Phase 7 WSM Progress – Towards completeness of the Dynamic Watershed Model (DWSM) development

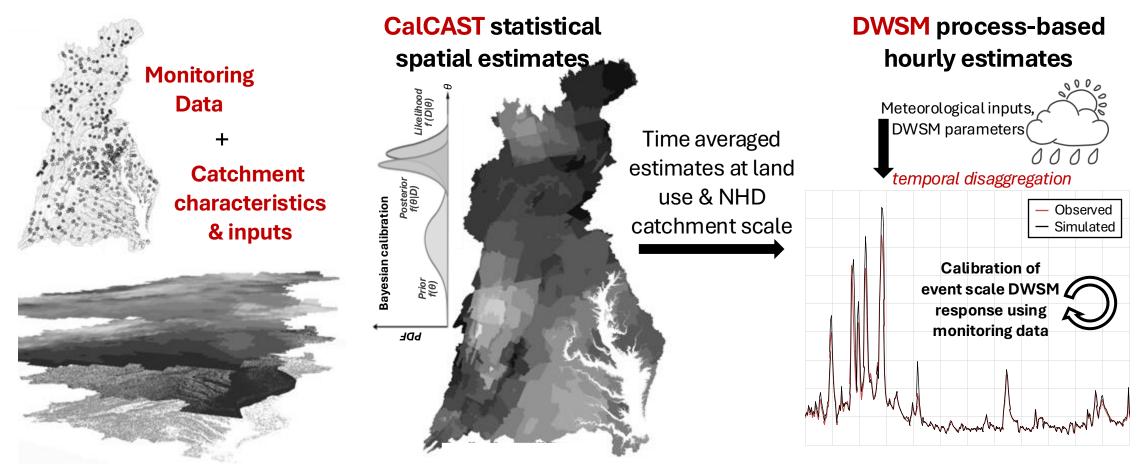
Modeling Workgroup Quarterly Meeting – October 2025

Gopal Bhatt¹, Lewis Linker², Joseph Delesantro², Robert Burgholzer³

¹ Penn State, ² US EPA, ³ VA DEQ – Chesapeake Bay Program Office

Presentation Outline

Phase 7 Dynamic Watershed Model (DWSM)


- 1. Dynamic Watershed Model Overview
- 2. Review of prior model development progress
- 3. Linkage of the DWSM and Main Bay Model (MBM)
 - July 2025 beta version
 - Implementation of organic nitrogen and phosphorus scour
 - Adding a trend component to generalized stream network routing
 - Incorporation of BMPs with aggregated CAST removal efficiencies
 - Other general progress
- 4. Summary and next steps

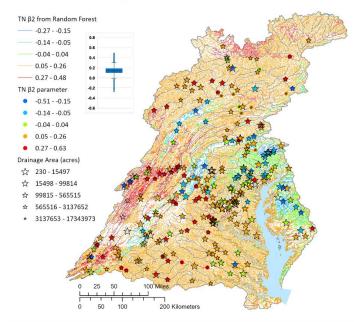
Purpose

NHD Scale Dynamic Watershed Model (DWSM)

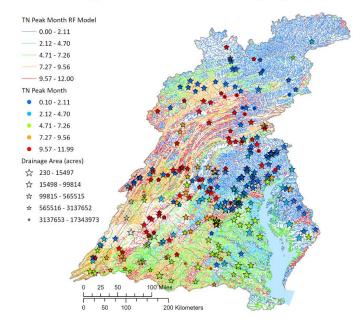
- Inputs for the estuarine models (MBM/MTMs)
- Watershed model calibration and scenario applications
- Support research and collaboration activities

Framework: Statistical Model (CalCAST) → Dynamic Watershed Model (DWSM)

- Data-driven CalCAST informs DWSM parameters and responses.
- NHD-scale Phase 7 DWSM is using CalCAST average annual (a) total flow, (b) stormflow, (c) sediment erosion and delivery factors, and (d) total nitrogen and total phosphorus loads and delivery factors.


Dynamic Watershed Model (DWSM) Development

- Year 2022: NHD-scale model structure and prototypes for hydrology, sediment, and nutrients.
- Year 2023: Incremental refinements of model prototypes in terms of model segmentation, CalCAST→DWSM linkage, and simulation of the small streams.
- Year 2024: stream water quality routing based on β parameters; refinements of small stream flow and water temperature routing modules; mechanics of riverine water quality calibrations.
- Year 2025: Q1: development and testing of DWSM and MBM linkage through beta versions; Q2: April beta version, small stream routing with RF model estimated Beta-parameters, estimation of riverine transport parameters and further refinements of the DWSM calibration; Q3: organic scour in rivers, trend component in stream routing, BMPs, etc.


July 2025 Beta Version

- At the July Quarterly meeting we reviewed isolated DWSM calibrations showing –
 - **[A]** Generalized small stream routing for sediment; and Random Forest model estimated Beta parameters for TN, TP, and SS;
 - **[B]** Estimation of riverine transport parameters in DWSM improved model performance;
 - [C] Constraint of best available (WRTDS) loads in calibration further improved model performance;
- We combined these elements in the July 2025 beta versions and produced 2 sets of MBM inputs –
 - Hybrid beta version with Phase 6 loads for 9 RIM stations, and all else based on Phase 7.
 - Full Phase 7 beta version i.e., Phase 7 for both RIM and all else.

Nitrogen flow variability, β₂

Nitrogen seasonal variability, $\beta_3 \& \beta_4$

RIM stations: Phase 7 loads vs. WRTDS

Wq20250615cal

Rivers	Flow	Nitrogen	Phosphorus	Sediment
Susquehanna Conowingo MD	+00.9% (+0.910)	-01.1% (+0.723)	+02.2% (+0.783)	+04.3% (+0.808)
Susquehanna Marietta PA	-00.9% (+0.944)	+01.1% (+0.776)	+04.4% (+0.840)	+07.9% (-0.047)
Potomac Washington, DC	+00.8% (+0.929)	-01.6% (+0.817)	+06.9% (+0.226)	+10.1% (-0.623)
James Cartersville, VA	+04.8% (+0.904)	-01.2% (+0.902)	+01.9% (+0.850)	+08.0% (-2.613)
Rappa. Fredericksburg, VA	+00.1% (+0.931)	-05.8% (+0.854)	-03.4% (+0.680)	-04.1% (+0.474)
Appomattox Matoaca, VA	+00.8% (+0.826)	-12.0% (+0.755)	-06.2% (+0.739)	-06.4% (+0.449)
Pamunkey Hanover, VA	+03.6% (+0.807)	-07.4% (+0.771)	-02.0% (+0.243)	-02.4% (-0.024)
Mattaponi Beulahville, VA	+09.3% (+0.789)	-10.2% (+0.655)	-07.3% (+0.237)	-09.4% (-0.533)
Patuxent Bowie, MD	+04.0% (+0.870)	-04.0% (+0.300)	-07.0% (-0.015)	-11.0% (-0.134)
Choptank Greensboro, MD	-05.3% (+0.721)	-04.4% (+0.722)	-02.3% (+0.501)	+01.5% (-0.805)

P7 (July 2025 beta) loads are working well in the MBM

 Zhengui Wang (VIMS) and Wenfan Wu (VIMS) have developed tools for assessing and tracking watershed model outputs and estuarine model performance.

Table: Comparison of Phase 6 and Phase 7 β July 2025 watershed loads in main rivers. Data in parenthesis show RMSD of watershed model loads (Phase 6, Phase 7 β v7) as compared to that of immediately downstream tidal monitoring stations.

