

CHESAPEAKE BAY WATER RESOURCES II

Assessing Water Clarity to Identify Potential Areas of Submerged Aquatic Vegetation (SAV) in the Chesapeake Bay

Kenton Ross

Emily Gotschalk

NASA Langley Research Center

2017 Summer

NASA Applied Sciences

Discovering Innovative & Practical Applications of NASA Earth Science

- Partner with public and private organizations
- Discover innovative NASA Earth science applications
- Support environmental decision-making activities
- Demonstrate practical benefits of NASA Earth science
- Help improve the quality of life and strengthen the economy

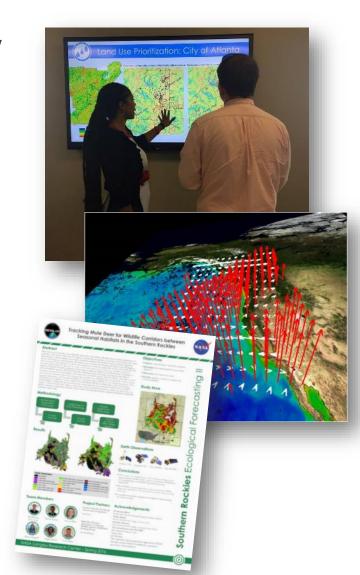
Capacity Building

What is DEVELOP?

DEVELOP collaborates with decision makers to conduct feasibility projects that apply NASA Earth observations to address environmental issues. These projects engage young professionals (students and recent graduates) and decision makers in 10-week projects that identify opportunities to use NASA satellite data to create methodologies and tools for project partners. This directly supports both individuals and institutions, and increases the use of Earth observation data and enhances decision and policy making.

NASA DEVELOP

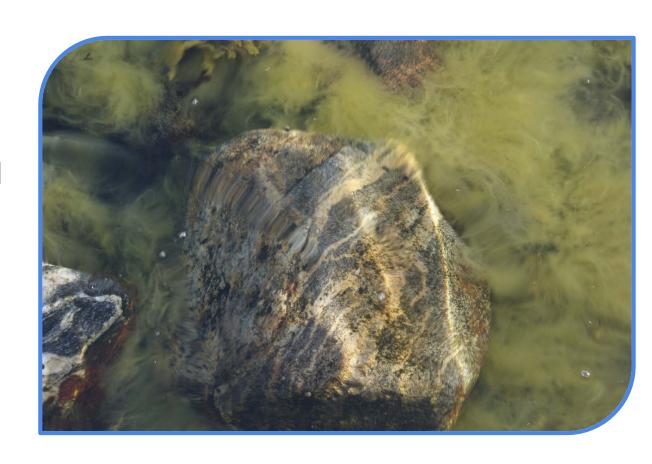
DEVELOP bridges the gap between NASA Earth Science and society, building capacity in both its participants and end-user organizations to better prepare them to handle the environmental challenges that face society.



DEVELOP Project Characteristics

70-80 projects take place each year – at their core they share these characteristics:

- Highlight the applications and capabilities of NASA Earth observations
- Address community concerns relating to decision-making for real-world environmental issues
- Partner with organizations who can benefit from using NASA Earth observations to enhance decision-making by providing decision support tools
- Align with at least one of the nine NASA Applied Sciences Program's thematic Application Areas
- Research is conducted by interdisciplinary teams under the scientific guidance of DEVELOP Science Advisors and Mentors from NASA and partner organizations
- Create a comprehensive set of deliverables in just 10 weeks!



Project Objectives

- **Determine** feasibility of using remote sensing to monitor water clarity
- Correlate and model satellite derived water clarity metrics
- **Expedite** atmospheric correction process for satellite imagery
- Produce annual water clarity maps

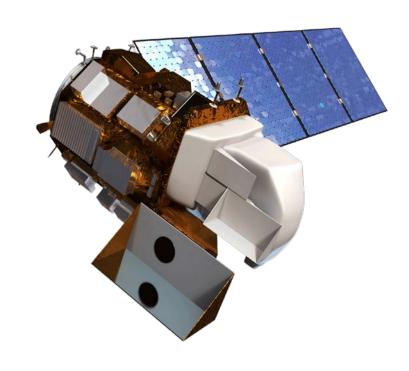
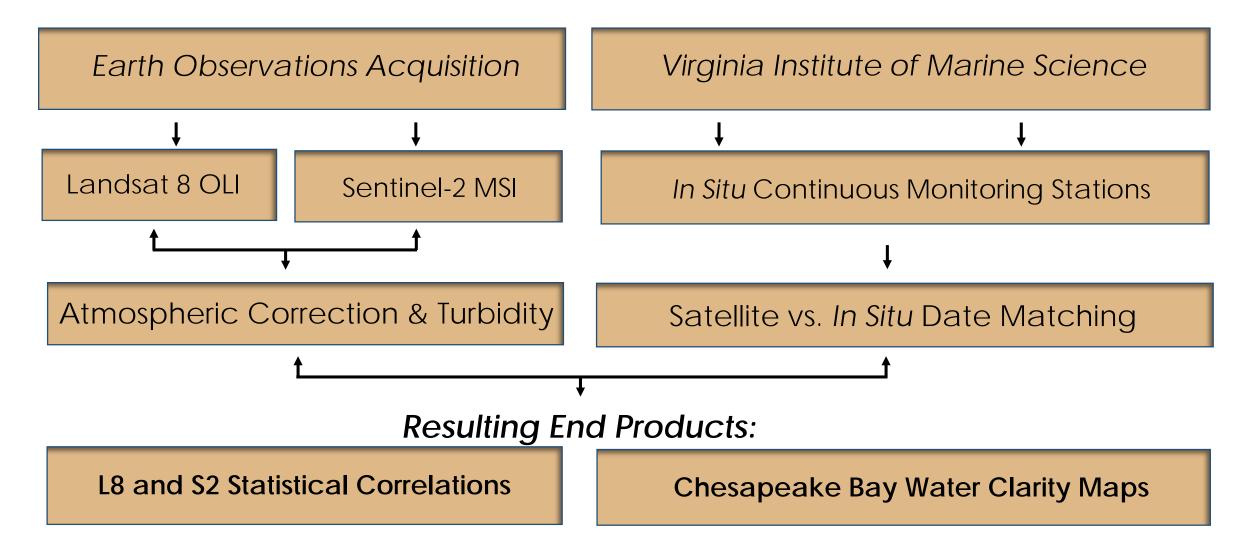


