

Machine-Learning Solutions

Problems with Current Approaches

- Older versions of CBP watershed models were not designed to work at fine spatial scales
- Process-based models run at fine scale are slow and computationally expensive

Opportunities with Machine-Learning Approaches

- Data Integration Can harness different data types, large amounts of input data
 - Can handle fine-scale geospatial data
 - Computational efficiency less computationally intensive
 - Provide data-driven insights that capture complex, nonlinear relationships, reducing need for detailed process understanding

Introduction

Kim Van Meter Department of Geography Penn State University

Explore and develop machine-learning approaches for eventual integration into the CBP modeling framework

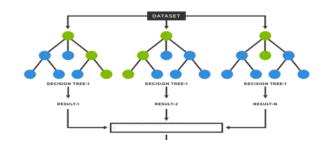
Xueting Pu Department of Civil & **Environmental Engineering** Penn State University

Chaopeng Shen Department of Civil & **Environmental Engineering** Penn State University

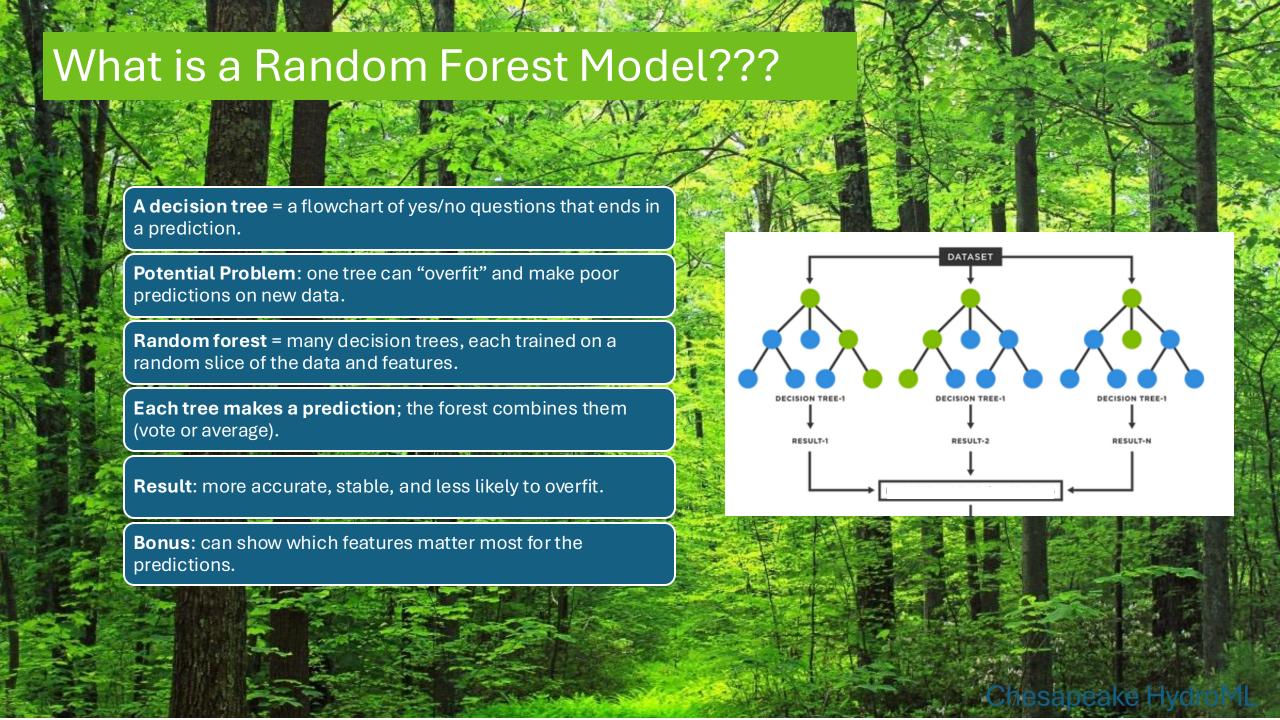
Elham Mahmod Por Department of Civil & **Environmental Engineering** Penn State University