Embayment	Ammonia	Nitrate	Phosphate	Nitrogen	Phosphorus	Sediment
Susquehanna	(0.0432,0.0437)	(0.2875,0.2991)	(0.0089,0.0106)	(0.3310,0.3425)	(0.0280,0.0243)	(11.5428,13.6488)
Patuxent	(0.1483,0.1814)	(0.6331,0.9060)	(0.0455,0.0680)	(0.7464,1.1992)	(0.0866,0.1336)	(35.6555,32.6645)
Potomac	(0.0963,0.0931)	(0.5480,0.5792)	(0.1282,0.1275)	(0.7700,0.5674)	(0.0637,0.1044)	(16.6087,14.0334)
Rappahannock	(0.0334,0.0430)	(0.2594,0.3228)	(0.0178,0.0133)	(0.6914,0.5231)	(0.2182,0.1911)	(104.7578,97.1951)
James	(0.0370,0.0414)	(0.2161,0.1410)	(0.0683,0.0488)	(0.3482,0.3166)	(0.1287,0.1314)	(66.3107,73.1921)
Choptank	(0.0424,0.0491)	(0.7703,0.3458)	(0.0272,0.0211)	(0.6864,0.3682)	(0.0919,0.0719)	(20.3460,8.3691)
Mattaponi	(0.0344,0.0404)	(0.1240,0.1050)	(0.0145,0.0215)	(0.3505,0.2198)	(0.0650,0.0682)	(15.3698,17.6690)
Pamunkey	(0.0298,0.0534)	(0.1702,0.1721)	(0.0209,0.0356)	(0.3722,0.2859)	(0.0548,0.0755)	(47.7405,53.3133)
Appomattox	(0.0343,0.0345)	(0.1621,0.1739)	(0.0076,0.0094)	(0.3941,0.2013)	(0.0292,0.0291)	(15.6633,13.1813)

Zhengui Wang & Wenfan Wu (VIMS)

P7 (July 2025 beta) loads are working well in the MBM

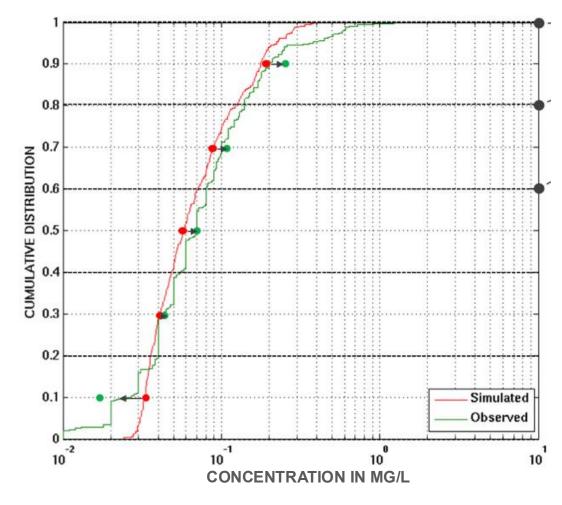
Table 1: Comparison of Phase 6 and Phase 7 β (Jan 2025 Hybrid) watershed loads in small embayment. Data in parenthesis show RMSD of watershed model loads (Phase 6, Phase 7 β v3) as compared to that of immediately downstream tidal monitoring stations.

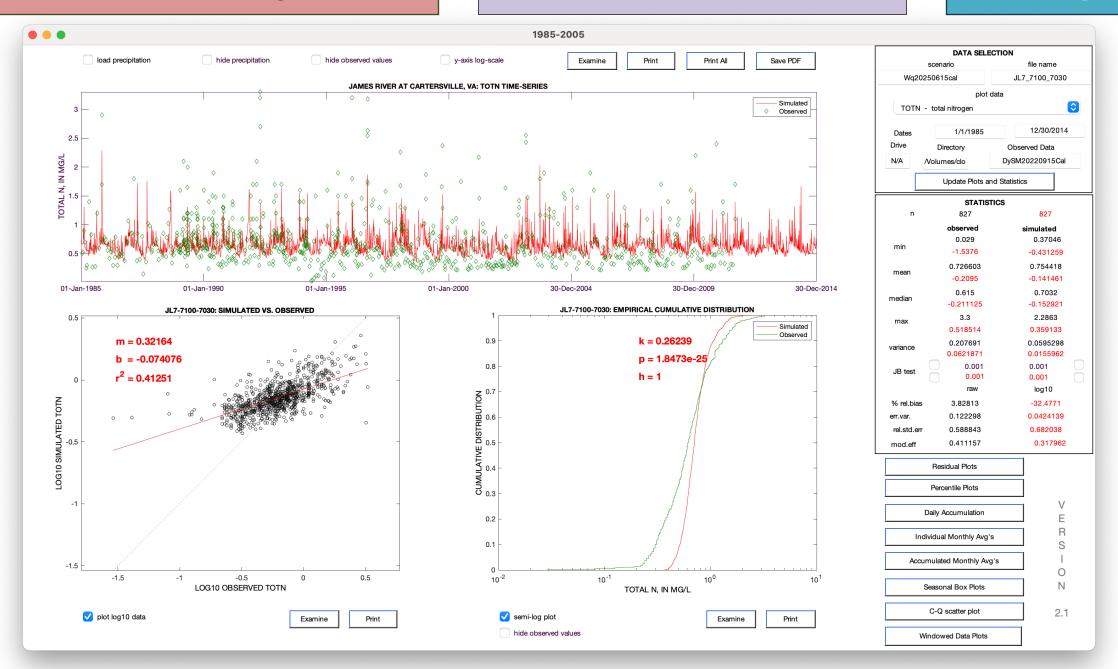
Table 2: Comparison of Phase 7β (April 2025 Hybrid) and
Phase 7β (July 2025 Hybrid) watershed loads in small
embayments. Data in parenthesis show RMSD of watershed
model loads (Phase 7β v4, Phase 7β v7) as compared to
that of immediately downstream tidal monitoring stations.

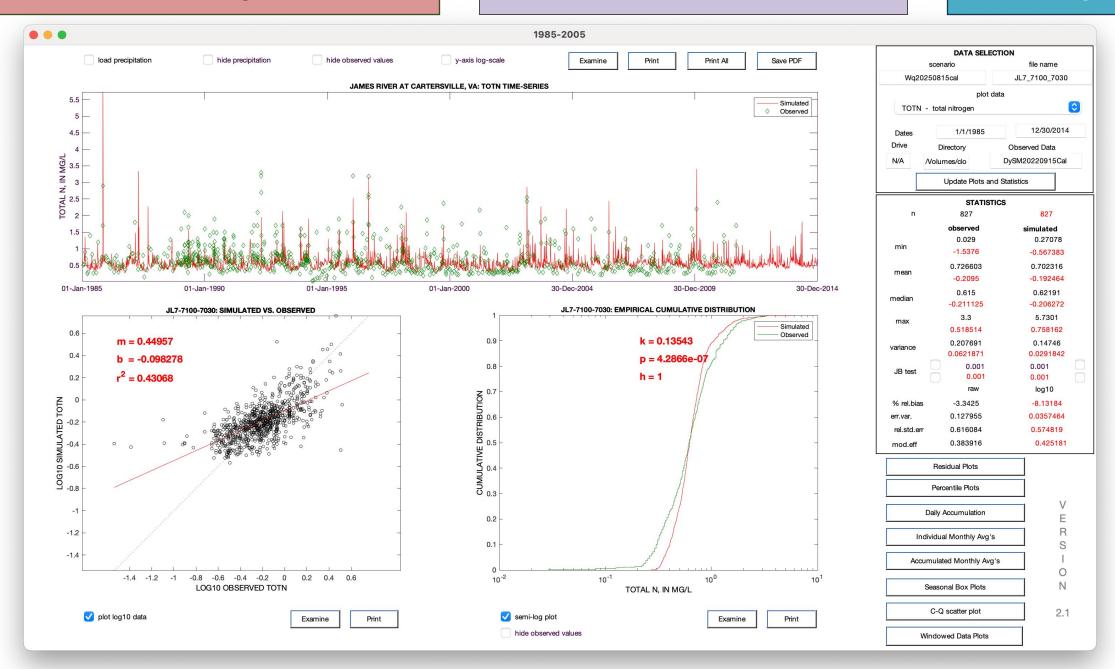
Embayment	River Impact	Salinity	Ammonia	Nitrate	Phosphate	Nitrogen	Phosphorus	Sediment
Sassafrass R.	99.5%	1.91	(0.1553, 0.1724)	(2.1799, 1.5663)	(0.0506, 0.0303)	(2.1749, 2.2918)	(0.1157, 0.0708)	(83.4010, 64.0950)
Bush R.	95.9%	0.84	(1.5825, 0.8445)	(2.4744, 2.0285)	(0.1267, 0.1176)	(3.0666, 2.1254)	(0.1737, 0.1249)	(59.0322, 53.9453)
Gunpowder R.	94.7%	1.63	(0.0774, 0.0722)	(1.0177, 0.4990)	(0.0122, 0.0164)	(0.8905, 0.4488)	(0.0471, 0.0442)	(41.6804, 37.5875)
South R.	69.1%	9.84	(0.1297, 0.1260)	(3.9673, 1.0413)	(0.0467, 0.0570)	(3.8474, 0.8997)	(0.0784, 0.0691)	(72.0014, 40.8683
Piscataway R.	100.0%	0.00	(0.3453, 0.3234)	(5.3081, 3.5262)	(0.0381, 0.0407)	(5.3026, 3.7516)	(0.0702, 0.0805)	(50.1494, 36.6836)
Mattawoman C.	100.0%	0.02	(0.2073, 0.1016)	(4.8008, 1.8416)	(0.4483, 0.1060)	(5.5305, 1.7449)	(0.7417, 0.1505)	(57.9953, 37.4156)
Corrotoman R.	56.6%	14.53	(0.1101, 0.0573)	(1.8100, 0.7028)	(0.0223, 0.0406)	(1.8435, 0.5316)	(0.0785, 0.0431)	(61.3329, 12.5883)
Chickahominy R.	99.7%	1.18	(0.9466, 0.0622)	(5.4596, 0.1991)	(0.0683, 0.0370)	(7.2374, 0.3392)	(0.1628, 0.0585)	(59.5836, 49.2633)
Nanticoke R.	99.8%	0.19	(0.1803, 0.1174)	(2.9407, 1.4765)	(0.0436, 0.0748)	(2.8671, 1.2300)	(0.0962, 0.0807)	(35.9075, 35.1593
Manokin R.	49.0%	13.87	(1.1536, 0.1188)	(3.7258, 1.3950)	(0.0762, 0.1538)	(4.8577, 1.6415)	(0.1603, 0.1767)	(43.1494, 30.3107
Big Annemessix R.	47.8%	15.41	(10.0068, 0.2549)	(17.8570, 1.7639)	(0.4463, 0.1978)	(25.9882, 2.5115)	(0.8129, 0.2395)	(85.0987, 19.1356)
Patapsco R.	80.8%	10.42	(3.5302, 3.2289)	(2.9920, 2.4831)	(0.2444, 0.2266)	(6.6460, 5.9269)	(0.3410, 0.3307)	(55.0892, 39.3605
Anacostia R.	100.0%	0.17	(0.2177, 0.2341)	(2.7501, 0.3297)	(0.0824, 0.0522)	(1.7004, 0.8990)	(0.0571, 0.0756)	(95.3317, 80.2096
Elizabeth S.	46.9%	19.08	(1.8986, 0.4678)	(4.3389, 1.0248)	(0.8990, 0.2319)	(7.6235, 1.3427)	(1.2829, 0.3256)	(14.6792, 13.5410)
Chester R.	99.3%	0.49	(0.1221, 0.1062)	(1.0766, 1.2225)	(0.0301, 0.0733)	(0.9874, 1.1437)	(0.1563, 0.1110)	(87.0498, 91.7857
Pocomoke R.	100.0%	0.20	(0.2716, 0.0722)	(0.7283, 0.6284)	(0.0953, 0.0869)	(1.1926, 0.6074)	(0.1445, 0.1108)	(30.9019, 23.7107