Image Credit: Pixabay

NASA & ESA Earth Observations

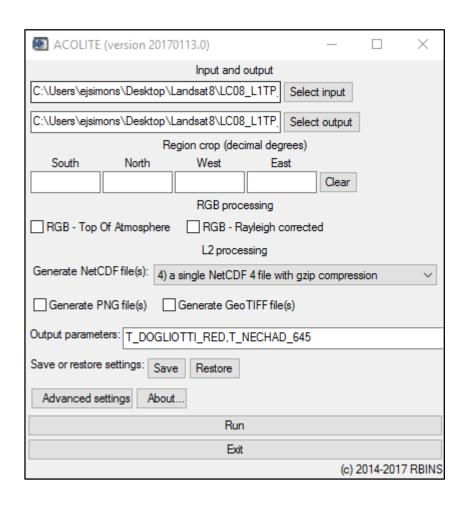
Landsat 8

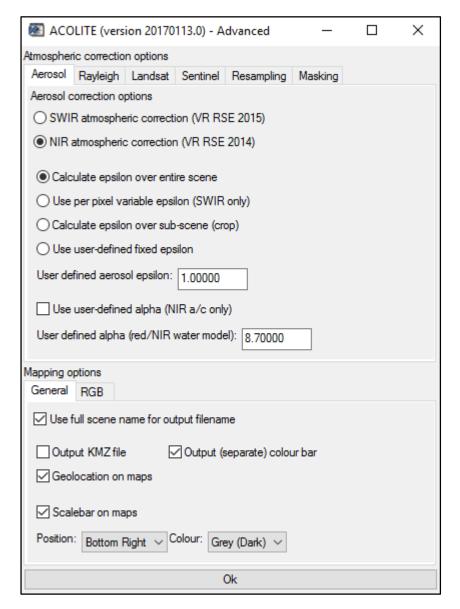
Operational Land Imager (OLI) 2013 - 2017



Sentinel-2

MultiSpectral Instrument (MSI) 2015 - 2017


Methodology



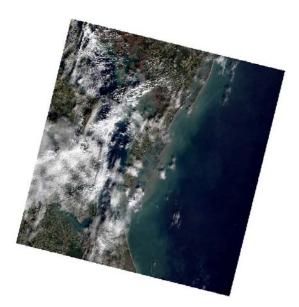
- ACOLITE is an atmospheric correction and processor for satellite imagery, including:
 - Landsat 8
 - Sentinel-2
- Developed at the Royal Belgian Institute of Natural Sciences (RBINS)
- ACOLITE allows simple and fast processing of L8 and S2A images for marine and inland water applications

ACOLITE Advanced Settings

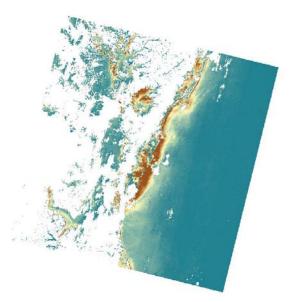
SWIR vs. NIR atmospherically corrected ACOLITE products, derived from Landsat 8 imagery captured April 9th, 2017

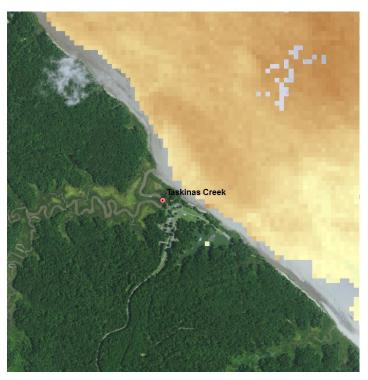
ACOLITE Turbidity Algorithms

- ▶ T_DOGLIOTTI_RED: red-band turbidity from (Dogliotti et al., 2015) using the 645 nm setting from their paper with the OLI 655 nm band or the MSI 665 nm band.
- ▶ T_GARABA_645_LIN: turbidity from (Garaba et al., 2014) using the linear 645 nm model from their paper with the OLI 655 nm band or the MSI 665 nm band.
- ▶ T_NECHAD_645: turbidity from (Nechad et al., 2009) using the 645 nm setting from their paper with the OLI 655 nm band or the MSI 665 nm band.


