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Calibration of TSS in MTM Patapsco/Back River

“TSS” is an important parameter for hydrodynamic and water quality calibration because it

(1) Links hydrodynamics, sediment transport, and the biogeochemistry of the benthic sediment
and pelagic processes

(2) Governs water column’s light, oxygen, nutrient, and contaminant processes

(3) Serves as a measurable, integrative variable for calibrating complex water quality
interactions particularly those governing light availability and habitat suitability for
submerged aquatic vegetation (SAV).

The issue

“Operationally, because TSS consists of both inorganic and organic components, inorganic
suspended sediment (ISS) is desired to be derived directly from observations to enable
calibration of the inorganic fraction of TSS during the physical (hydrodynamic—sediment
transport) modeling stage. The calibration of the organic component: volatile suspended
sediment (VSS) can then be performed in the subsequent water quality modeling stage.”

Proposed solution:

“By separating ISS and VSS, the original nonlinear calibration—characterized by interference
between parameters—can be transformed into a linear, sequential process, substantially
reducing calibration time and effort, especially for the complex sediment environment”



|. Estimating Inorganic Suspended Solids from Monitoring Data

Problem: How do we get estimates of ISS to validate sediment transport models?

CBP Monitoring program collects three relevant variables:

TSS = total suspended solids = inorganic plus organic material. Regularly measured
VSS = volatile suspended solids = solids that combust (organic) Rarely measured
PC = particulate carbon = concentration of particulate carbon Regularly measured

(in CB, ~organic)

If you have TSS and VSS data, you can estimate inorganic suspended solids

ISS = TSS — VSS



Relevant TSS, PC and VSS Data
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Model for VSS

Model skill largely relies on strong correlation
between PC and VSS

PC-based model can ‘predict’ VSS at any location
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Why is iterative calibration so important for MTM Patapsco/Back River calibration?

Although the modeling domain of MTM overlaps that of MBM, we were not able to obtain adequate TSS comparison inside Patapsco
River/Back River by just mimicking parameter specified by MBM in Patapsco/Back River. Herea are the distinct sediment characteristics of
Patapsco/Back River differs from the main stem Upper Bay.

Patapsco River

“The Patapsco River forms the main portion of Baltimore Harbor, where Patapasco and Back River WWTP effluent inputs coincide with
intense ship traffic—the sediment system has several distinctive characteristics that are important for interpretation and

modeling. Sediments in Baltimore Harbor (Patapsco River) are dominated by fine, cohesive, organic-rich material influenced by
WWTP effluent inputs and persistent ship-induced resuspension, resulting in a weakly consolidated, highly erodible bed and

elevated background turbidity. Fine, cohesive inorganic particles (ISS) and organic matter (VSS) are continuously supplied by
upstream watershed inputs and effluent discharges from the Patapsco/Back River Wastewater Treatment Plant (WWTP). In the water
column, inorganic and organic particles interact through flocculation to form organic—mineral aggregates that govern effective
settling velocities and light attenuation. Frequent ship traffic generates propeller wash and vessel-induced turbulence, enhancing
resuspension of fine, weakly consolidated bottom sediments and maintaining elevated background TSS concentrations even under
low-flow conditions. Repeated resuspension inhibits bed consolidation, resulting in a highly erodible sediment layer characterized by
low critical shear stress for erosion. Deposited organic-rich sediments contribute to sediment oxygen demand and nutrient recycling,
linking sediment dynamics to water quality processes.

Back River

Due to continuous input of fine particulates and organic matter from the Back River WWTP and low-energy hydrodynamic conditions,
Back River is dominated by very fine, organic sediment, in contrast to many estuarine systems with higher sand content. It favors fine
sediment accumulation, enhanced floc formation driven by elevated organic content, and wastewater-derived polymers. As a result,
suspended sediment is primarily composed of fine, cohesive particles, organic-rich flocs dominate the VSS fraction, while ISS is largely
fine-grained mineral sediment. The sediment behavior obviously deviates from classical non-cohesive (sand-based)

transport assumptions.



Il. Calibration 1 — Under-calibration TSS in Patapsco/Back River

Critical shear stress is NOT a spatial-varying variable, rather it depends on sediment classes (see table). The sediment
bed fraction (classes) in each grid cell, on the other hand, can be specified differently in different regions.

Sed. classes Grain diameter (mm) Particle settling velocity | Critical shear stress for
(mm/s) erosion (pa)

Class 1 0.003 0.012 0.03

Class 2 0.003 0.03 0.03

Silt 0.003 0.1 0.03

Send 0.3 1.0 20
/ Region applied (channel) (shoal) Chesapeake Bay
Class 1 80% 30% 30% (follow MBM

specification)

Class 2 10% 30% 30%
Silt 5% 35% 35%
sand 5% 5% 5%

10
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IIl. Calibration 2 — Over-calibration TSS in Patapsco/Back River

Critical shear stress is NOT a spatial-varying variable, rather it depends on sediment classes (see table). The
sediment bed fraction (classes) in each grid cell, on the other hand, can be specified differently in different regions.