Zhengui Wang & Wenfan Wu (VIMS)

Embayment	Ammonia	Nitrate	Phosphate	Nitrogen	Pho sphorus	Sediment
Sassafrass R.	(0.1823,0.1320)	(1.4854,2.7223)	(0.0302,0.0273)	(2.2593,2.6860)	(0.0594,0.0598)	(49.1427,40.3539)
Bush R.	(0.8858,0.8922)	(1.8011,2.3498)	(0.1090,0.1017)	(2.1012,2.5281)	(0.1229,0.1135)	(26.4053,25.8072)
Gunpowder R.	(0.0647,0.0535)	(0.5028,0.6381)	(0.0185,0.0150)	(0.4385,0.4197)	(0.0451,0.0453)	(27.7806,26.4902)
South R.	(0.1141,0.0711)	(1.0163,1.2951)	(0.0538,0.0516)	(0.8464,0.8738)	(0.0667,0.0632)	(23.7436,14.3373)
Piscataway R.	(0.4604,0.4396)	(3.3839,3.3781)	(0.0414,0.0428)	(3.7830,3.7361)	(0.0782,0.0882)	(26.4851,24.6814)
Mattawoman C.	(0.0984,0.0919)	(1.8191,1.5988)	(0.1002,0.0977)	(1.6432,1.3970)	(0.1394,0.1345)	(18.1706,10.7982)
Corrotoman R.	(0.0605,0.0547)	(0.6748,0.7305)	(0.0414,0.0449)	(0.5454,0.5219)	(0.0429,0.0436)	(12.7431,7.3679)
Chickahominy R.	(0.0656,0.0659)	(0.1914,0.1568)	(0.0365,0.0253)	(0.3223,0.4886)	(0.0352,0.0443)	(26.0526,26.0285)
Nanticoke R.	(0.1189,0.0979)	(1.4959,1.4710)	(0.0743,0.0627)	(1.2518,1.2843)	(0.0799,0.0784)	(28.8704,26.7130)
Manokin R.	(0.1235,0.0830)	(1.4136,1.8581)	(0.1448,0.1620)	(1.6160,1.6766)	(0.1647,0.1807)	(24.0913,19.3087)
Big Annemessix R.	(0.2729,0.1772)	(1.7622,2.3882)	(0.1833,0.1897)	(2.4569,2.5141)	(0.2211,0.2241)	(15.2829,11.0865)
Patapsco R.	(3.5756,3.5692)	(2.1879,2.3088)	(0.2286,0.2232)	(5.6865,5.7518)	(0.3230,0.3106)	(23.8751,19.4416)
Anacostia R.	(0.3184,0.3556)	(0.4647,0.3999)	(0.0518,0.0492)	(1.1469,1.2848)	(0.0810,0.0730)	(90.8186,88.8498)
Elizabeth S.	(0.5307,1.0394)	(1.1256,1.9357)	(0.3627,0.9572)	(1.7113,3.0640)	(0.5050,1.3484)	(9.2259,12.2521)
Chester R.	(0.1045,0.0948)	(1.1741,2.3536)	(0.0708,0.0593)	(1.0956,1.8124)	(0.0979,0.1032)	(74.9775,73.3785)
Pocomock R.	(0.0780,0.0690)	(0.6219,1.1817)	(0.0874,0.0947)	(0.6916,1.0027)	(0.1296,0.1363)	(16.5084,14.6002)


Zhengui Wang & Wenfan Wu (VIMS)


Implementation of organic nitrogen and phosphorus scour


We implemented an organic source module within P7 DWSM water quality calibration framework to improve agreement in cumulative frequency distribution (CFD) of observed and simulated high flow concentrations.

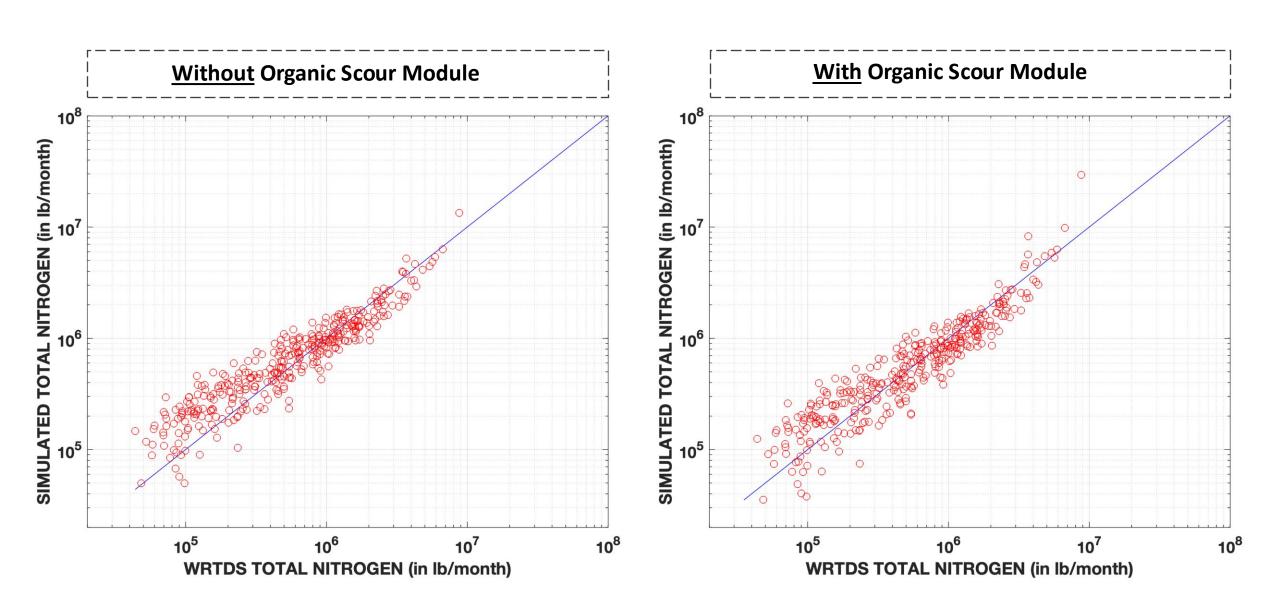
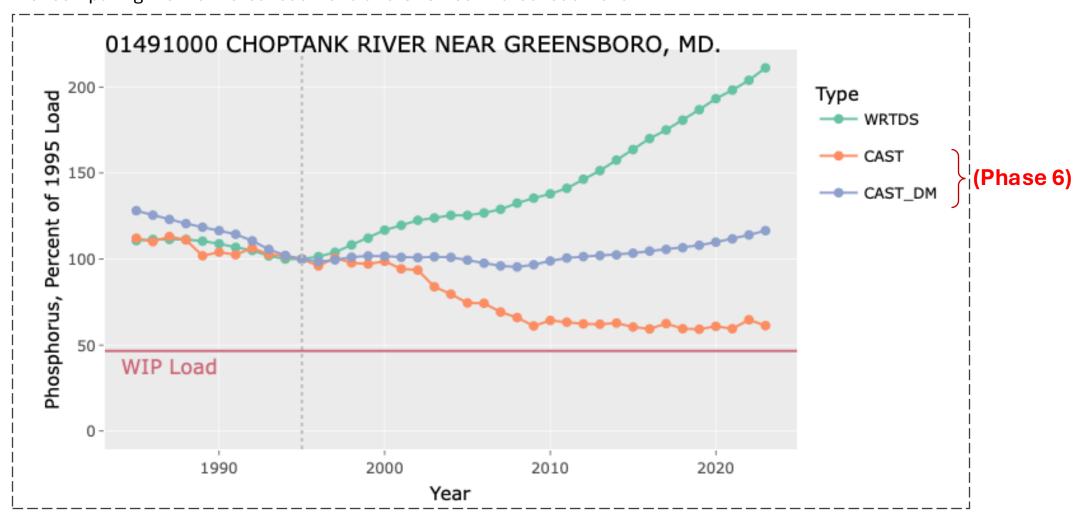
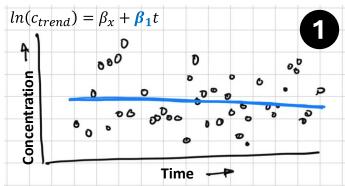
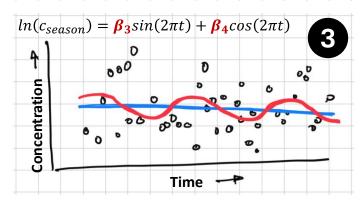

