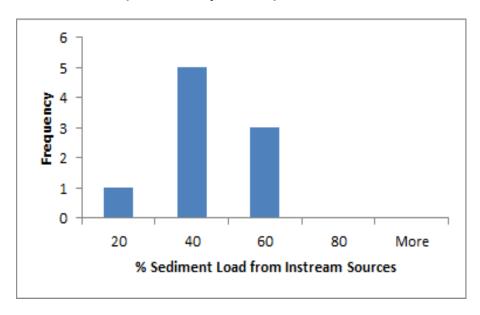
Urbanized Stream Source Ratio

October 20, 2015
Urban Stormwater Workgroup
Reid Christianson, PE, PhD
Neely Law, PhD
Bill Stack, PE

Chesapeake Bay Program Science. Restoration. Partnership.

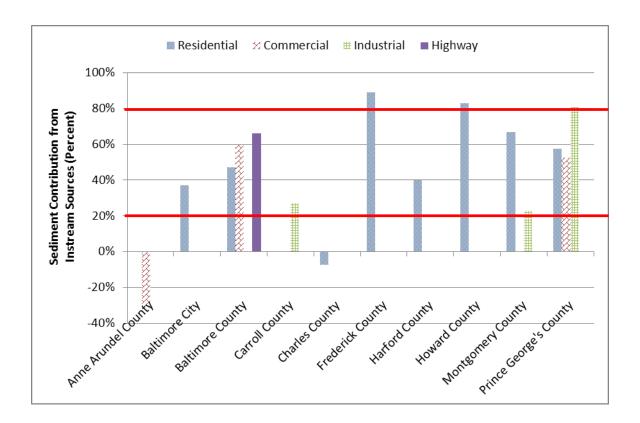
Background


- Focus on small urban streams (0 to 3rd order)
- Watersheds below 60 square miles
- Improve alignment of source area load reductions with upland and in-stream BMPs in the Watershed Model

Previous Work

- Phase I Literature Review (CWP, 2013 & 2014a)
- Phase II MS4 Concentration Monitoring Data (CWP, 2014b)
- Phase III Watershed Flow-Concentration Relations (CWP, 2015)

Previous Work


- Phase I Literature Review (CWP, 2013)
 - 38 entries; 16 included % sediment from in-stream; 9 met size criteria (<60 sq. mi.)

Histogram of the percentage of sediment load from instream two outliers and modeling studies removed.

Previous Work

 Phase II – MS4 Concentration Monitoring Data (CWP, 2014)

Goals of Proposed Approach

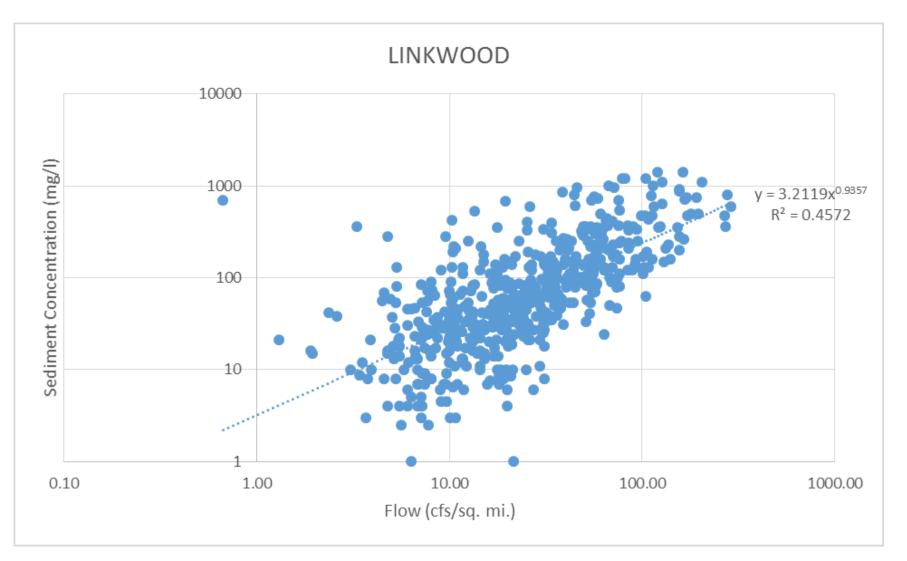
- Focus on small urban streams (0 to 3rd order)
- Define a Stream Source Ratio (SSR) that quantifies the relative load attributed to instream sources (e.g. bed & bank erosion, resuspension)

$$SSR = \frac{Bed \& Bank Erosion}{Bed \& Bank Erosion + Upland} = \frac{E}{E + U}$$

