Phase 6 estimate of TN delivery from atmospheric source

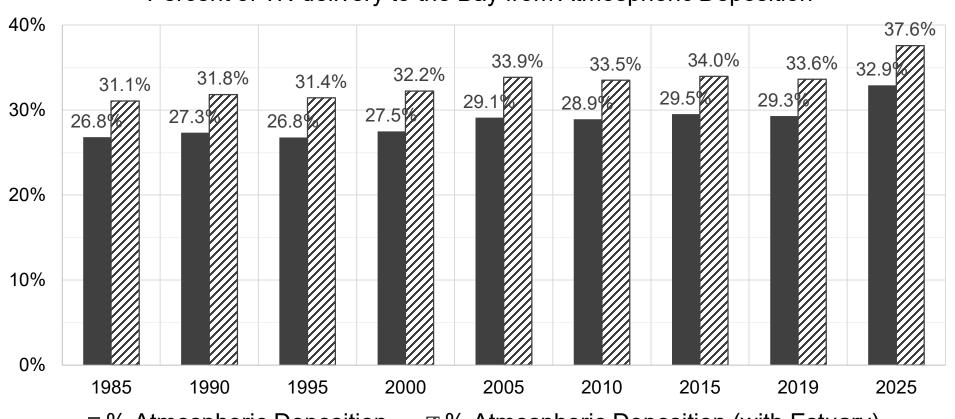
Modeling Workgroup Conference Call – September 2020

Gopal Bhatt¹, Lewis Linker², Gary Shenk³

¹ Penn State, ² US EPA, ³ USGS – Chesapeake Bay Program Office

Burns et al., 2020 (in review)

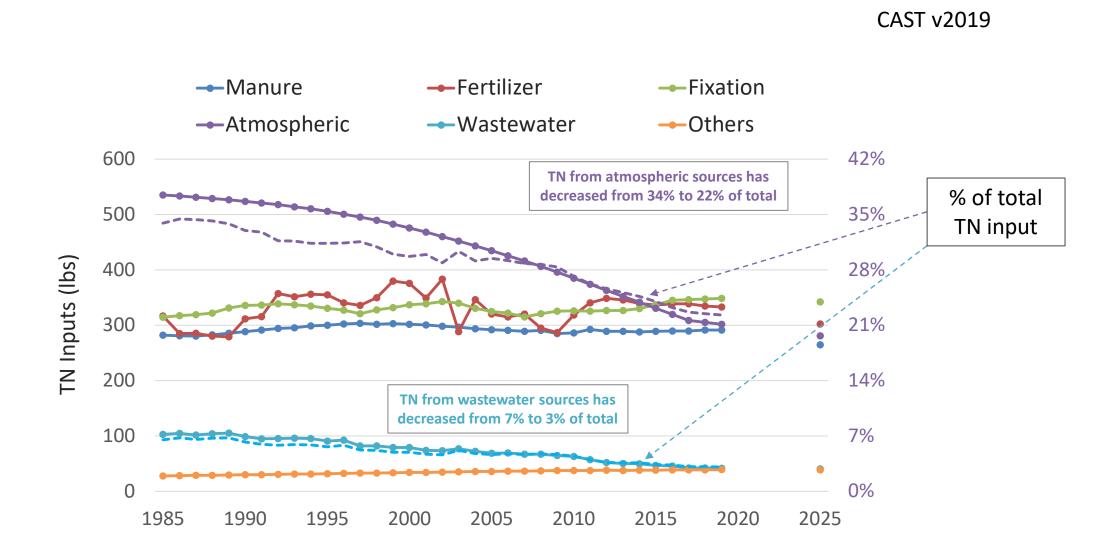
- Correll and Ford (1982) concluded that N in precipitation provided 40% of the external N load to the Rhode River Estuary.
- Fisher and Oppenheimer (1991) estimated that $25\pm5\%$ of the annual load originated from atmospheric oxidized N (NO_x), another 14% originated as atmospheric reduced N (NH_x).
- Hinga et al. (1991) independently verified the findings of Fisher and Oppenheimer (1991), and confirmed that about one-third of N transported to the Bay originated from atmospheric deposition.
- Ronner, 1985 came to similar conclusion in other regions.
- Later assessments with further refinements concluded that about 25% of the N load to the Bay originated from atmospheric deposition (Castro et al., 2001; Castro and Driscoll, 2002; Boyer et al., 2002; Birch et al., 2011).
- Some studies added consideration of food and feed imports into the Chesapeake Bay watershed, that while not large (Castro and Driscoll, 2002; Boyer et al., 2002), lessened the relative role of atmospheric N deposition.
- SPARROW modeling by Alexander et al. (2001) estimated 28%, and Ator et al. (2011) 17%
- Linker et al. (2013) applied the CBP models to estimate that atmospheric N declined from about 32% to 27% of total N export to the Bay during 1985 to 2005.
- Ator et al. (2019): "Nitrogen attributable to atmospheric deposition decreased by 20% between 1992 and 2012; such inputs, however, represented only a small fraction (<10%) of the total flux to the bay during either period."