- The module includes 2 parameters for concentrations of organic N and organic P in the scoured sediment:
- HSPF estimated net hourly scoured sediment flux is used
- Calibration v1: organic N and organic P scour model parameters are independently calibrated
- Calibration v2: organic N is calibrated and Redfield N:P ratio is maintained

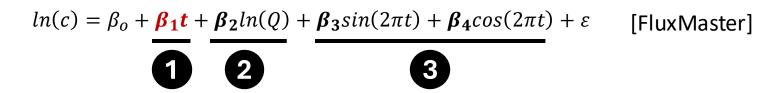
Figure: Cumulative distribution of concentrations at a monitoring station

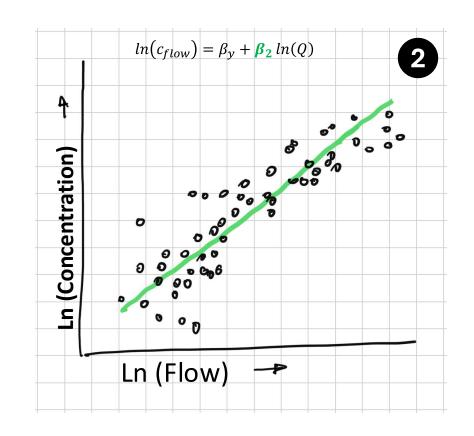


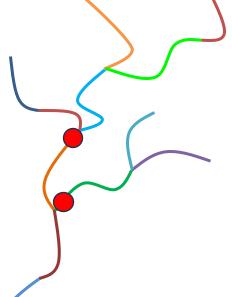
Adding a trend component to generalized stream network routing


Monitored and Expected Total Reduction Indicator for the Chesapeake (METRIC) https://metric.chesapeakebay.net/metric/


>> for comparing the monitored load trend and CAST-estimated load trend



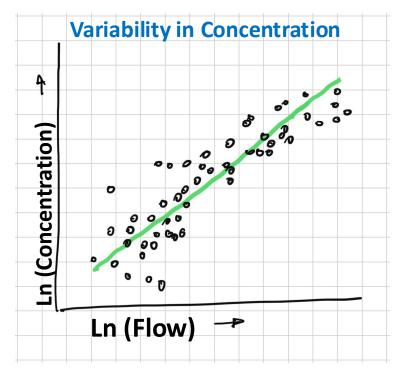

Adding a trend component to generalized stream network routing

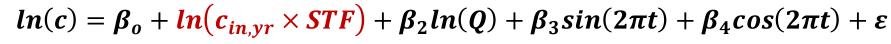


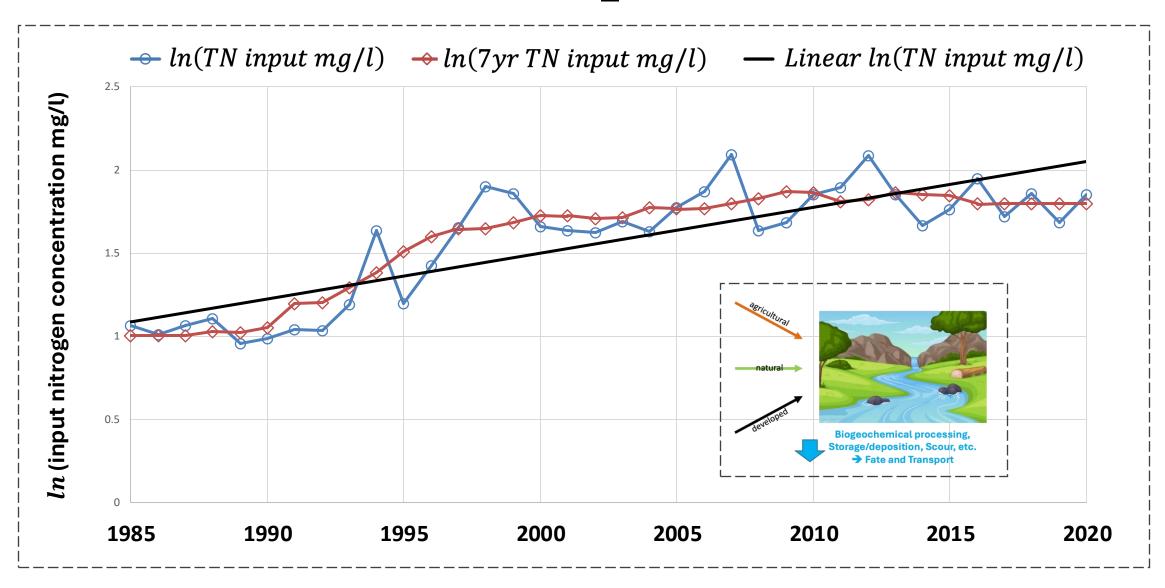
Sketch showing the network of small stream segments and water quality and streamflow monitoring stations

Adding a trend component to generalized stream network routing

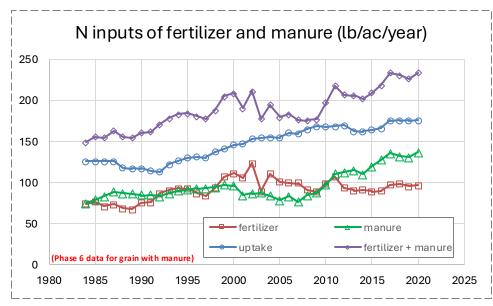
agricultural

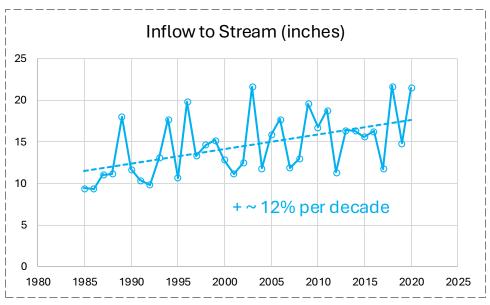

UNEC model: <u>annual</u> surface and groundwater concentrations as a function of input history and estimates of lag-times

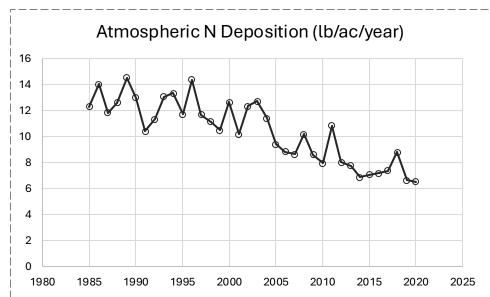


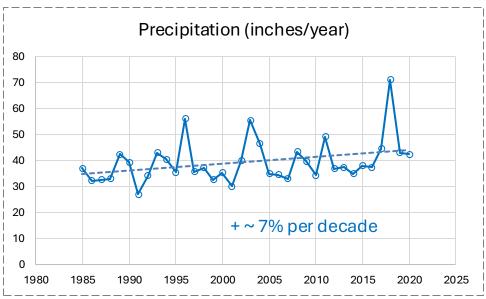

Biogeochemical processing,
Storage/deposition, Scour, etc.