Single band retrieval algorithms relate turbidity and water reflectance at a predefined wavelength chosen by the user - In our case, the red band

ACOLITE Output Limitations


- Limited satellite data availability for imagery with heavy cloud cover
- Limited satellite data availability around monitoring stations close to land/inland


RGB Overview with Cloud Cover

Turbidity Product over RGB with Cloud Cover

ACOLITE processed Turbidity Product

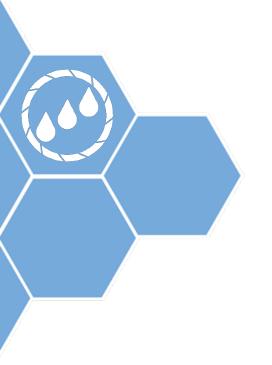


Image Credit: Pixabay

Analysis & Results

Statistical Correlations By Station

NIR Corrected by Station Statistical Analysis		ACOLITE Turbidity Products (R Values)					
		RRS Red	Dogliotti Red	Dogliotti Blended	Garaba	Nechad	
	Cherrystone				0.398		
	Ashland Circle					0.949	
	Claybank		0.174				
	Dividing Creek					0.570	
suc	First Landing		0.867			0.867	
Continuous Monitoring Stations	Gloucester					0.332	
St	Goodwin Island				0.145		
ing	Hungars Creek	0.903					
tori	Hunting Creek					0.375	
nii	Indian Creek						
Σ	Ingram Bay		0.507				
sn	Jamestown Buoy			0.732			
on	James River					0.562	
ıtin	Nassawadox Creek					0.623	
Cor	Norfolk Yacht					0.466	
J	Stingray Point		0.984				
	Tallpines				0.999		
	White House Landing					0.198	
	Sweet Hall Marsh	1.000					

Best Combined Analysis					
Station	Product				
Cherrystone	Nechad				
Tallpines	Nechad				
Ashland Circle	Nechad				
Dividing Creek	Nechad				
Hunting Creek	Nechad				
James River	Nechad				
Nassawadox Creek	Nechad				
Norfolk Yacht	Nechad				
First Landing	Nechad/Dogliotti Red				
Hungars Creek	Dogliotti Red				
Sweet Hall Marsh	Dogliotti Red				
Claybank	Dogliotti Red				
Ingram Bay	Dogliotti Red				
Jamestown Buoy	Dogliotti Red				
Stingray Point	Dogliotti Red				

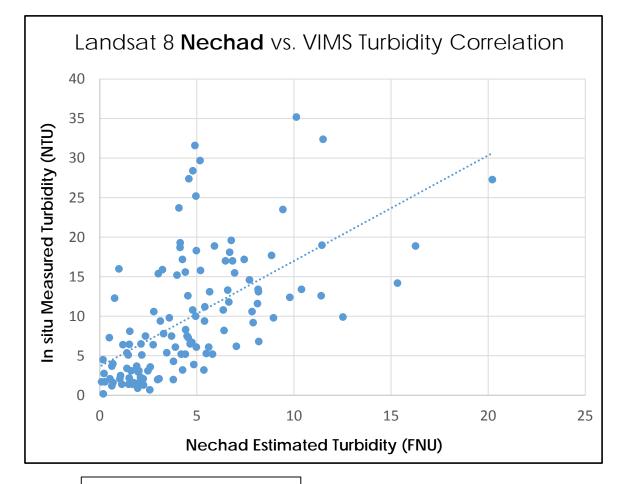
NO STATION AVAILABLE **NEGATIVE CORRELATIONS**