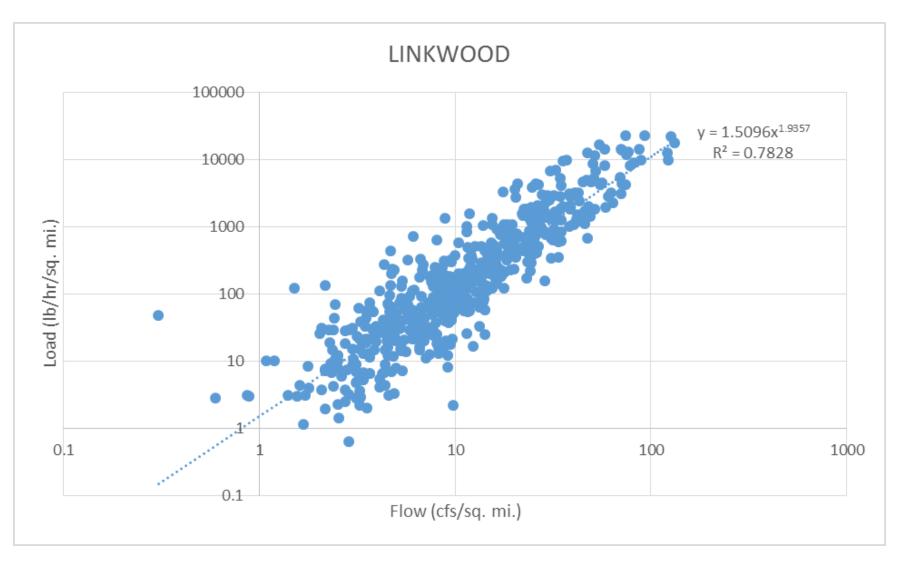
From Smith and Wilcock (2015)
E = Lowland Bank Erosion
U = Upland Sediment Supply

General Approach

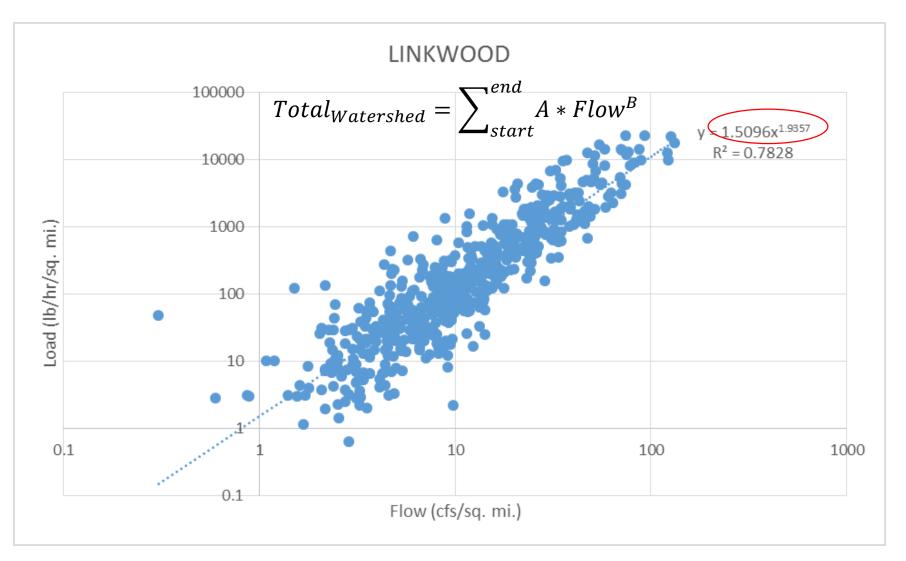
- Flow-Load relations for watershed as a whole
- Use CBWM hourly flow as proxy for monitored flow
- Mean upland sediment concentration used for upland load
 - County specific, from National Stromwater Quality Database, where available
- SSR estimated as a result
- Relate drainage area characteristics to SSR
- Initial predictive regression based on 9 watersheds
- Final predictive regression based on 6 watersheds