→ Fate and Transport

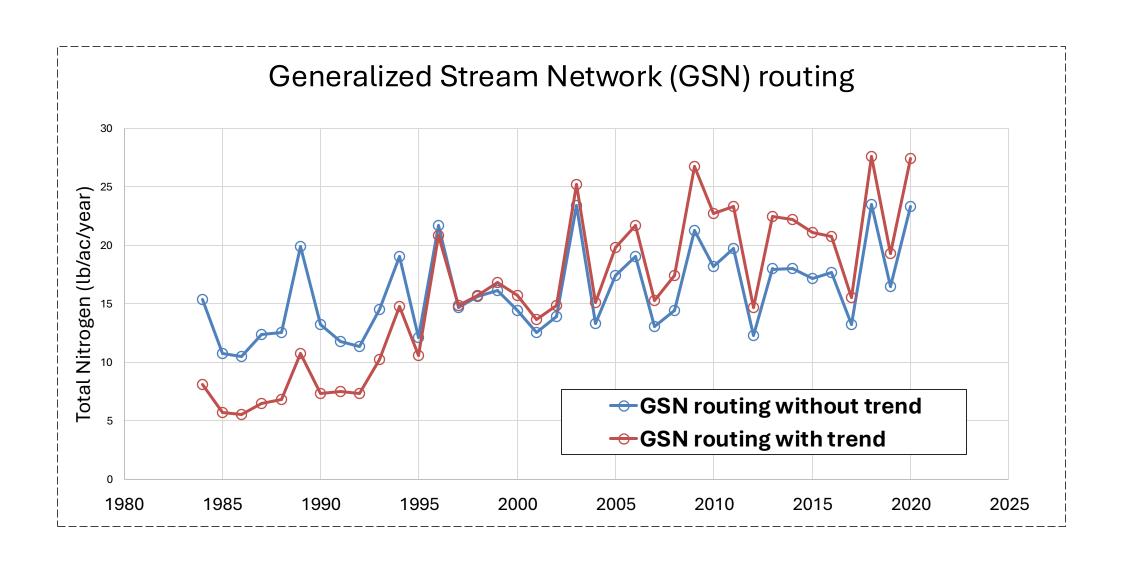

where, $c_{in,yr}$ vary annually, and STF, stream transport factor is provided by CalCAST

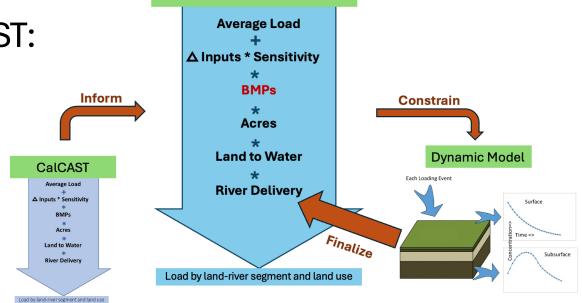

A 1st order NHD MR stream EM2_009405936 (0.6 sq. miles)




Trend is an integration of history of inputs, sensitivities, lags, land use change, climate/hydrology, BMPs, ...

A 1st order NHD MR stream EM2_009405936 (58% Crops)

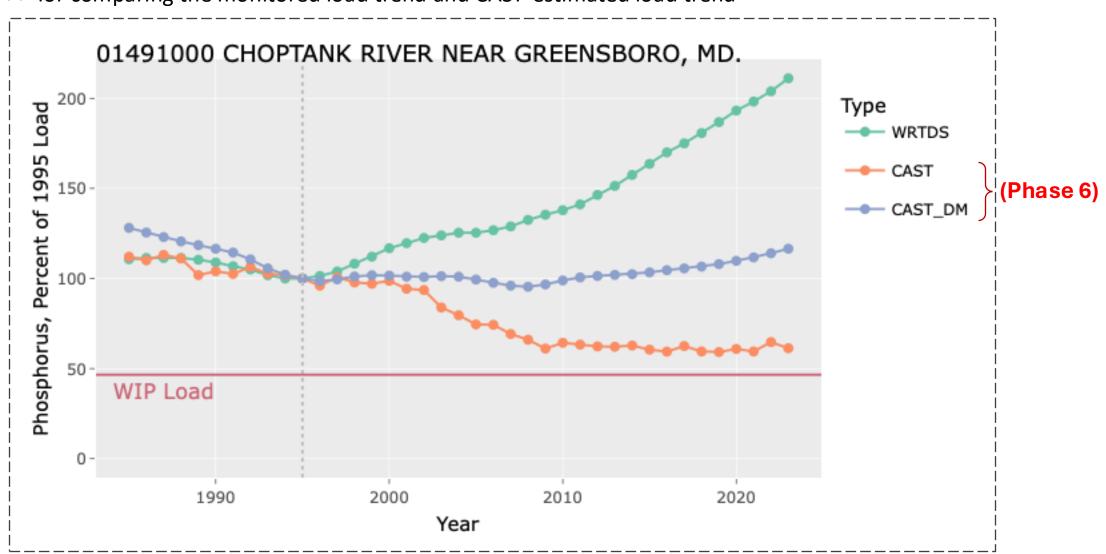



A 1st order NHD MR stream EM2_009405936 (58% Crops)

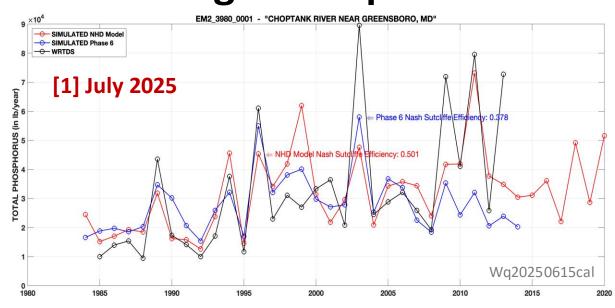
Incorporation of BMPs as aggregated CAST removal efficiencies

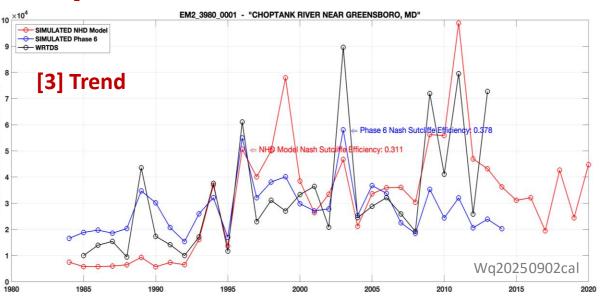
We incorporated BMPs in the Phase 7 DWSM

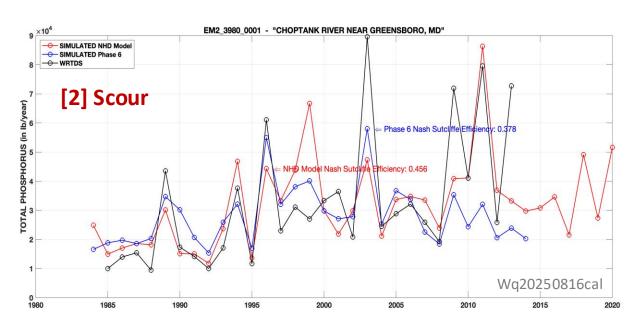
- → Removal efficiencies are provided by CAST:
- Annual time step for the model calibration
- Removal factors for TN, TP, and SS
- NHD catchments and land segments
- Aggregated up to key load sources (currently 11)

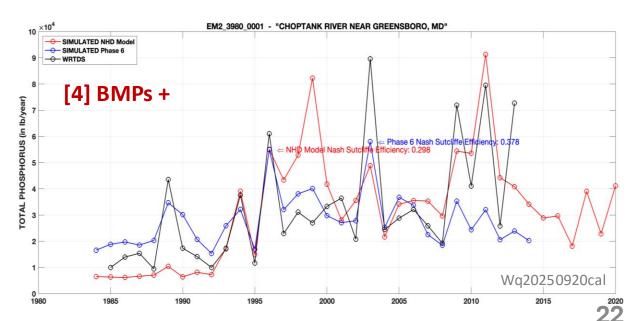


Phase 7 CAST Structure

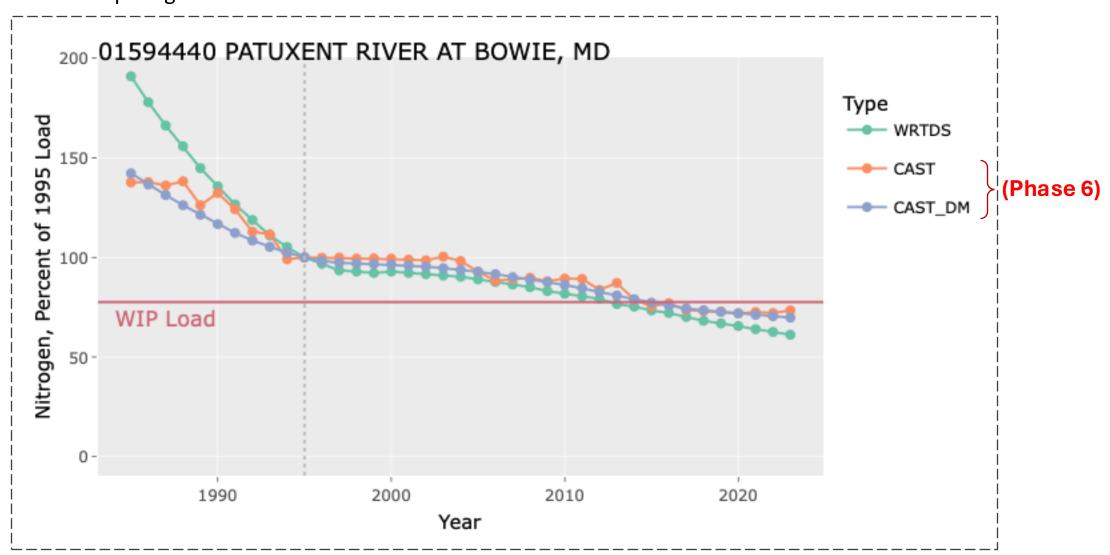

... work in collaboration with Jessica Rigelman (CBPO)