Sed. classes Grain diameter (mm) | Particle settling Critical shear stress
velocity (mm/s) for erosion (pa)

Class 1 0.003 0.010 0.010

Class 2 0.003 0.03 0.02

Silt 0.003 0.1 0.03

Send 0.3 1.0 20

Sediment bed Baltimore Harbor Baltimore Harbor | Back River | Rest of Upper

fraction (channel) (shoal) Chesapeake Bay

/ Region applied

Class 1 80% 80% 80% (follow MBM
specification)

Class 2 10% 15% 15%

Silt 5% 15% 5%

sand 5% 0% 0% 15
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IV. Iterative calibration using ISS and VSS for TSS calibration

Critical shear stress is NOT a spatial-varying variable, rather it depends on sediment classes (see table). The
sediment bed fraction (classes) in each grid cell, on the other hand, can be specified differently in different regions

Sed. classes Grain diameter (mm) | Particle settling Critical shear stress
velocity (mm/s) for erosion (pa)

Class 1 0.003 0.010 0.010

Class 2 0.003 0.03 0.02

Silt 0.003 0.1 0.03

Send 0.3 1.0 20

Sediment bed Baltimore Harbor Baltimore Harbor | Back River | Rest of Upper

fraction (channel) (shoal) Chesapeake Bay

/ Region applied

Class 1 80% 40% 40% (follow MBM
specification)

Class 2 10% 25% 25%

Silt 5% 30% 30%

sand 5% 5% 5% 28
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The formula used:

Particle
Settling Vel.
(mm/s)

Grain Diameter
(mm)

Sed. Class

Critical Shear
Stress for
Erosion (Pa)

Class 1: Clay 0.003 (0012 ) @
Class 2: Clay 0.003 0.03 0.03
Class 3: Silt 0.03 0.1 0.03
Class 4: Sand 0.3 1.0 20

L L L] 1 i L L
1991 1992 1993 1994 1995 1996 1997
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ISS (mg/L)

WT5.1 — MBEM —— MTM ® ISS estimate
surface
50
"
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0 - A ’l:-':-'.-"-q-.'.- l.b MRS -’-.*.'L&JL'LL..FHELT: ol L-J'.L"t
1991-01 1992-01 1993-01 1994-01

surface:

MBM RUN11fb ISS mean: 0.449, max: 69.731
MTM RUNOA4c ISS mean: 3.699, max: 1177.607
Obs ISS est. mean: 10.116, max: 38.14
bottom:

MBM RUN11fb ISS mean: 1.564, max: 40.449
MTM RUNO4c ISS mean: 6.547, max: 83.342
Obs ISS est. mean: 19.428, max: 107.792

ISS (mg/L)

WT4.1

—— MBM
surface

MTM ® ISS estimate
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1991-01 1992-01 1993-01 1994-01
surface:

MBM RUN11fb ISS mean: 8.524, max: 595.343
MTM RUNO4c ISS mean: 9.098, max: 772.305
Obs ISS est. mean: 17.588, max: 53.48

bottom:

MBM RUN11fb ISS mean: 10.813, max: 653.472
MTM RUNOA4c ISS mean: 10.784, max: 435.175
Obs ISS est. mean: 27.506, max: 66.121 30



RUNO4ca ISS Results

e RUNO4c, with our
adjusted hgrid and vgrid

(almost no spit at Hart
Miller Island)

& n'?‘;'
FAYAVAYA LAY A
B .;,,v._‘t AVASATAURY

-76.42 -76.41 -76.40 -76.39 -76.38 -76.37 -76.36

31



Computer shut down for cooling system
maintenance !!

We do not have time to run full water quality
model this time, but will next time with upgrade
to Phase 7.
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V. Summary

1. A methodology was developed enabling estimation of Inorganic Suspended Solids (ISS) from monitoring
data. This is critical in that it allows the calibration of TSS to be transformed into a linear, sequential
process, substantially reducing calibration time and effort, especially for the complex sediment
environment such as Patapsco/Back Rivers in MTM, which requires iterative calibration.

2. Example of under-calibration of TSS was presented. It takes two weeks to run physical model (in a
gueue), save the results, and use it to drive water quality model (wait for another queue) to finally
obtain the results, a laborious procedure.

3. Example of over-calibration of TSS was presented. In comparison with the under-calibration case, it
demonstrates that TSS links hydrodynamics, sediment transport, and the biogeochemistry of the
benthic sediment and pelagic processes. It influences water column’s light and, as a results, modeling
of oxygen, TN, and TP results were all affected.

4. By decoupling ISS and VSS, the inherently nonlinear calibration, previously complicated by parameter
interactions, can be restructured into a straightforward, linear sequence. This strategy significantly
accelerates calibration while minimizing effort, offering a practical solution for challenging sediment
environments. It should enhance our ability for further calibration of MTM Patapsco/Back Rivers
hydro/WQ model, in which phase 7 watershed loading will be used.
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