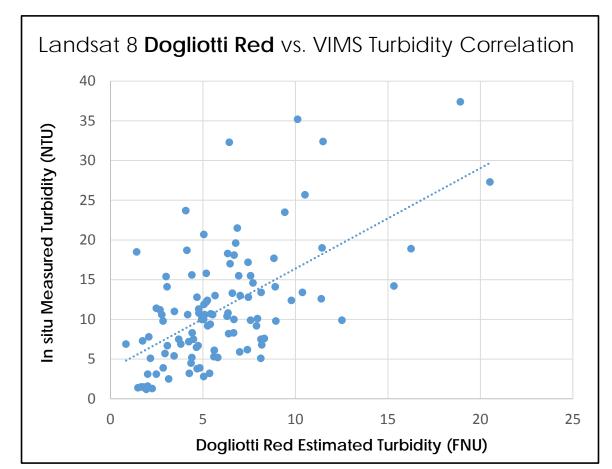
POSITIVE CORRELATIONS BEST POSITIVE CORRELATION

Overall Analysis

Deleted Stations Goodwin Island

Gloucester White House Landing Indian Creek

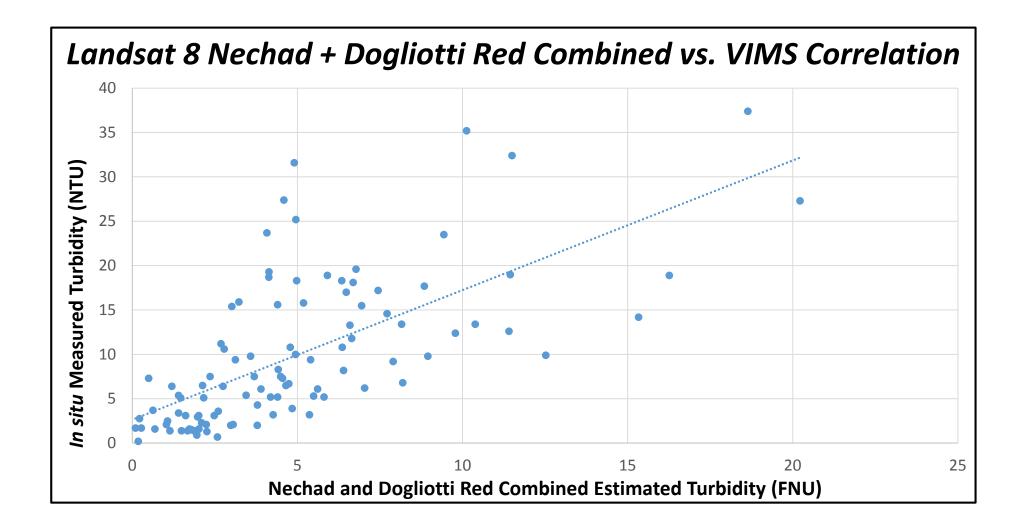

Best Analysis					
Station	Product	Location Description			
Cherrystone	Garaba	Open Water			
Goodwin Island	Garaba	Shallow Water, Sandy Bottom, Clear Conditions			
Tallpines	Garaba	Open Water in Basin, Close to Shore			
Indian Creek	N/A	Near Dock, Shallow Water, Sandy Bottom			
Ashland Circle	Nechad	Tucked In, Small Sandy Bottom			
Dividing Creek	Nechad	Near Dock, Shallow Water			
Gloucester	Nechad	Adjacent to VIMS Coastline, Near bridge and Land			
Hunting Creek	Nechad	In Creek, No Bottom Effect			
James River Nechad		Near building, No Sandy Bottom			
Nassawadox Creek Nechad		In Creek, Small Sandy Bottom			
Norfolk Yacht Nechad		Tucked Away in Norfolk Marina, Adjacent to Bridge			
White House Landing	Nechad	Far up on Pamunkey, Near Bridge, Lots of SSD			
First Landing	Nechad/Dogliotti Red	Out in Open Bay Waters			
Hungars Creek	RRS Red	In Creek, Little Bottom			
Sweet Hall Marsh RRS Red		Up in Pamunkey River, Off land			
Claybank	Dogliotti Red	Out in York, No Bottom			
Ingram Bay	Dogliotti Red	Shallow Clear, Constant Conditions, Coastal, Away from Shore			
Jamestown Buoy	Dogliotti Blend	Out in James River, Open Water			
Stingray Point	Dogliotti Red	Open Water, Mouth of Rhappahannok			


Best Combined Analysis					
Station	Product				
Cherrystone	Nechad				
Tallpines	Nechad				
Ashland Circle	Nechad				
Dividing Creek	Nechad				
Hunting Creek	Nechad				
James River	Nechad				
Nassawadox Creek	Nechad				
Norfolk Yacht	Nechad				
First Landing	Nechad/Dogliotti Red				
Hungars Creek	Dogliotti Red				
Sweet Hall Marsh	Dogliotti Red				
Claybank	Dogliotti Red				
Ingram Bay	Dogliotti Red				
Jamestown Buoy	Dogliotti Red				
Stingray Point	Dogliotti Red				