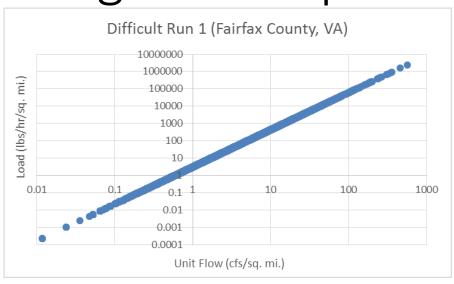

General Approach

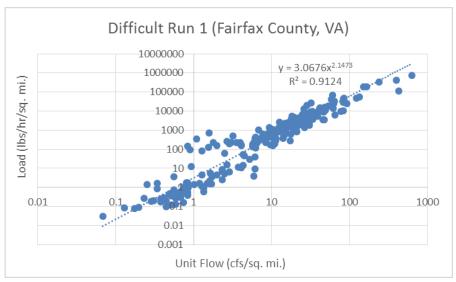
WATERSHED NAME	DRAINAGE AREA (SQ. MI.)	IMPERVIOUS COVER (FRACTION)	FOREST COVER (FRACTION)	FRACTION HSG A/B	FRACTION HSG C/D	RIPARIAN LENGTH FRACTION OF STREAM	STORM DRAIN DENSITY (PER SQ. MI)	OUTFALL DENSITY (PER SQ. MI)	FRACTION BMP TREAT	SSR (ESTIMATED)
DIFFICULT RUN 1	5.59	0.184	0.392	0.590	0.370	0.340		4.8	0.240	0.917
DIFFICULT RUN 5	55.2	0.184	0.356	0.603	0.278	0.502		5.7	0.221	0.843
PAINT BRANCH	12.1	0.130	0.266	0.753	0.238	0.530		8.0		0.562
BREEWOOD	0.10	0.331	0.181	0.271	0.729	1.00	264.5	81.4	0.800	0.820
MOORES RUN @ RADECKE AVE	3.52	0.300	0.070	0.105	0.895	0.750				0.579
STONY RUN @ LINKWOOD	2.20	0.694	0.306	0.562	0.438	0.385				0.909
WEST BRANCH HERRING RUN @ IDLEWYLDE	2.13	0.277	0.116	0.551	0.449	0.405				0.319
SCOTT'S LEVEL - 01	3.42	0.246	0.029	0.359	0.641	0.767	364.5	39.5		0.314
POWDER MILL RUN	3.64	0.378	0.041	0.046	0.954	0.656	571.7			0.691


General Approach

WATERSHED NAME	DRAINAGE AREA (SQ. MI.)	IMPERVIOUS COVER (FRACTION)	FOREST COVER (FRACTION)	FRACTION HSG A/B	FRACTION HSG C/D	RIPARIAN LENGTH FRACTION OF STREAM	STORM DRAIN DENSITY (PER SQ. MI)	OUTFALL DENSITY (PER SQ. MI)	FRACTION BMP TREAT	SSR (ESTIMATED)
DIFFICULT RUN 1	5.59	0.184	0.392	0.590	0.370	0.340		4.8	0.240	0.917
DIFFICULT RUN 5	55.2	0.184	0.356	0.603	0.278	0.502		5.7	0.221	0.843
PAINT BRANCH	12.1	0.130	0.266	0.753	0.238	0.530		8.0		0.562
BREEWOOD	0.10	0.331	0.181	0.271	0.729	1.00	264.5	81.4	0.800	0.820
MOORES RUN @ RADECKE AVE	3.52	0.300	0.070	0.105	0.895	0.750				0.579
STONY RUN @ LINKWOOD	2.20	0.694	0.306	0.562	0.438	0.385				0.909
WEST BRANCH HERRING RUN @ IDLEWYLDE	2.13	0.277	0.116	0.551	0.449	0.405				0.319
SCOTT'S LEVEL - 01	3.42	0.246	0.029	0.359	0.641	0.767	364.5	39.5		0.314
POWDER MILL RUN	3.64	0.378	0.041	0.046	0.954	0.656	571.7			0.691


