness. 
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Figure 13. Results of the terrain ruggedness and convergence index. 

 

Figure 15. Results of ditch extraction analysis highlighting examples of ditch channels. 
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CONCLUSION  
Automated detection of roadside ditch networks was successful using terrain variables and ancillary datasets. Defining 

the spatial extent of a roadside ditch network will be useful when modeling the impact of ditches on nutrient and 

sediment transport as well as alteration to the natural hydrological network of the landscape. The results are 

compelling enough to foster further research in roadside ditch detection efforts. This study lays a solid foundation for 

future ditch mapping efforts by highlighting and considering different morphologic variables that can be combined 

with hydrologic methods to delineate roadside ditches. This analysis also provides quantitative and qualitative 

descriptions of roadside ditch characteristics by giving more detail about location and orientation of roadside ditches, 

and with the incorporation of field data could be improved substantially.   

Several factors impacted the analysis results. One limiting variable in preparing for this analysis was the lack of 

existing research and documentation about roadside ditch mapping. The varying definitions of what exactly 

constitutes a roadside ditch and minimal RDMT input added additional challenges and uncertainty to the project. 

Additionally, because the methodology presented here relies so heavily on a DEM, the quality of the DEM significantly 

affects the quality of the final product. One suggestion for future analysis is to use caution with building analyses on 

pre-made DEMs as it is possible that sub-optimal interpolation methods have been used to generate them; this was 

the case with the PASDA DEM. It is recommended that a DEM be created from high-quality, classified point cloud 

data using well-established interpolation methods (e.g. natural neighbor) to produce the best possible input for 

processing. Noise filtering and application of thresholds are useful for narrowing the extent of the analysis and 

improving the accuracy of the final product. However, the consistency of the dataset can be negatively impacted by 

these procedures. The accuracy of the road right-of-way and the land cover dataset was limited in some regions and 

excluded cells that should have been included in the ditch network. Problems with cell contiguity and ditch 

connectivity remain present due to exclusion of grid cells that fail to meet the thresholds or possess similar 

characteristics to noise that was removed from the data. This could be due to the increased detail attained using a 

high-resolution DEM resulting in an increased amount of surface irregularity. A possible solution is expanding the 

thresholds to be more inclusive; however, the amount of noise detected will also increase with a more inclusive 

threshold.  

The analysis combined hydrologic and geomorphic approaches to delineate ditch channels. The primary focus was 

deriving the best possible dataset by striking the right balance of over- versus under-inclusion of ditch channels. 

Achieving this balance proved difficult without the inclusion of data collected through field studies and on-the-

ground research. The problems and issues encountered in developing the final dataset could be mitigated by 

combining the established GIS approach with broad field study to field-verify the remotely-sensed data. For future 

ditch detection and extraction analysis, field surveys to accurately record ditch length, depth, and location are highly 

recommended. This step would help to ensure the accuracy of the GIS analysis and allow for greater understanding of 

the hydro-connectivity of the ditch data.  Future mapping efforts also could consider budgeting for a manual 

corrections effort to remove or correct erroneous features in the analysis results. Together with field survey data 

collection, this process would improve the accuracy of the results and its utility as an input for other hydrological 

models. In addition, a clear and objective definition of what constitutes a roadside ditch is encouraged. Roadside 

ditch networks extracted using convergence index and openness independently of each other exhibited problems 

with noise, fragmentation, and over-inclusion.  
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