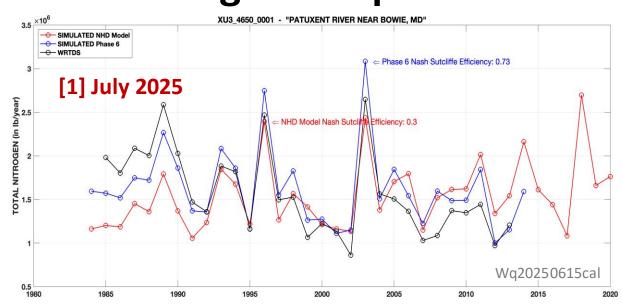

Monitored and Expected Total Reduction Indicator for the Chesapeake (METRIC) https://metric.chesapeakebay.net/metric/

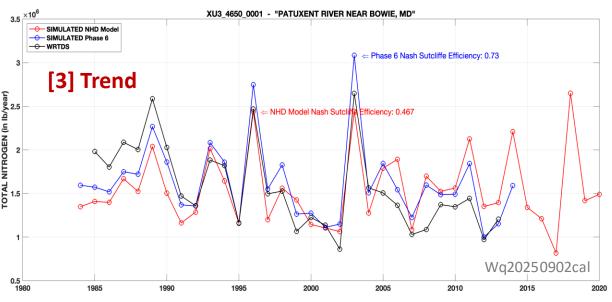

>> for comparing the monitored load trend and CAST-estimated load trend

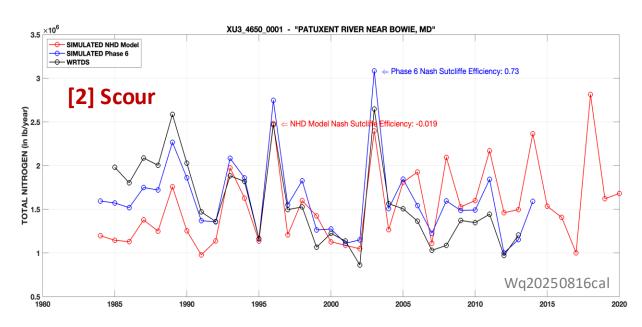


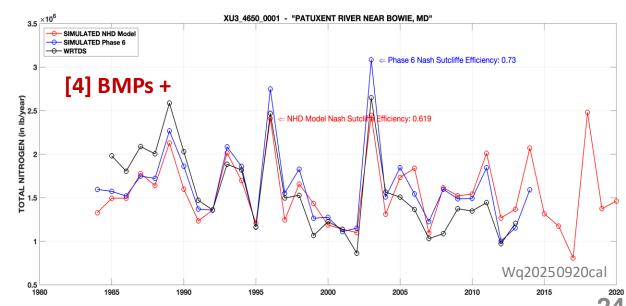
Tracking model performance at Choptank River, TP



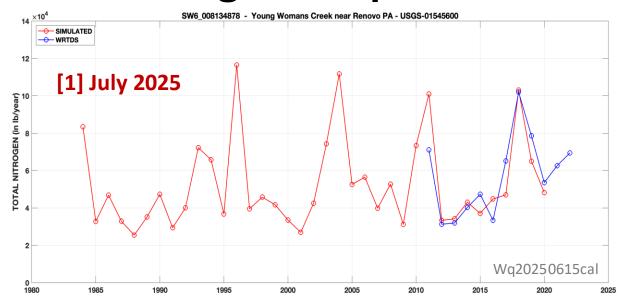



Monitored and Expected Total Reduction Indicator for the Chesapeake (METRIC) https://metric.chesapeakebay.net/metric/

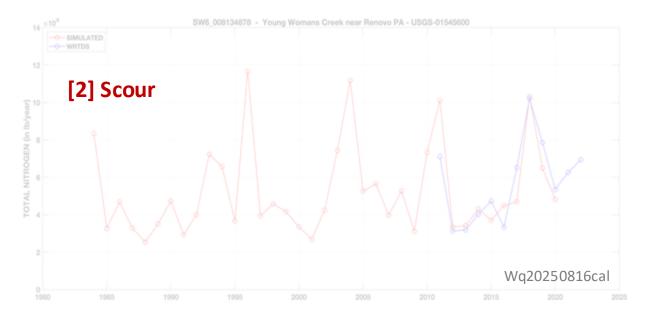

>> for comparing the monitored load trend and CAST-estimated load trend

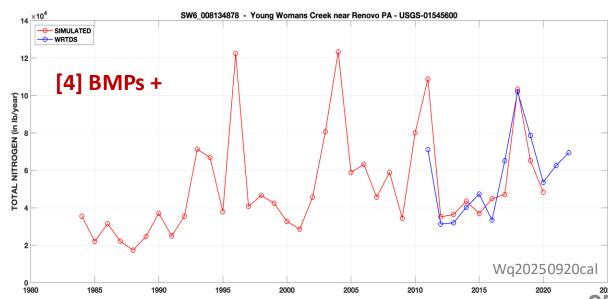


Tracking model performance at Patuxent River, TN









Tracking model performance at Young Womans Creek, TN

RIM stations: Phase 7 Nitrogen loads vs. WRTDS

Rivers	Phase 6	April 2025	July 2025	Scour	Trend	BMPs+
Susquehanna Conowingo MD	-05.0% (+0.836)	-09.2% (+0.665)	-01.1% (+0.723)	-00.8% (+0.727)	-03.1% (+0.537)	-02.5% (+0.548)
Susquehanna Marietta PA	+00.9% (+0.694)	-09.9% (+0.687)	+01.1% (+0.776)	+01.3% (+0.769)	+01.3% (+0.474)	+01.8% (+0.489)
Potomac Washington, DC	-03.1% (+0.797)	-20.9% (+0.670)	-01.6% (+0.817)	-00.9% (+0.764)	-00.9% (+0.789)	+00.2% (+0.693)
James Cartersville, VA	+00.2% (+0.731)	-22.8% (+0.632)	-01.2% (+0.902)	+00.1% (+0.104)	+00.3% (-0.067)	+00.9% (+0.241)
Rappa. Fredericksburg, VA	+01.1% (+0.595)	-05.7% (+0.853)	-05.8% (+0.854)	-05.7% (+0.858)	-07.3% (+0.807)	-06.4% (+0.813)
Appomattox Matoaca, VA	+03.2% (+0.285)	+10.2% (+0.702)	-12.0% (+0.755)	-12.6% (+0.749)	-15.1% (+0.636)	-13.2% (+0.663)
Pamunkey Hanover, VA	+03.1% (+0.338)	+04.9% (+0.786)	-07.4% (+0.771)	-07.4% (+0.735)	-07.2% (+0.648)	-06.8% (+0.670)
Mattaponi Beulahville, VA	+06.8% (+0.511)	+19.9% (+0.378)	-10.2% (+0.655)	-10.7% (+0.628)	-13.8% (+0.245)	-13.0% (+0.270)
Patuxent Bowie, MD	+04.1% (+0.721)	-01.6% (+0.308)	-04.0% (+0.300)	-04.1% (-0.019)	-01.3% (+0.467)	+00.1% (+0.619)
Choptank Greensboro, MD	-04.7% (+0.565)	-03.1% (+0.732)	-04.4% (+0.722)	-04.2% (+0.696)	-07.5% (+0.602)	-04.2% (+0.660)