Current Nutrient-Modeling Goals

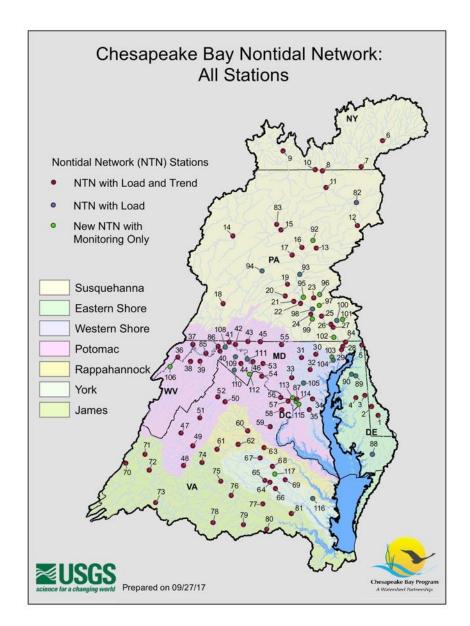
- Develop Random Forest Models to Predict Nutrient Concentrations and Loads at a Monthly Time Scale
- Use the Random Forest/Machine-Learning Frameworks to Inform Development and Refinement of Land-to-Water Factors
- Assess the Effectiveness of Newer High-Resolution Land-Use and Geomorphological Data for Prediction

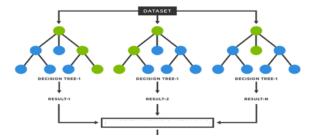






Random Forest Modeling





Total Nitrogen
Total Phosphorus
Phosphate (dissolved P)

Model Structure

Watershed/Stream Characteristics

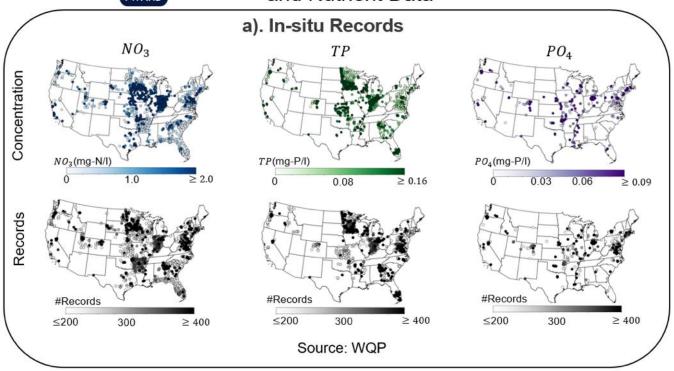
- Land Use/Land Cover
- Soil Type
- Geology
- Geomorphology
- Watershed Area
- Stream Order
- Etc.

Forcings

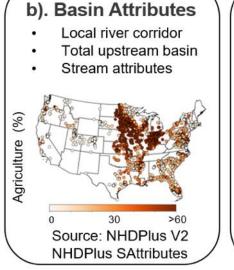
- Streamflow (monthly)
- Precipitation (monthly)
- Temperature (monthly)
- Other climate forcings (monthly)
- Nutrient Inputs (annual), from gTREND dataset

3	And the	# TOT_BASIN_SLOPE	# TOT_ELEV_MEAN	# TOT_SILTAVE	# TOT_CLAYAVE	# TOT_SANDAVE
	0 (0%) 41 (50%)		Missing: 0 (0%) Distinct: 41 (50%)			Missing: Distinct:
	Max 19.2591	Min 0.45 Max 27.17	Min 16.64 Max 653.88	Min 23.96 Max 58.37	Min 15.42 Max 37.54	Min 9.47
8	5.8131	7.54	155.19	38.11	29.45	
	1.5741	14.3	449.4	54.63	18.47	
	5.8131	7.54	155.19	38.11	29.45	
H	5.8131	7.54	155.19	38.11	29.45	
	5.8131	7.54	155.19	38.11	29.45	
	5.8131	7 54	155 19	38.11	29.45	

Integrated Watershed Attributes, and Nutrient Data

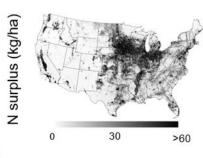


IWAND Dataset



c). Nutrient Forcings

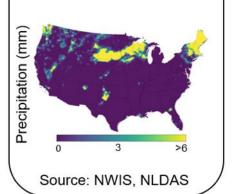
- Annual time-series N
- Annual time-series P