Flow-Concentration Relation


Flow-Load Relation



Flow-Load Relation

Flow Range Overlap

SSR Estimation

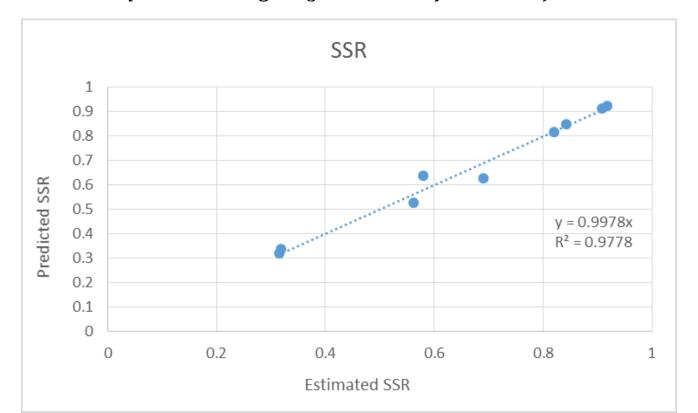
- Flow-load relation used to estimate total watershed load
- Event Mean Concentration for county from NSQD represents upland

• $Outfall(upland) = EMC_{Storm} * Flow_{Total}$

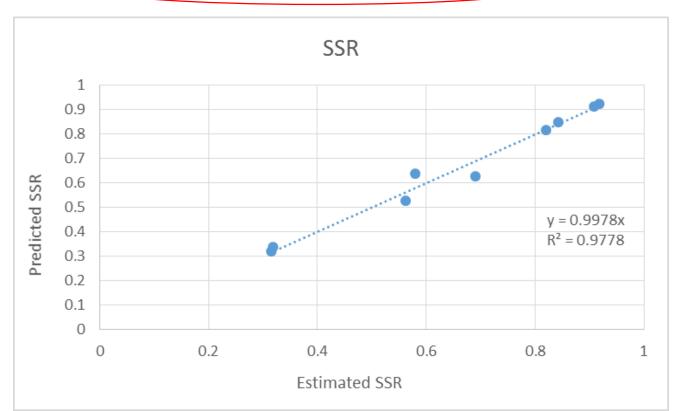
Linkwood					
Fraction Impervious	0.694				
(DUTFALLS				
TSS Storm EMC					
	Mean				
	mg/L				
	40				
c	D (1 0 1 1	(i /: / /i)			
560.7	124.3				
	Mean Load (lbs/ac)				
	6,208.6				
Annual Loads					
	Mean (lbs/ac/year)				
	295.6				
Total annual load	416,273	lbs			

Average Annual Load (lbs)	4,561,082 lbs/yr
Upland Load	416,273 lbs/yr
Corridor Load	4,144,809 lbs/yr
SSR	0.9087

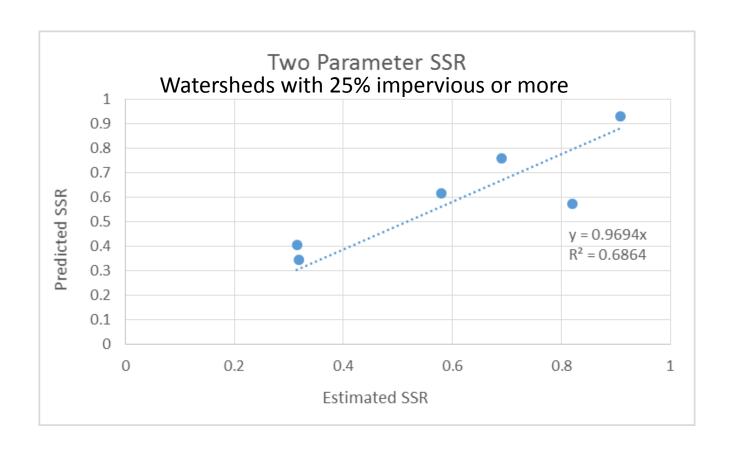
Watershed	Upland TSS EMC (mg/l)				
Difficult Run 1	49.82				
Difficult Run 5	49.82				
Paint Branch	58.00				
Breewood	58.00				
Moores Run @ Radecke Ave	44.04				
Stony Run @ Linkwood	40.00				
West Branch Herring Run @ Idlewylde	40.00				
Scott's Level - 01	32.41				
Powder Mill Run	40.00				
Average	49.86				