RIM stations: Phase 7 Nitrate loads vs. WRTDS

Rivers	Phase 6	April 2025	July 2025	Scour	Trend	BMPs+
Susquehanna Conowingo MD	+07.1% (+0.496)	-12.6% (+0.528)	+11.3% (+0.501)	+15.1% (+0.361)	+01.5% (+0.183)	+03.7% (+0.183)
Susquehanna Marietta PA	+03.1% (+0.764)	-11.9% (+0.637)	+07.4% (+0.745)	+08.6% (+0.730)	+09.4% (+0.376)	+10.3% (+0.394)
Potomac Washington, DC	-04.6% (+0.846)	-14.7% (+0.700)	+13.7% (+0.771)	+05.9% (+0.817)	+07.5% (+0.805)	+01.2% (+0.856)
James Cartersville, VA	+09.4% (-0.380)	-21.2% (-0.051)	+36.7% (-0.131)	-04.6% (+0.531)	-05.8% (+0.336)	+02.4% (+0.427)
Rappa. Fredericksburg, VA	+03.2% (+0.524)	+25.0% (+0.260)	+32.8% (-0.002)	+19.8% (+0.441)	+16.7% (+0.384)	+17.1% (+0.385)
Appomattox Matoaca, VA	+10.1% (-0.824)	+130.0% (-11.669)	-07.8% (+0.095)	-24.9% (+0.039)	-21.7% (+0.172)	-21.1% (+0.252)
Pamunkey Hanover, VA	+09.0% (+0.067)	+38.7% (-0.418)	+21.8% (+0.169)	+11.5% (+0.436)	+11.2% (+0.266)	+11.9% (+0.283)
Mattaponi Beulahville, VA	+11.0% (-1.751)	+93.8% (-8.730)	+32.7% (-0.751)	+17.9% (+0.124)	+19.8% (-0.742)	+15.4% (-0.417)
Patuxent Bowie, MD	+00.8% (+0.629)	-08.3% (+0.076)	-03.8% (+0.079)	-15.4% (-0.113)	-10.2% (+0.528)	-07.3% (+0.666)
Choptank Greensboro, MD	-01.9% (+0.437)	+14.2% (+0.613)	+13.6% (+0.637)	+09.6% (+0.707)	+10.1% (+0.555)	+15.0% (+0.487)

RIM stations: Phase 7 Phosphorus loads vs. WRTDS

Rivers	Phase 6	April 2025	July 2025	Scour	Trend	BMPs+
Susquehanna Conowingo MD	+02.0% (+0.944)	+18.2% (+0.763)	+02.2% (+0.783)	+02.1% (+0.796)	+01.8% (+0.868)	+02.4% (+0.853)
Susquehanna Marietta PA	+04.2% (+0.858)	-13.9% (+0.789)	+04.4% (+0.840)	+04.1% (+0.847)	+05.7% (+0.606)	+06.0% (+0.641)
Potomac Washington, DC	+01.0% (+0.877)	-05.5% (+0.541)	+06.9% (+0.226)	+07.0% (+0.197)	+06.0% (+0.306)	+06.4% (+0.336)
James Cartersville, VA	-04.7% (+0.558)	-21.8% (+0.615)	+01.9% (+0.850)	+02.8% (+0.522)	+03.5% (+0.385)	+04.1% (+0.481)
Rappa. Fredericksburg, VA	-03.6% (+0.309)	-11.3% (+0.732)	-03.4% (+0.680)	-03.5% (+0.669)	-05.6% (+0.473)	-05.2% (+0.496)
Appomattox Matoaca, VA	-01.5% (+0.678)	+12.8% (+0.713)	-06.2% (+0.739)	-07.1% (+0.747)	-10.5% (+0.005)	-10.2% (+0.039)
Pamunkey Hanover, VA	+00.0% (+0.622)	+04.2% (+0.506)	-02.0% (+0.243)	-02.4% (+0.305)	+00.3% (+0.180)	-00.1% (+0.275)
Mattaponi Beulahville, VA	+01.6% (+0.214)	+11.2% (-0.035)	-07.3% (+0.237)	-07.2% (+0.237)	-11.4% (-0.256)	-11.2% (-0.234)
Patuxent Bowie, MD	+02.5% (+0.688)	-11.8% (+0.348)	-07.0% (-0.015)	-06.4% (-0.206)	-07.3% (-0.249)	-06.0% (-0.058)
Choptank Greensboro, MD	-01.7% (+0.395)	+06.6% (+0.499)	-02.3% (+0.501)	-01.8% (+0.456)	-00.3% (+0.311)	+01.5% (+0.298)

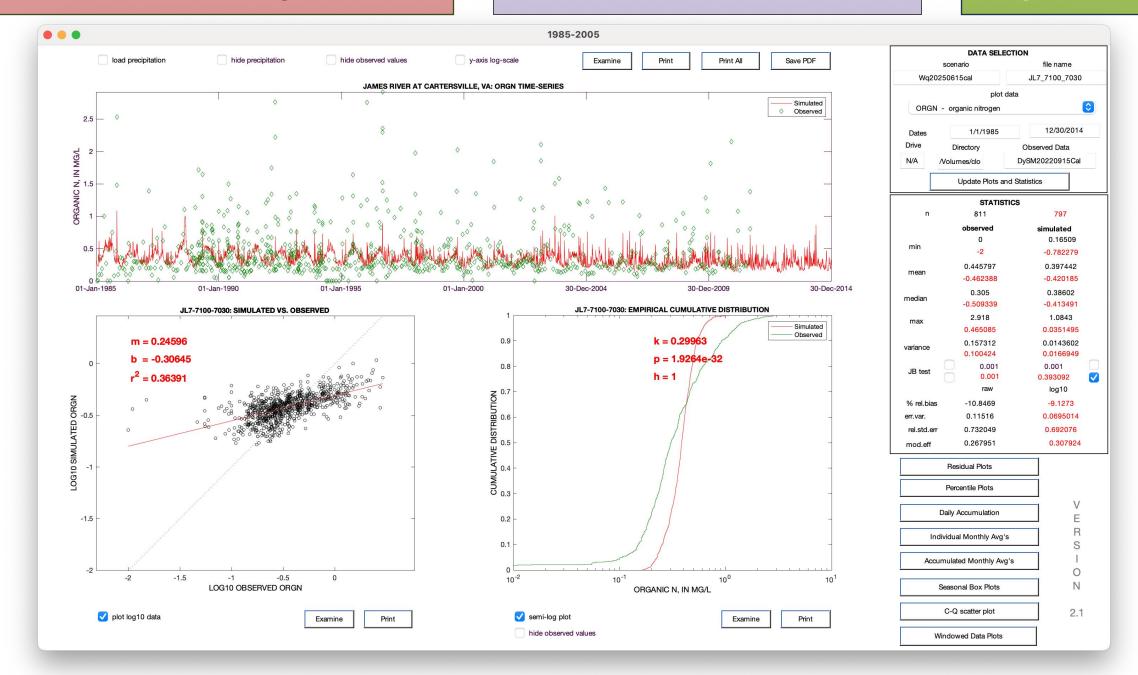
RIM stations: Phase 7 Sediment loads vs. WRTDS

Rivers	Phase 6	April 2025	July 2025	Scour	Trend	BMPs+
Susquehanna Conowingo MD	+08.0% (+0.963)	+18.0% (+0.433)	+04.3% (+0.808)	+04.6% (+0.837)	+05.8% (+0.881)	+06.2% (+0.875)
Susquehanna Marietta PA	-00.9% (+0.833)	+02.6% (-0.115)	+07.9% (-0.047)	+07.7% (-0.047)	+11.2% (-0.986)	+11.7% (-0.903)
Potomac Washington, DC	+03.2% (+0.827)	-08.4% (-0.503)	+10.1% (-0.623)	+10.0% (-0.596)	+07.9% (-0.658)	+09.2% (-0.713)
James Cartersville, VA	+01.1% (+0.384)	-36.0% (+0.627)	+08.0% (-2.613)	+07.2% (-2.166)	+06.2% (-2.536)	+02.9% (-0.674)
Rappa. Fredericksburg, VA	+00.1% (-0.356)	-41.9% (-0.750)	-04.1% (+0.474)	-04.1% (+0.476)	-06.2% (+0.411)	-04.9% (+0.329)
Appomattox Matoaca, VA	+13.8% (-0.567)	-32.7% (+0.534)	-06.4% (+0.449)	-11.2% (+0.423)	-12.3% (-0.171)	-12.3% (-0.181)
Pamunkey Hanover, VA	+01.7% (-1.143)	-44.2% (+0.229)	-02.4% (-0.024)	-02.6% (+0.027)	-01.4% (-0.110)	-02.3% (-0.034)
Mattaponi Beulahville, VA	-00.9% (-0.120)	+101.3% (-10.342)	-09.4% (-0.533)	-09.4% (-0.532)	-12.1% (-0.804)	-11.7% (-0.769)
Patuxent Bowie, MD	+10.3% (+0.678)	+28.7% (+0.501)	-11.0% (-0.134)	-11.0% (-0.134)	-15.3% (-0.425)	-14.0% (-0.283)
Choptank Greensboro, MD	+15.9% (+0.424)	-19.4% (+0.116)	+01.5% (-0.805)	+01.5% (-0.803)	+06.1% (-1.995)	+10.0% (-2.118)

Summary

- 1. We updated beta versions and linkage of incrementally refined watershed model flows and loads with the estuarine model.
- 2. We have shifted towards completeness of the model: (a) model parameters (Beta parameters) and trends; (b) calibration methods (RIM loads); (c) incorporation of inputs (BMPs; afo/cfo loads); (d) linkage with the MBM and MTMs (atmospheric inputs, tracking progress).