Source: gTREND - N, P

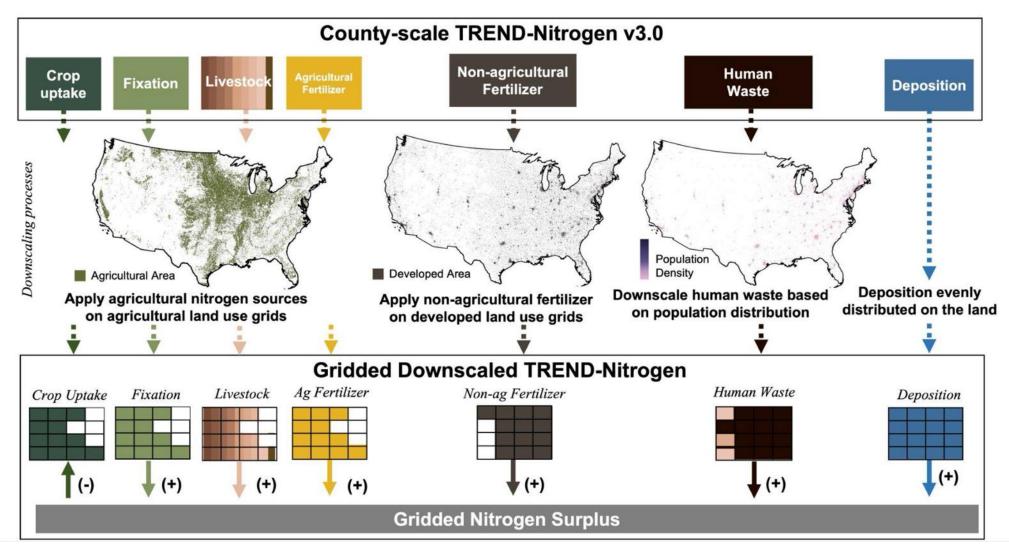
d). Climate Forcings

- In-situ daily streamflow
- Other NLDAS forcings



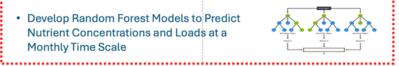
Chang et al., submitted to *Nature Scientific Data*

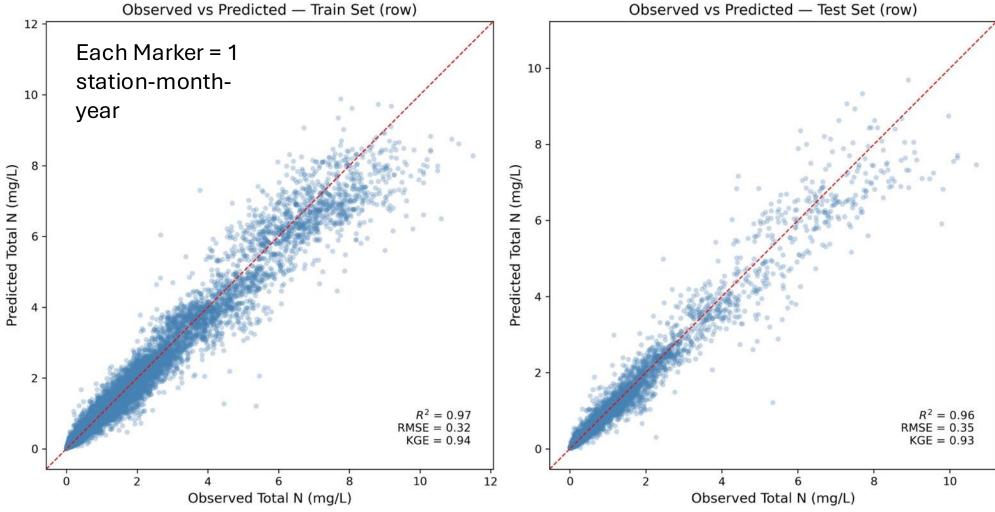
gTREND Dataset



Random Forest Results

Develop Random Forest Models to Predict Nutrient Concentrations and Loads at a Monthly Time Scale