Earth Observations vs. In Situ Data

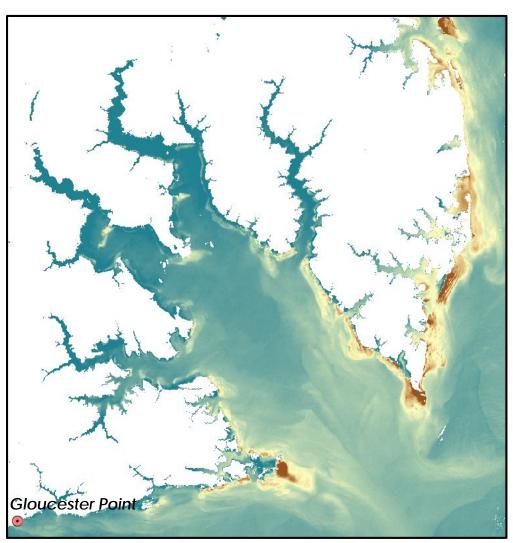
Nechad: R = 0.5929

$$y = 1.3356x + 3.6444$$


Dogliotti Red: R = 0.5997

$$y = 1.2647x + 3.7365$$

Combined Nechad and Dogliotti Red

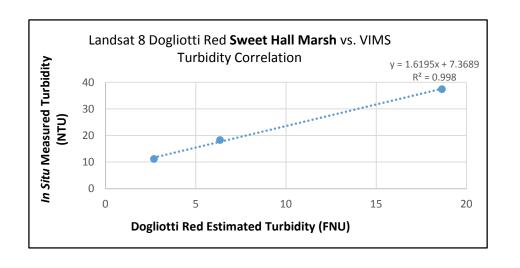


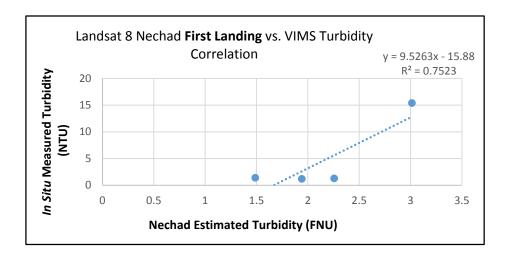


Nechad vs. Dogliotti Red: Tributaries

Turbidity Scale (FNU) High: 15+ Low: 0

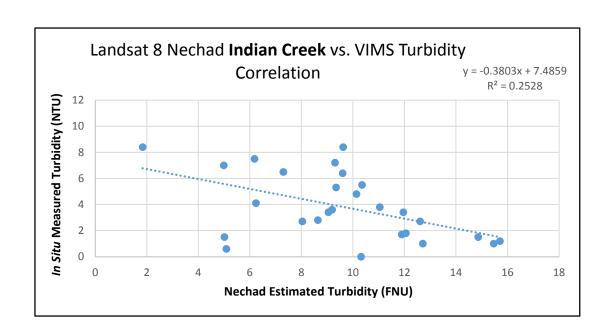
Landsat 8 Nechad Turbidity Product (07/19/13)


Landsat 8 Dogliotti Red Turbidity Product (07/19/13)



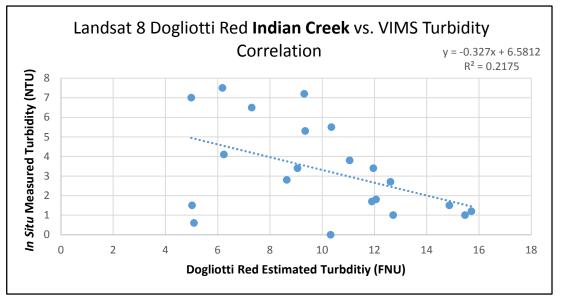
Strength Coefficient							
	Cherrystone	0.440	T Dogliotti Red	Cherrystone	0.279		
	Ashland Circle	1.784		Ashland Circle	N/A		
	Claybank	0.159		Claybank	0.350		
	Dividing Creek	1.824		Dividing Creek	-0.021		
	First Landing	0.993		First Landing	1.584		
	Gloucester	1.456		Gloucester	1.424		
	Goodwin Island	0.011		Goodwin Island	-0.052		
	Hungars Creek	1.450		Hungars Creek	1.468		
р	Hunting Creek	0.464		Hunting Creek	-0.145		
Nechad	Indian Creek	2.253		Indian Creek	-2.404		
ž	Ingram Bay	-0.062		Ingram Bay	1.351		
	Jamestown Buoy	1.938		Jamestown Buoy	3.047		
	James River	2.189		James River	1.222		
	Nassawadox Creek	1.408		Nassawadox Creek	0.911		
	Norfolk Yacht	1.001		Norfolk Yacht	0.058		
	Stingray Point	2.381		Stingray Point	3.056		
	Tallpines	0.988		Tallpines	N/A		
	White House Landing	0.181		White House Landing	N/A		
	Sweet Hall Marsh	1.102		Sweet Hall Marsh	1.576		

Strength Coefficient Performance							
	Nechad		T Dogliotti Red				
	Stingray Point	2.381		Stingray Point	3.056		
	James River	2.041		First Landing	1.584		
Top 3	Jamestown Buoy	1.806	Top 3	Sweet Hall Marsh	1.576		
	Indian Creek	-2.100		Indian Creek	-2.404		
Bottom 3	Goodwin Island	0.011	Bottom 3	Hunting Creek	-0.145		
	Ingram Bay	0.058		Dividing Creek	-0.021		

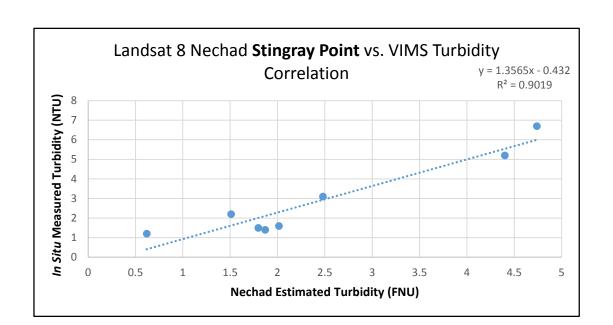

Strength Coefficient =
$$\frac{N'*R^2}{N}*100$$

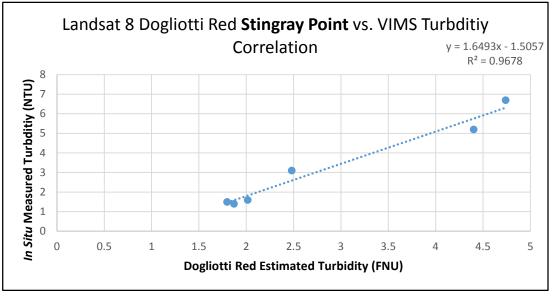
Where:

