

Carnegie Mellon University

Future Climate Impacts on CBW BMP Efficiencies

A Modeling Sensitivity Study for Agricultural BMPs

Maya Struzak, David Rounce, Sarah Fakhreddine

Project Overview

Goal: Quantify the performance of agricultural BMPs in the Chesapeake Bay watershed under current and future climate scenarios

Tools: APEX for agricultural, SWMM for urban

Output: N, P, and TSS removal efficiencies for BMPs under varying hydrologic scenarios

Watershed Settings

		Land Use (LU)			
		Soybeans (Row Crops)	Corn (Row Crops)	Wheat (Row Crops)	Alfalfa (Hay Land)
Hydrologic Regimes	Ridge & Valley	LU1 PR1	LU2 PR1	LU3 PR1	LU4 PR1
	Appalachia	LU1 PR2	LU2 PR2	LU3 PR2	LU4 PR2
	Coastal Plain	LU1 PR3	LU2 PR3	LU3 PR3	LU4 PR3
	Piedmont	LU1 PR4	LU2 PR4	LU3 PR4	LU4 PR4

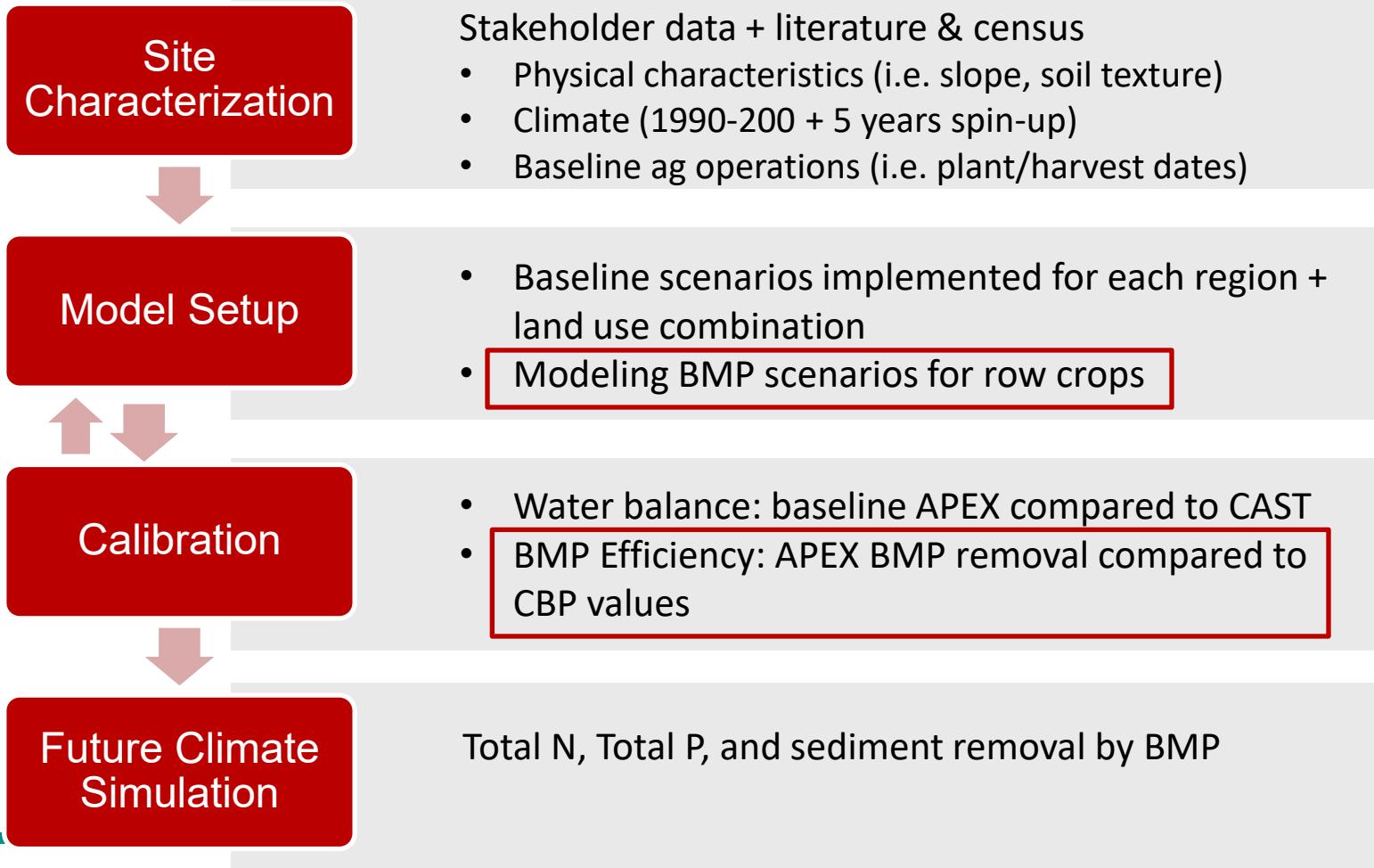
Physiographic Region (PR)