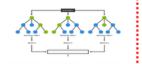


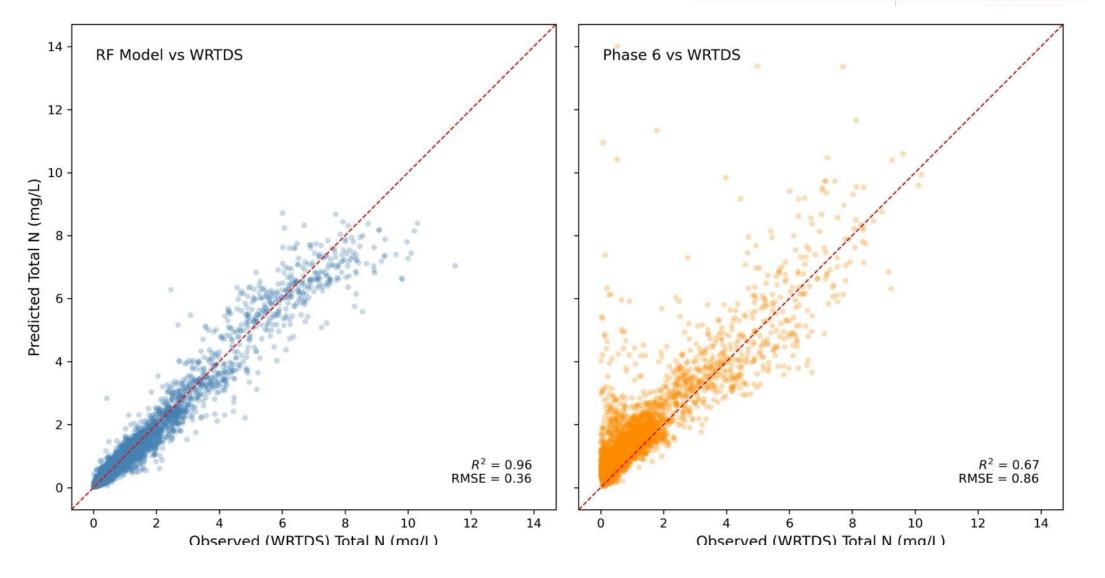
81 NTN Stations 1985-2020

80%/20% Train-Test Split

Current Results

Develop Random Forest Models to Predict Nutrient Concentrations and Loads at a Monthly Time Scale

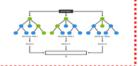


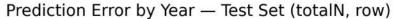


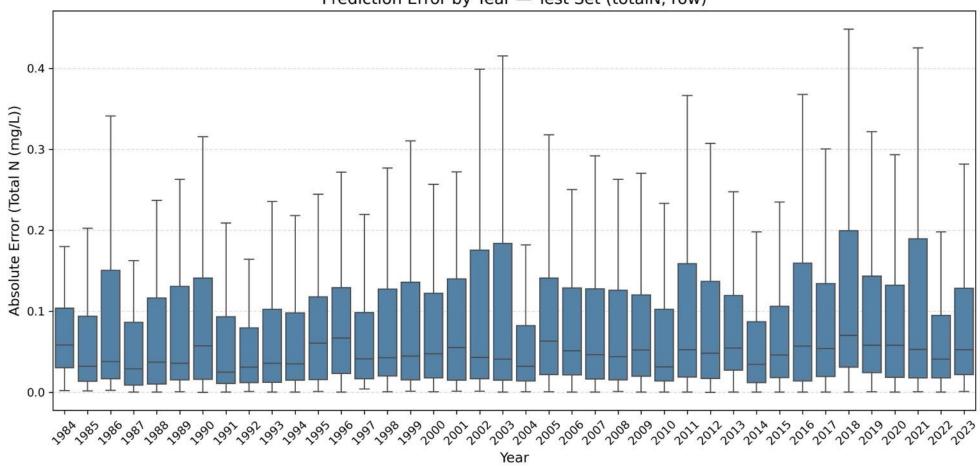
RF Model Comparison with Phase 6 Model Predictions

Current Results

Develop Random Forest Models to Predict Nutrient Concentrations and Loads at a Monthly Time Scale