Scott's Level

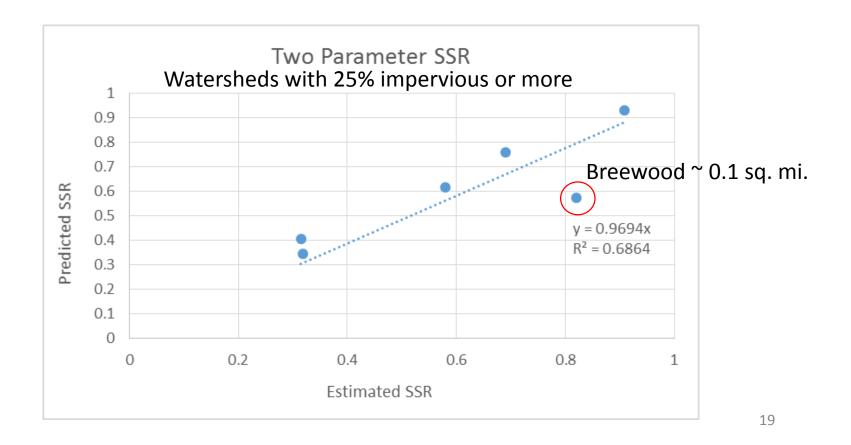
MS4 Report for 2011 = 480,183 lbsAnnual Average (flow-load) = 480,195 lbs


Initial Predictive Regression

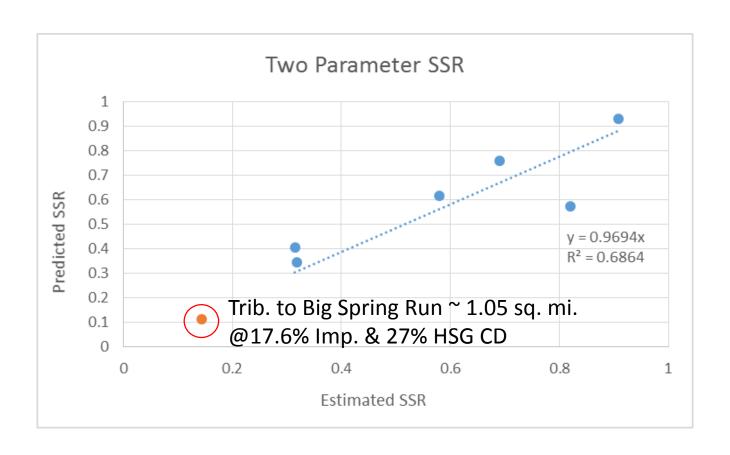
• SSR = 0.001364 * Drainage Area (sq mi.) + 0.282962 * Impervious Cover (fraction) + 2.456579 * Forest Cover (fraction) + 0.807264 * Fraction HSG CD + 0.128841 * Riparian Length(fraction of stream) - 0.441092


Initial Predictive Regression

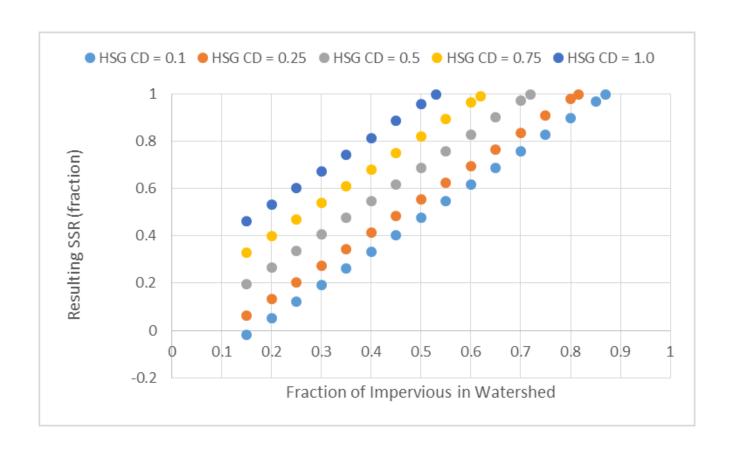
SSR = 0.001364 * Drainage Area (sq mi.) + 0.282962 *
 Impervious Cover (fraction) + 2.456579 *
 Forest Cover (fraction) + 0.807264 * Fraction HSG CD +
 0.128841 * Riparian Length(fraction of stream) - 0.441092