- Ridge & Valley
- Appalachia
- Coastal Plain
- Piedmont

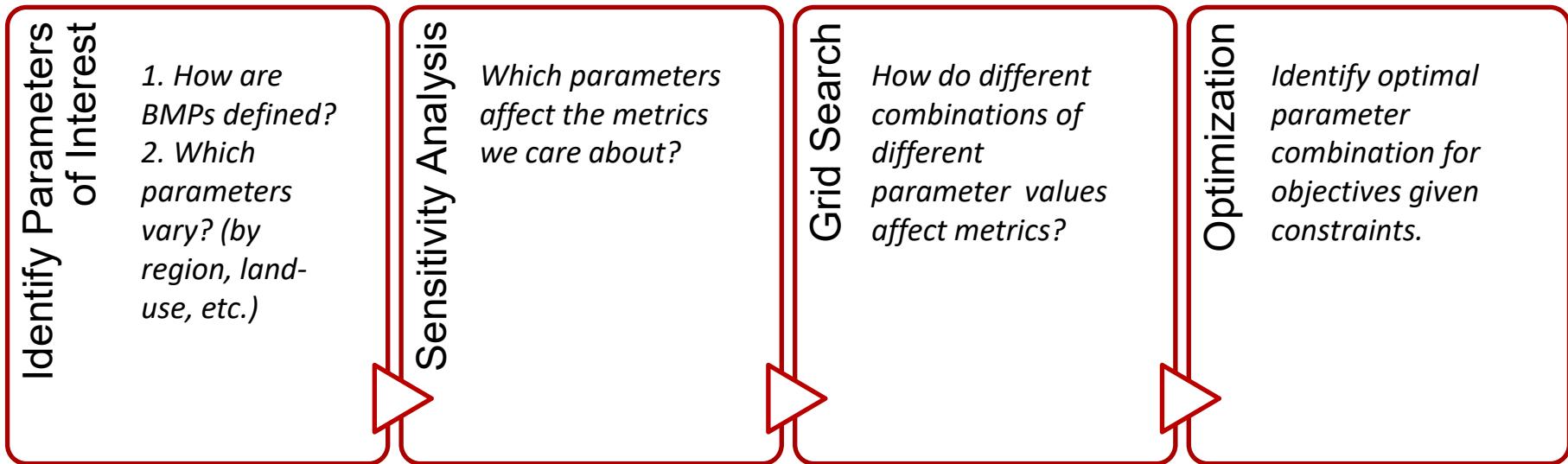
BMPs

- Cover crops
- No till
- Manure Incorporation
- Nutrient Management*
- Grass Buffers*

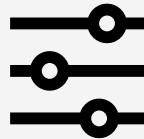
*in development


Experimental Approach - BMPs

CBP Most Effective BMPs + CBP Most Implemented BMPs + APEX feasibility =


BMP	Soy	Corn	Wheat	Alfalfa
Modeled ✓	Cover crops	✓	✓	✓
	No till	✓	✓	✓
	Manure Incorporation	✓	✓	✓
	Nutrient Management	✓	✓	✓
	Grass Buffers*	✓	✓	✓