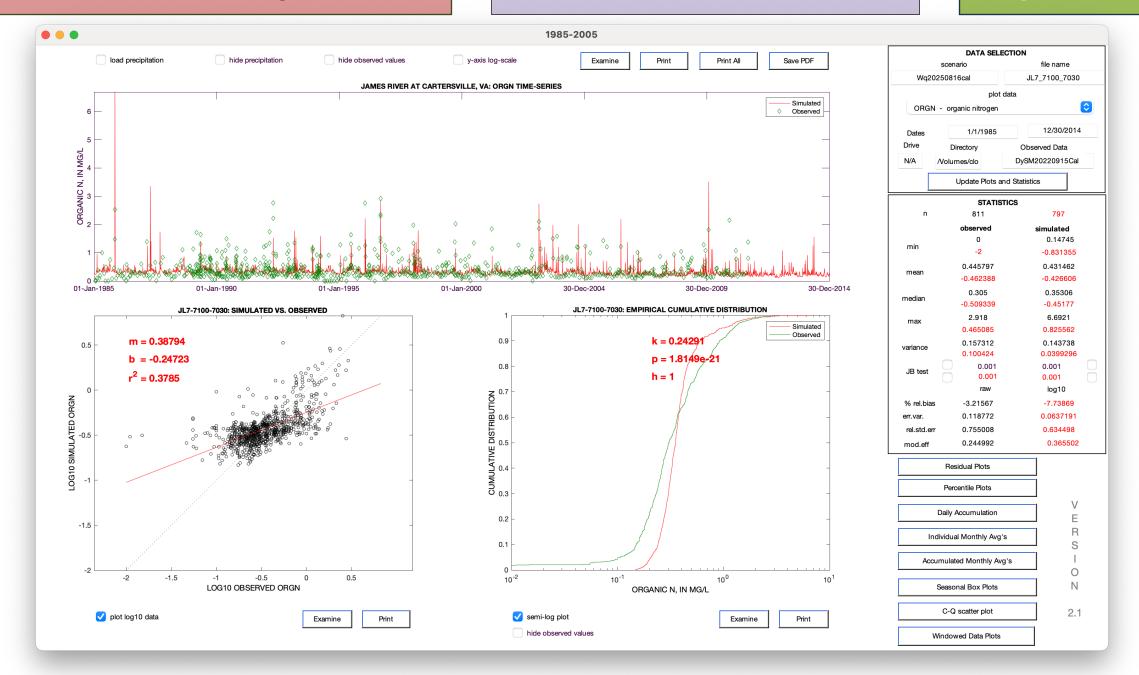
>> Next Steps for the Phase 7 Dynamic Watershed Model (DWSM)


3. (a) deeper/systematic investigation of model calibration to identify opportunities for improving model performance (GSN trends, lags, transport pathways, sensitivities, inputs); (b) Phase 7 land uses including combined sewer system system and feeding operations; (c) surface water withdrawals; and (d) expanded monitoring and WRTDS-K data in model calibration;

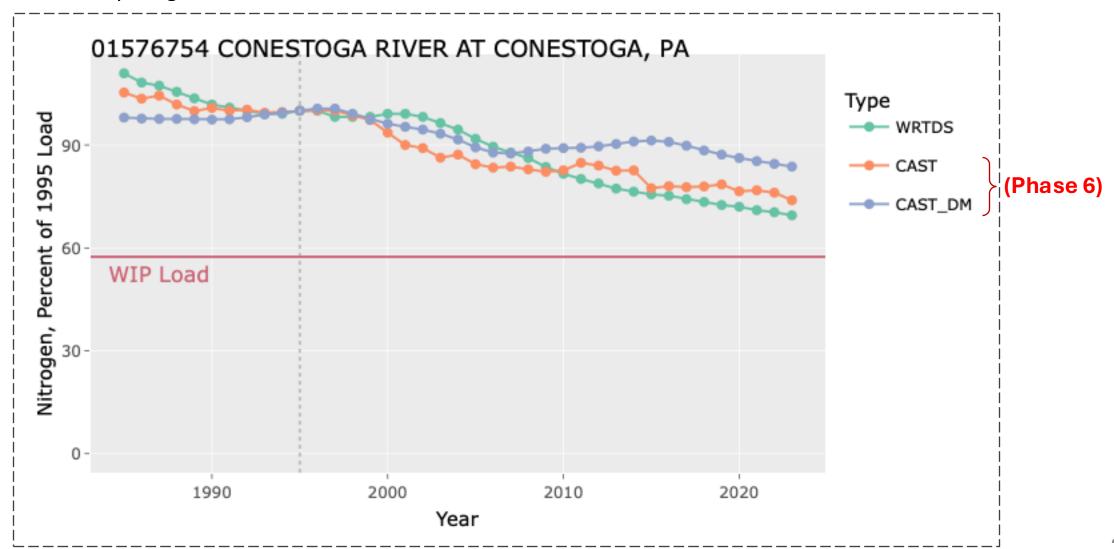
Appendices

Riverine simulation without Organic Scour

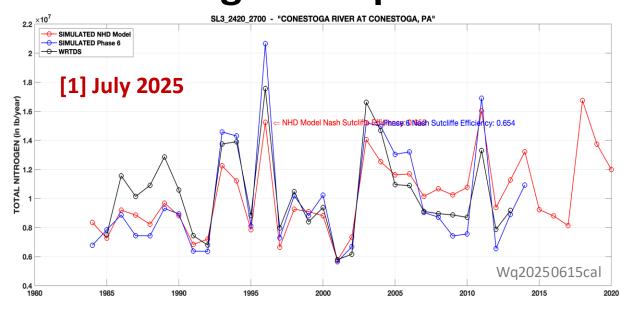
James River at Cartersville, VA

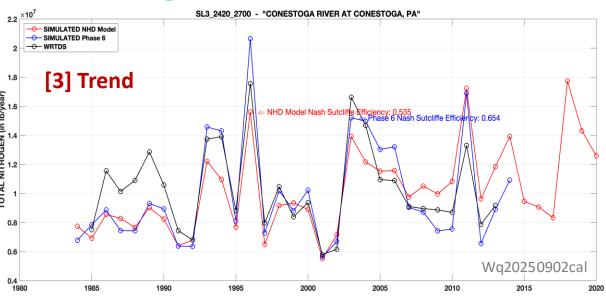

Organic Nitrogen

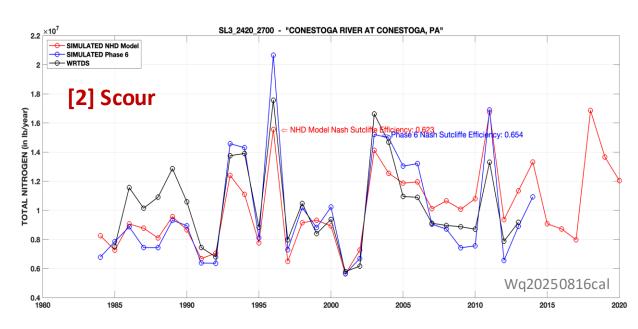
Riverine simulation without Organic Scour

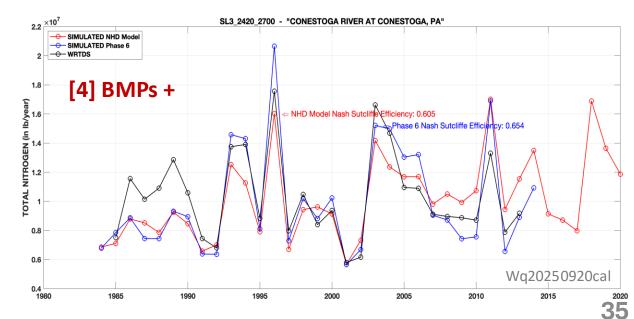

James River at Cartersville, VA

Organic Nitrogen




Monitored and Expected Total Reduction Indicator for the Chesapeake (METRIC) https://metric.chesapeakebay.net/metric/


>> for comparing the monitored load trend and CAST-estimated load trend



Tracking model performance at Conestoga River, TN