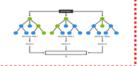


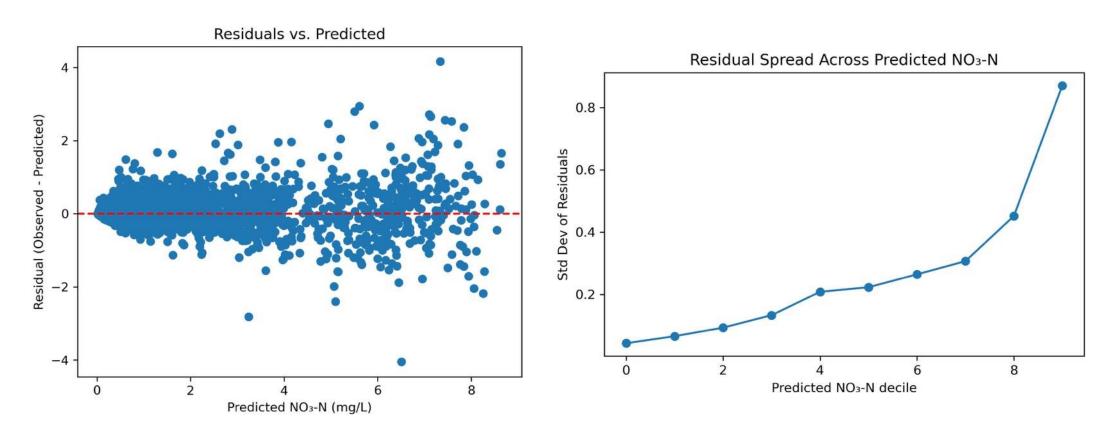




Current Results

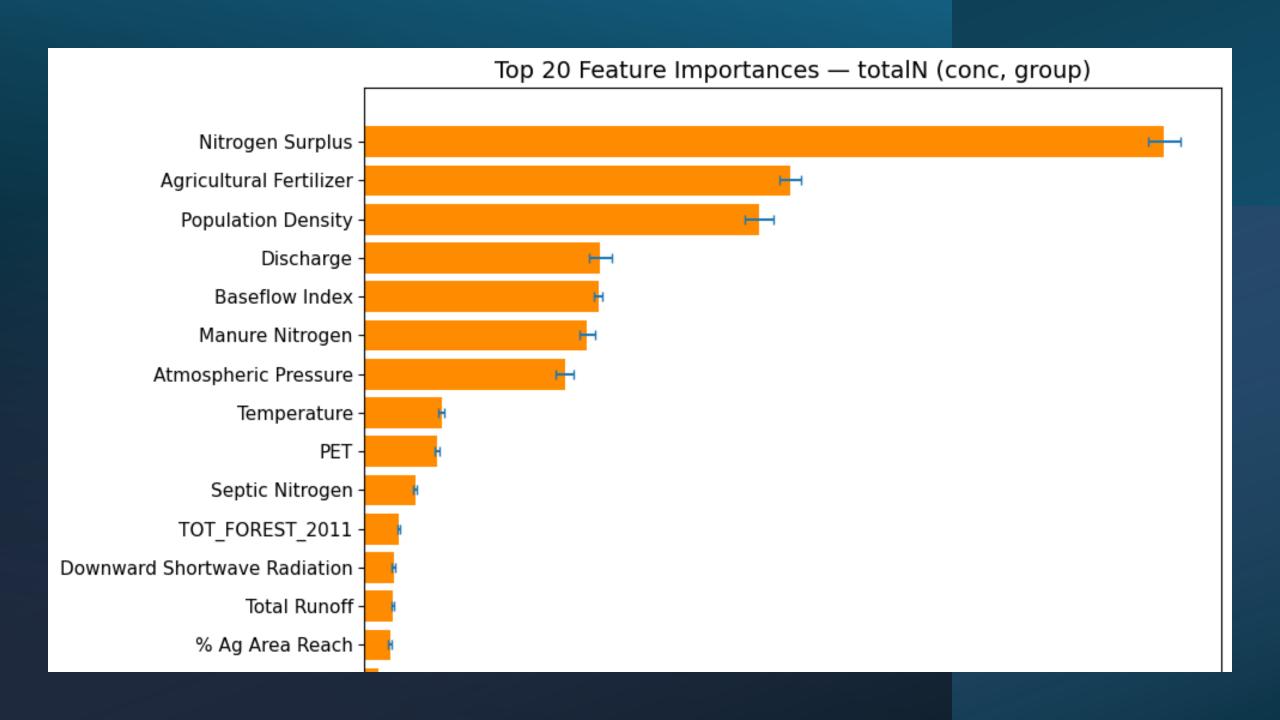
 Develop Random Forest Models to Predict Nutrient Concentrations and Loads at a Monthly Time Scale