Burns et al., 2020 (in review)

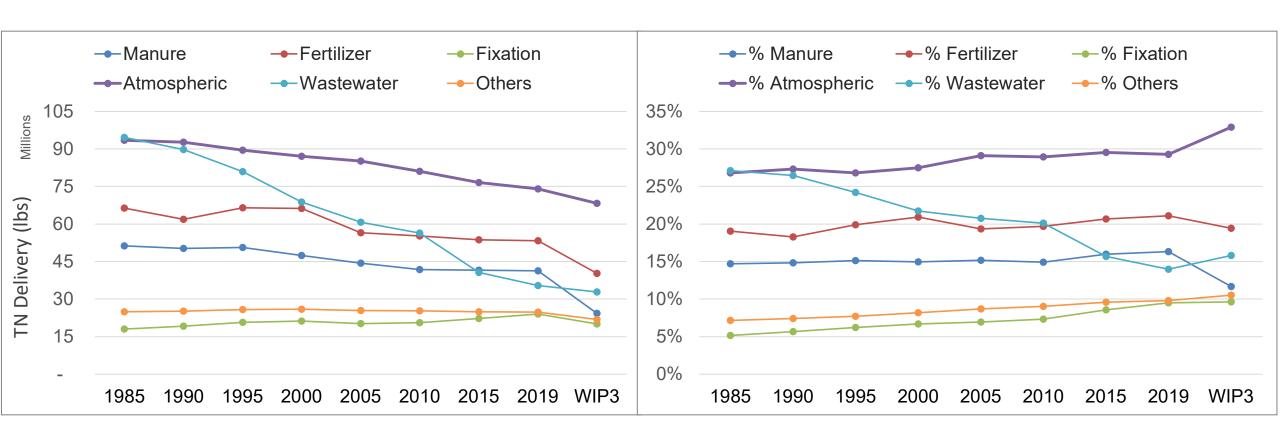
Citation	Year	Estimate (% total N load)	Uncertainty Range (% total N load)	Dry Dep Included?	Org N Included?	Comment
Fisher & Oppenheimer, 1991	1984	34	29 – 39 ^a	Yes	No	Equal source retention
Fisher & Oppenheimer, 1991	1984	39	34 – 44ª	Yes	No	Differential source retention
Hinga et al., 1991	1986	31	12 – 59 ^b	Yes	No	
Jaworski et al., 1997	1990-93	61 ^c	NA	Yes	Yes	Regression based on 17 sites
Alexander et al., 2001	early 1980s–93	28	22-34	No	No	Steady-state model, dep to Bay excluded
Castro et al., 2001	1979-96 ^d	23	NA	Yes	No	Nitrate dep only
Castro & Driscoll, 2002	1997	27	NA	Yes	Yes	
Boyer et al., 2002	1991	25 ^c	NA	Yes	Yes	Net atmos dep
Castro et al., 2003	1979-96 ^d	30	NA	Yes	Yes	
Ator et al., 2011	2002	17	NA	No	No	Steady-state model, dep to Bay excluded
Birch et al., 2011	2008	24	NA	Yes	No	
Linker et al., 2013	1985–2005	1985=32 2005=27	NA	Yes	Yes ^e	Modeled dep, dep to Bay excluded
Ator et al., 2019	1992, 2012	<10	NA	No	No	Steady-state models, dep to Bay excluded

Estimated fraction of TN delivery to the tidal Bay from atmospheric source

CAST v2019


Percent of TN delivery to the Bay from Atmospheric Deposition

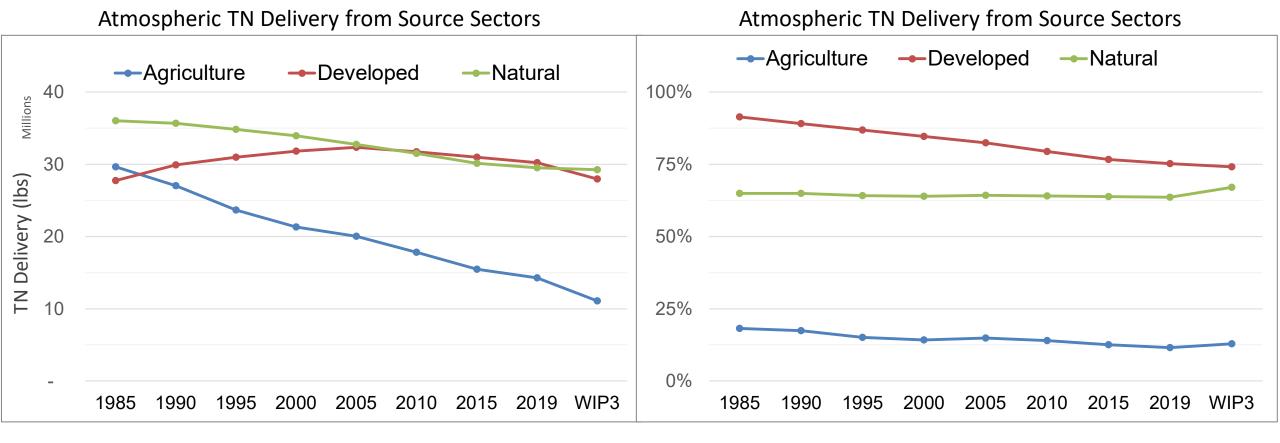
 27 to 33%


31 to 38%

Phase 6 estimates of TN input to the Chesapeake Bay Watershed

Phase 6 estimates of <u>TN delivery</u> attributed to input sources

CAST v2019



Estimated decreasing TN delivery is due a combination of changes in inputs, BMPs, and management actions.

Percent contribution of TN delivery (except for wastewater) show increasing trends, some more so than others.

Phase 6 estimates of <u>Atmospheric TN delivery</u> attributed to Source Sectors

CAST v2019

Summary and Conclusions

- Phase 6 estimates show:
 - atmospheric depositions have been decreasing, from about 33% of the total TN inputs in 1985 to 22% in 2025.
 - atmospheric sources account for about 30% of TN <u>delivery</u> 27% in 1985 Annual Progress to 33% under 2025 WIP3 conditions.
 - about 31 to 38% between 1985 to 2025 when atmospheric
 TN depositions to tidal open waters were also included.
- These percent estimates should not be interpretated as how much of the TN delivery can only be controlled from atmospheric sources.
 - Marginal change in delivery for atmospheric N is much smaller as compared to other inputs.