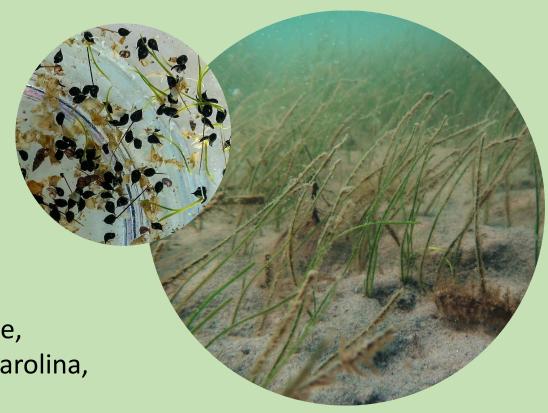
Widgeongrass seeding methods from a manipulative field experiment

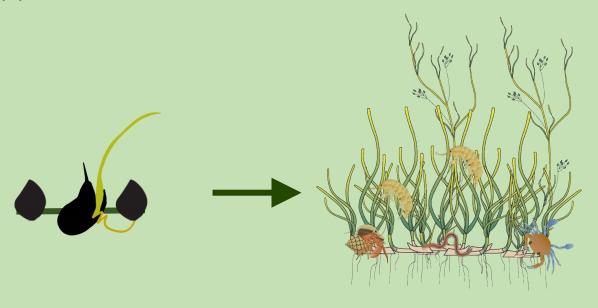
'Incorporating generalist seagrasses enhances habitat restoration in a changing environment'



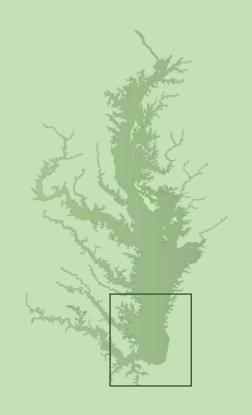
Presented by Enie Hensel

March 22, 2023 | SAV working group of the Chesapeake Bay

Widgeongrass Ruppia maritima


- Distributed worldwide
- Seed producing
 - Advantageous for global seagrass conservation
- Opportunistic
 - Fast growing
 - Shallow roots
 - ephemeral
- Generalist
 - Wide ranging salinity & temperature
- Tolerant to warming waters
- Restoration/applied ecological research in Europe,
 Australia, N. Gulf of Mexico, Florida Bay, North Carolina,
 Chesapeake Bay

Outline


ruppia methods are modified from S. Ailstock's research and our lab's approach with Zostera

- Collection
- Processing
- Storage
- dispersal
- outcomes so far
 - germination in nature
 - sustained growth in nature

VIMS Coastal Estuarine Ecology Lab & SAV Monitoring Program

seed collection occurs in May & June

- Seeds are hand picked and still attached to plant material
- Seed + plant materials are kept submerged and sorted into large, outdoor, aerated tanks
- As plant material decays, it is sieved out while seeds drop
 - Different from S. Ailstock methods
 - Key to quickly remove Ruppia seeds from plant material

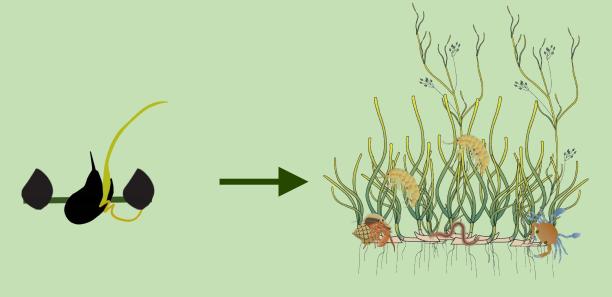
Seed are processed first through fluming

- Heavy *Zostera* seeds = best seeds
- Viability of zostera is tested from weight, or fall velocity, and seed firmness
- Ruppia unknown if these simple test are reliable
- Aly Hall is working on a suite of viability tests
 - Fall velocity
 - Seed shape
 - Germination rate
 - Live tissue staining

Seeds are stored in aerated, chilled tank until planting time

- Stored in chilled tanks in bins (20-22C)
 - Keep seed 'pile' shallow, ~ 2.5-3"
- Ruppia seeds can store in dark fridge at 4C for 3-10years
- Planting time is in October