Higher levels of error in high-concentration months/at high-concentration stations

81 NTN Stations 1985-2020

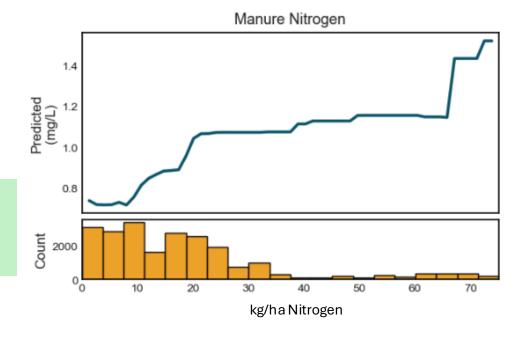


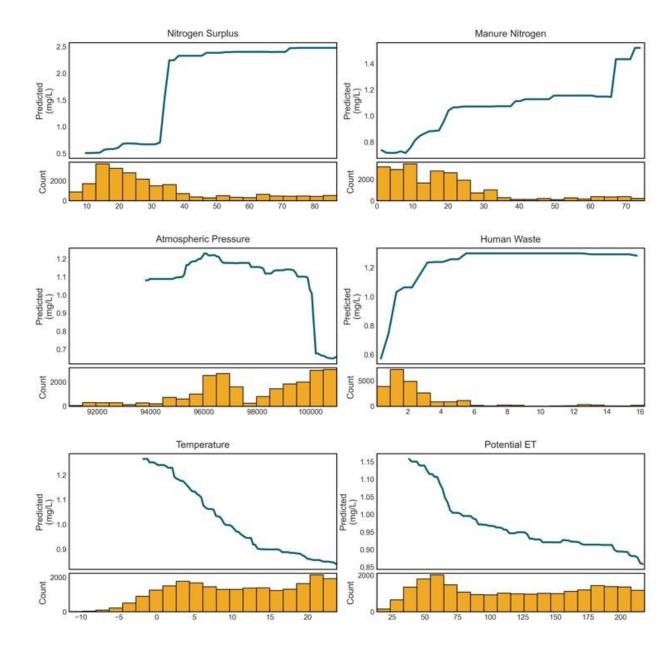
From Machine Learning to Management Deriving land-to-water factors

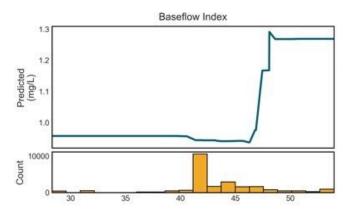
Our **random forest models** predict stream nutrient concentrations (e.g., TN, TP) from watershed-scale predictors such as:

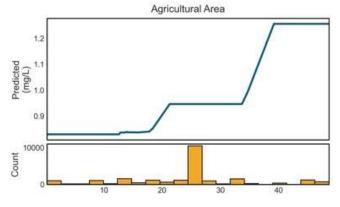
- % agriculture, % forest, impervious surface
- fertilizer or manure inputs
- tile drainage density
- precipitation, soil carbon, slope, etc.

Partial dependence plots (PDPs) show how predicted concentration responds to changes in each predictor, holding all others constant



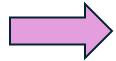






From Machine Learning to Management Deriving land-to-water factors

Partial dependence plots (PDPs) show how predicted concentration responds to changes in each predictor, holding all others constant



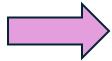
From each PDP, Can we calculate a land-to-water response factor?

For example, a PDP might show that decreasing manure N inputs from 70 to 50 kg/ha would decrease total N concentrations by ~ 0.2 mg/L



Work in Progress with Nutrient Modeling

- 1. Add additional stations with WRTDS data across the CBW
- 2. Work with fine-scale land-use data and integrate into model
 - Aggregate stream-reach data across the upstream stream reaches
- 3. Explicitly add wastewater inputs to the model



From each PDP, Can we calculate land-to-water response factors?