- is the number of points matched at the specific station
- is the coefficient of determination at the specific station
- is the total points matched with the turbidity product



Strength Coefficient Performance							
	Nechad T Dogliotti Red						
Top 3			Top 3				
	Indian Creek	-2.100		Indian Creek	-2.404		
Bottom			Bottom				
3			3				





Strength Coefficient Performance							
	Nechad		T Dogliotti Red				
	Stingray Point	2.381		Stingray Point	3.056		
Top 3			Top 3				
Dottom			Dottom				
Bottom 3			Bottom 3				

Average

Turbidity =

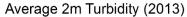
2.42 FNU

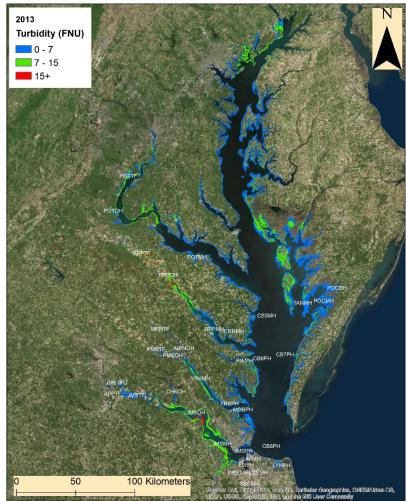
Empirical Correction Comparison

Mobjack Bay (2013-2017)

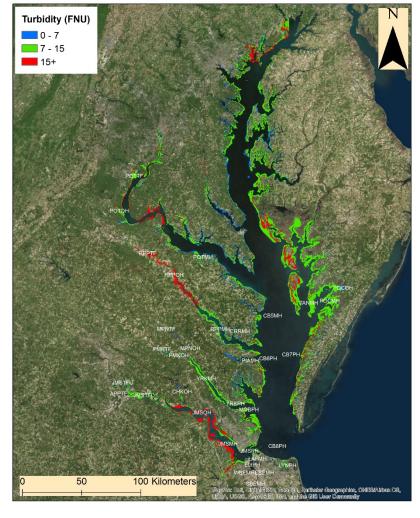
Original Dogliotti Turbidity Product

Mobjack Bay (2013-2017)


Average Turbidity = 6.81 FNU

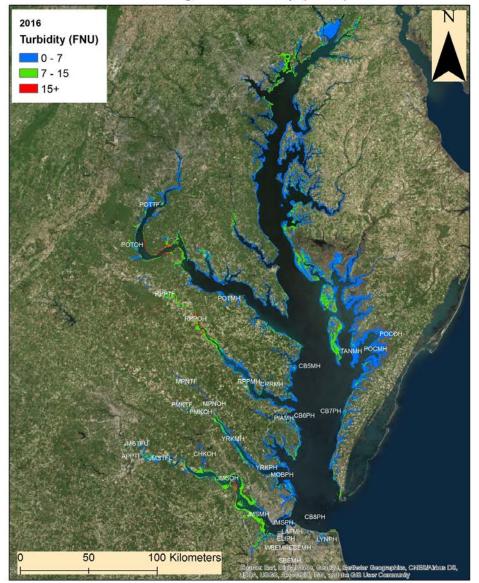

Empirically Corrected Dogliotti Turbidity Product

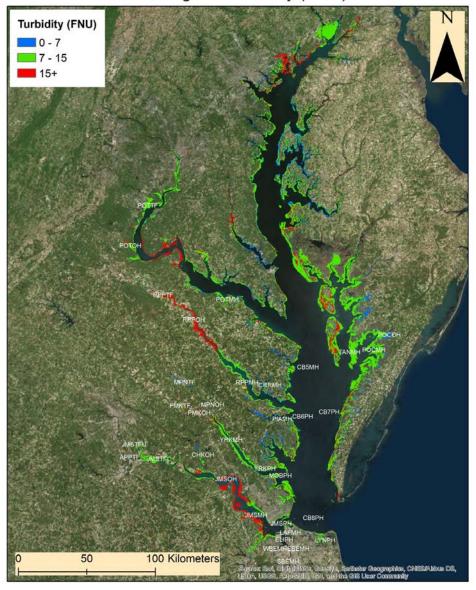
Effect of Empirical Correction on Standards