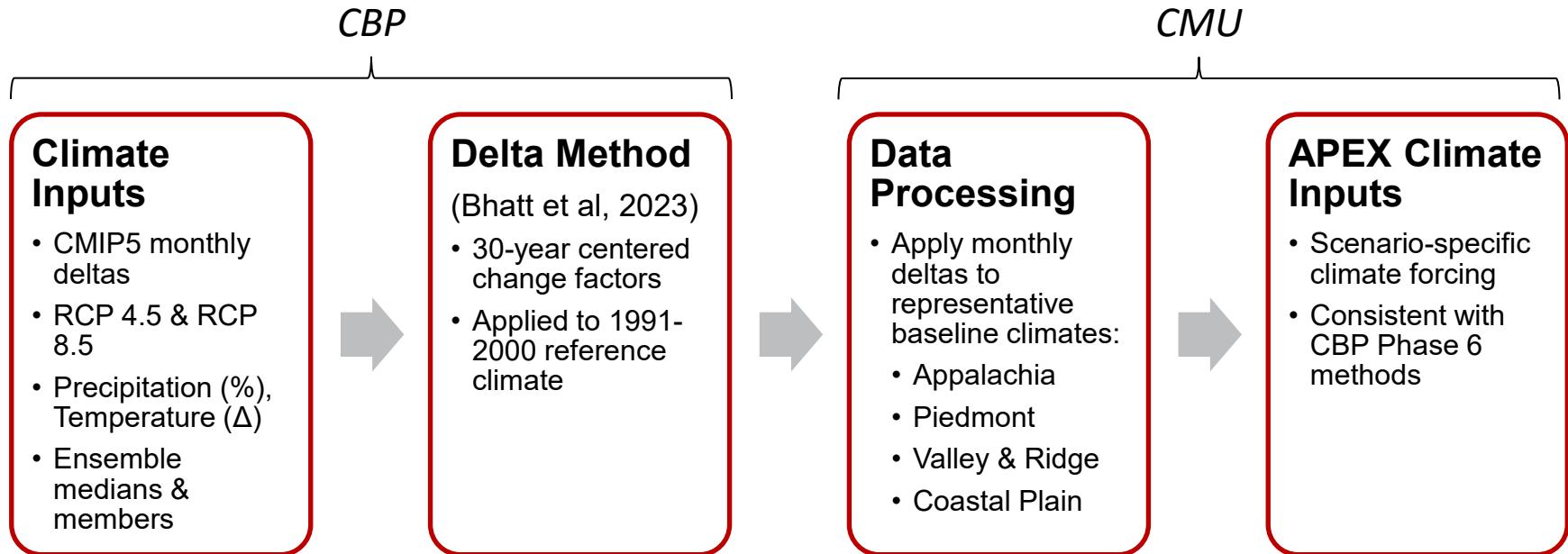
In development



Calibration Framework

Multi-Objective Optimization

Model Inputs Adjusted
within each land-use-region combination


- Baseline N & P Fertilizer
- Crop PHU
- BMP-specific parameters
 - *BMP N & P fertilizer*
 - *Erosion control factor*
 - *Manure application*
 - *Surface crop residue*

Objectives
within each land-use-region combination

- % ET
- % Total runoff
- Removal Efficiencies
 - *N, P, TSS*
- Crop yield
- Water balance residual

Planned Climate Data Approach

Baseline APEX Scenarios Calibrated to CAST

ex: Appalachia Soy

BMP	TSS Removal Efficiency (%)			TN Removal Efficiency (%)			TP Removal Efficiency (%)		
	CAST	APEX	diff	CAST	APEX	diff	CAST	APEX	diff
Cover Crops	0	19.6	19.6	22-29	21	1	0	11.1	11.1
Manure Incorporation	0	2.7	2.7	8	11.8	3.8	12-24	35	10
No Till	41	39.7	1.3	10	19.2	9.2	17-27	17.8	0

Preliminary Results

Mean Change from 1995 to 2050 RCP 4.5 (Bhatt, 2023):

Precipitation = +6.28%

Temperature = +2.03°C

BMP	TSS Removal Efficiency (%)			TN Removal Efficiency (%)			TP Removal Efficiency (%)		
	1990-2000	P & T Perturbation	diff	1990-2000	P & T Perturbation	diff	1990-2000	P & T Perturbation	diff
Cover Crops	0.2	-22.8	-22.6	23.5	27.5	+4.5	19.7	15.1	-4.6
Manure Incorporation	8.4	-29.6	-21.2	8.5	8.9	+0.4	22	22.1	+0.1
No Till	31.9	16.9	-15	17	19.6	+2.6	23.6	23.5	-0.1

Current Phase

- Completing BMP modeling for all baseline region + land-use combinations
 - Troubleshooting grass buffer bug

Next Steps

- Future weather climate modeling