Final – Simplified Predictive Regression

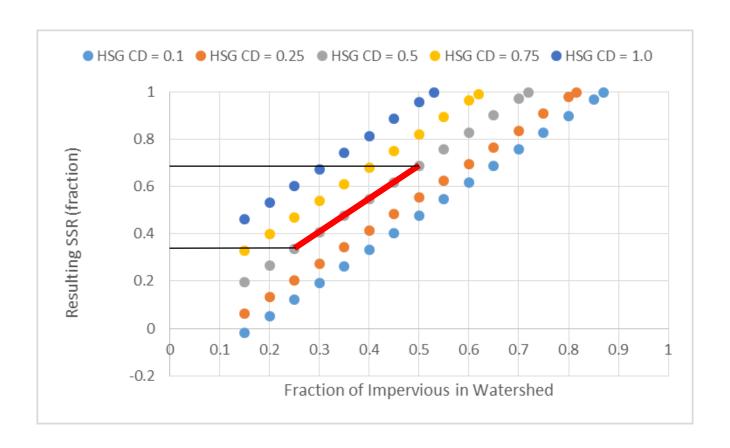
• SSR = 1.4085 * Impervious Cover (fraction) + 0.5341 * Fraction HSG CD - 0.2828


Final – Simplified Predictive Regression

• SSR = 1.4085 * Impervious Cover (fraction) + 0.5341 * Fraction HSG CD - 0.2828


Final – Simplified Predictive Regression

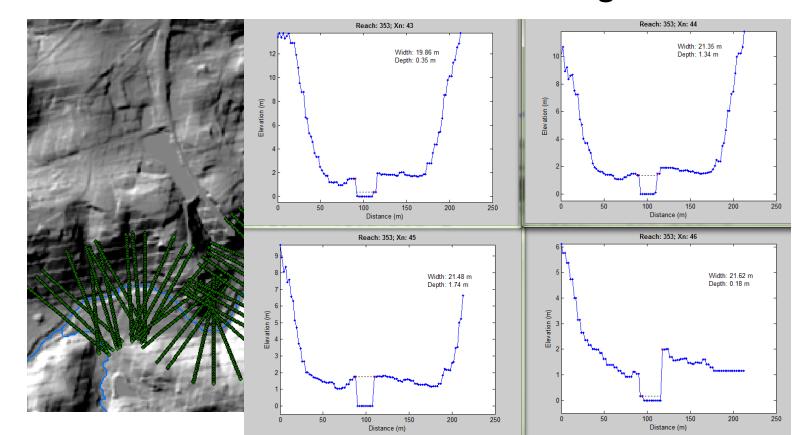
• SSR = 1.4085 * Impervious Cover (fraction) + 0.5341 * Fraction HSG CD - 0.2828


Predicted SSR for Small Urban Streams

General envelope of potential SSR results

Predicted SSR for Small Urban Streams

General envelope of potential SSR results



Phase 6 Implementation

- RUSLE based on work by USGS and Tetra-Tech represents upland load
 - Impervious cover would contribute no sediment
 - Apply the predicted SSR and "back-calculate" sediment from stream
- Sediment EMCs
 - Upland loads calculated on-the-fly with modeled flow
 - Tetra Tech NSQD and Literature EMC (140.44 mg/l)
 - CWP Maryland MS4 analysis EMC (92.21 mg/l)
 - NSQD Bay States average (CWP, 2014) EMC (72.77 mg/l)
 - Apply the predicted SSR and "back-calculate" sediment from the stream
- Phase 5.3.2 total load (fallback)
 - SSR to parse load into upland and stream

Rural Streams (<15% Imp.) - USGS

- Spatial analysis estimating Stream Parameters
- Sediment balance based on USGS monitoring data

Questions?

References

- Center for Watershed Protection. 2013. Technical Memorandum: Sediment Stream Loading Literature Review in Support of Objective 1 of the Sediment Reduction and Stream Corridor Restoration Analysis, Evaluation and Implementation Support to the Chesapeake Bay Program Partnership.
- Center for Watershed Protection. 2014a. Technical Memorandum: Stream Sediment Studies in Support of Objective 1 of the Sediment Reduction and Stream Corridor Restoration Analysis, Evaluation and Implementation Support to the Chesapeake Bay Program Partnership.
- Center for Watershed Protection. 2014b. Technical Memorandum: Analysis of Stream Sediment Monitoring in Support of Objective 1 of the Sediment Reduction and Stream Corridor Restoration Analysis, Evaluation and Implementation Support to the Chesapeake Bay Program Partnership.
- Center for Watershed Protection. 2015. Technical Memorandum: Analysis of Stream Sediment Monitoring to create a watershed characteristic regression in Support of Objective 1 of the Sediment Reduction and Stream Corridor Restoration Analysis, Evaluation and Implementation Support to the Chesapeake Bay Program Partnership.