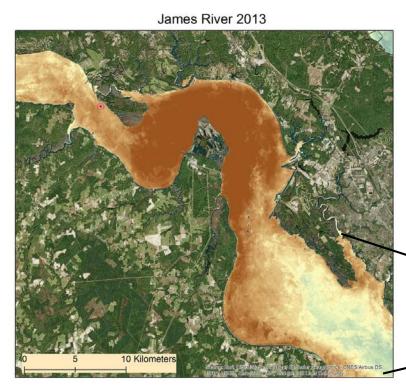
Original 2m Nechad Turbidity Product

Average 2m Turbidity (2013)


Empirically Corrected 2m Nechad Turbidity Product

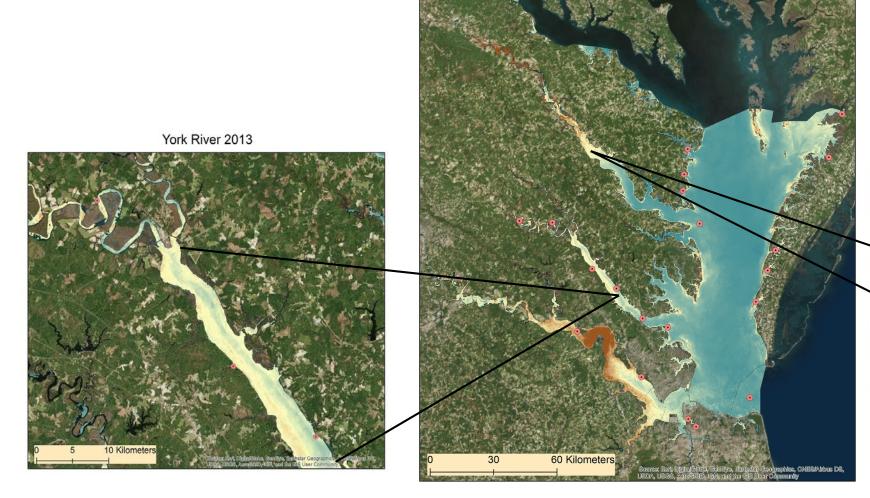

Empirical Correction (2016)

Average 2m Turbidity (2016)

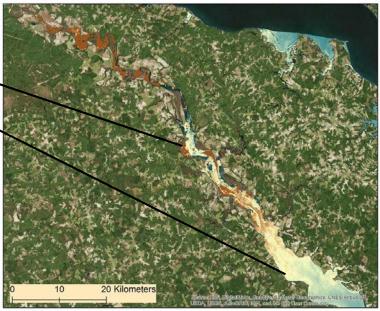


Annual Water Clarity Maps: Dogliotti Red

Landsat 8 Virginia Chesapeake Baywide Mosaic

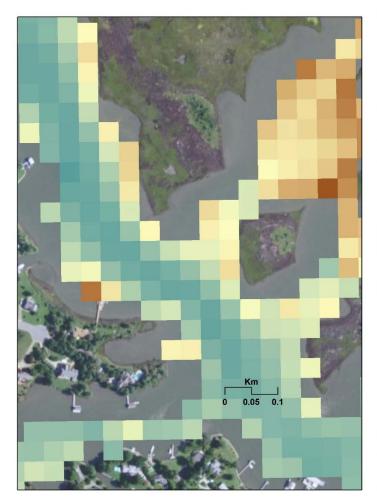

Pocomoke Sound 2013

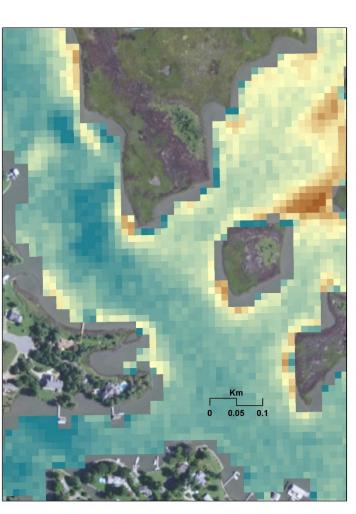
Annual Water Clarity Maps: Dogliotti Red



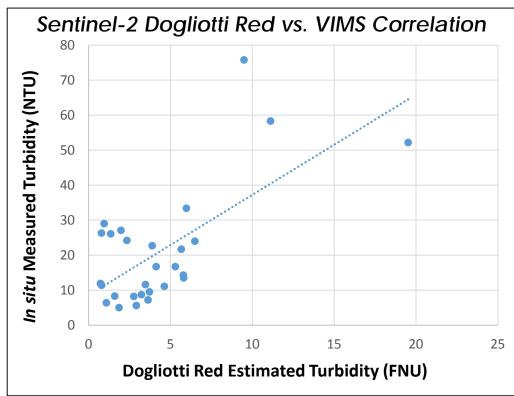
Landsat 8 Virginia Chesapeake Baywide Mosaic

2013


Upper Rappahannock 2013



Sentinel-2: Spatial Resolution & Results

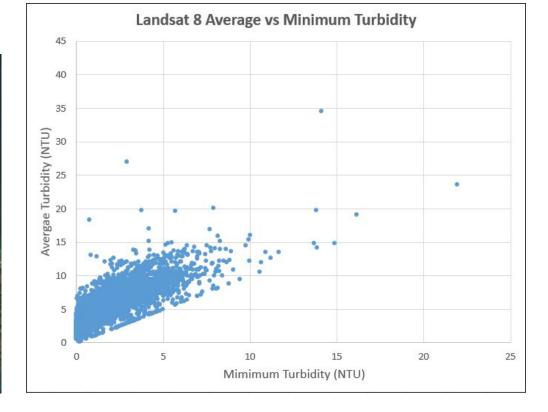


Landsat 8 Dogliotti Red Turbidity Product (03/24/17)

Sentinel-2 Dogliotti Red Turbidity Product (03/17/17)

Dogliotti Red: R = 0.6672

y = 2.8667x + 8.577

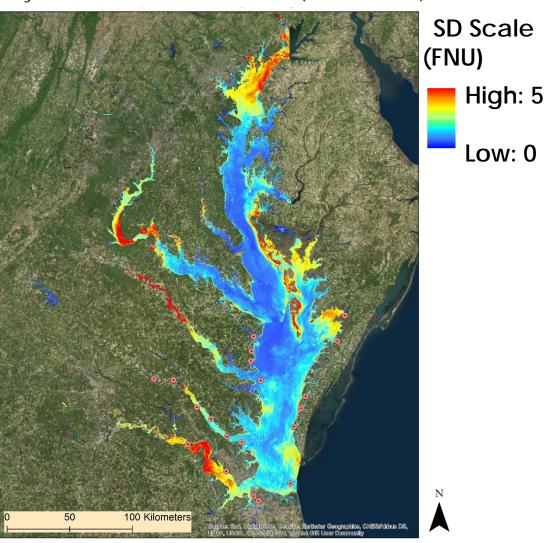


Identifying Bottom Interactions

Piankatank River - ACOLITE turbidity product vs Google Earth imagery

Observed high satellite turbidity estimates over clear, shallow waters with sandy bottoms

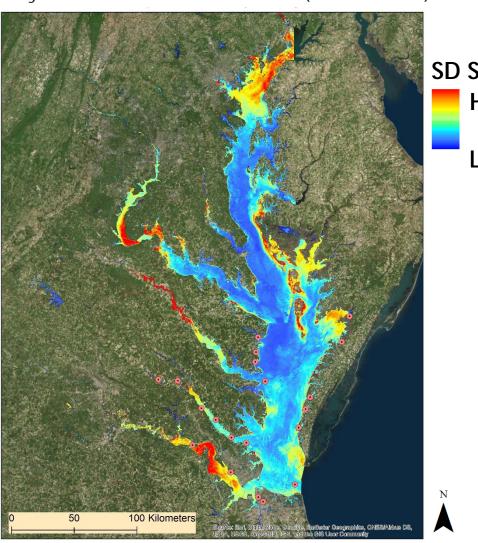
Points with high average and high minimum turbidities can potentially be indicators of bottom effects



Baywide Turbidity Variation

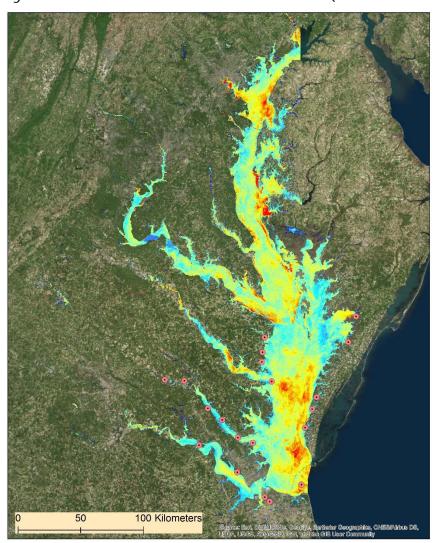
- Standard deviation used to visualize variation & examine bottom effects
- High SD + low Coefficient of Variation for turbidity potentially influenced by sandy bottoms

Baywide Standard Deviation (2013 - 2017)



Landsat 8 SD vs. CoV

Baywide Standard Deviation (2013 - 2017)



SD Scale (FNU)

High: 5

Low: 0

Baywide Coefficient of Variation (2013 - 2017)

CoV Scale (FNU) High: 1

Low: 0

- Finding effective methods to distinguish bottom effects
- Utilizing satellite data from Landsat 5 and Landsat 7
- Exploring different advanced settings within ACOLITE

Video Credit: Sean Robison, NASA DEVELOP

- Landsat 8 was used to produced the most confident correlations with *in situ* data.
- Dogliotti and Nechad: turbidity products provide the most accurate water clarity assessment
 - Dogliotti Red over open waters
 - Nechad within tributaries
- Models and maps produced can be applied in future monitoring to identify areas of high turbidity

Image Credit: Pixabay

Acknowledgements

Science Advisor

NASA Langley Research Center:

Dr. Kenton Ross

Partners

Virginia Department of Environmental Quality:

Tish Robertson

USGS, Water Science Center:

Peter Tango

NASA DEVELOP

Previous Term Affiliates: Danielle Quick, Gregory Hoobchaak, Collin Henson, Cole Cowher, Amanda Clayton

Summer 2017 Team

Eli Simonson Antonio Alvarado William Crowley