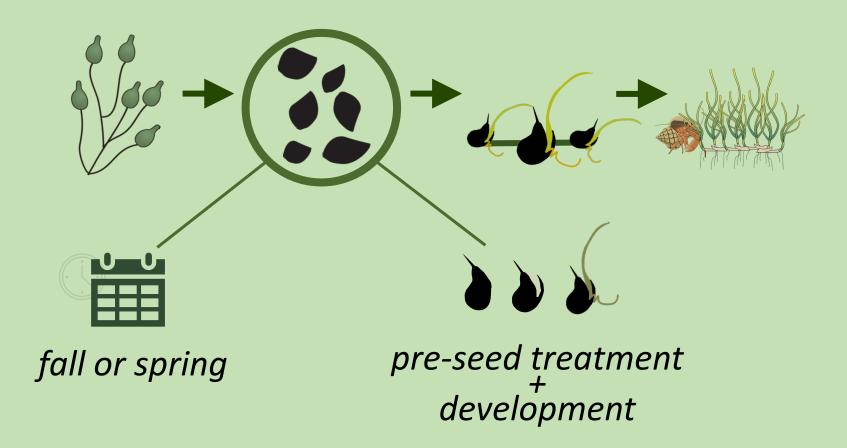
Seed broadcasting - planting


- Seeds per 1m² varies
 - 25 100 seeds per 1m²
- Ruppia has been planted in the field a few times from our lab, all having establishment success thus far
 - Experiment three locations
 - Restoration primary focus are available lease areas in Lynnhaven River System

Outline

ruppia methods are modified from S. Ailstock's research and our lab's approach with Zostera

- Collection
- Processing
- Storage
- dispersal
- outcomes so far
 - germination in nature
 - sustained growth in nature



Review outcomes from a restoration field experiment with *Zostera marina & Ruppia maritima*

- Tested for best Ruppia maritima planting practices
- Compared how species alter bed structure and function
- Does experimental findings scale-up to restoration scales?
- Does planting both species enhance restoration success Does experimental findings scale-up to restoration scales?

How does *Ruppia maritima* broadcast seed dispersal method alter bed establishment and composition?

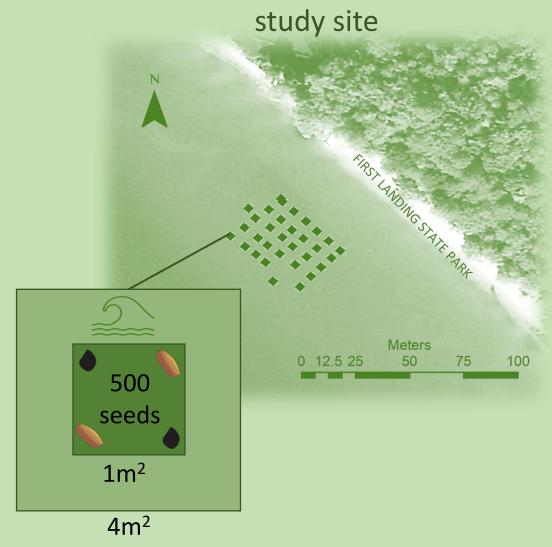
experimental design

TREATMENTS

Zostera maritima – seeded in fall

Ruppia maritima – seeded in fall

Ruppia maritima – seeded in spring


Ruppia maritima – seeded in spring, seeds had 48-hour freshwater shock

Ruppia maritima – seeded in spring, seeds

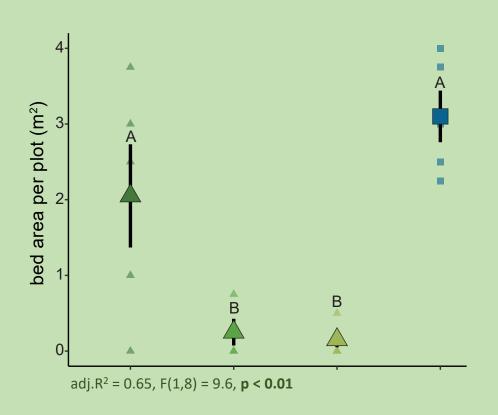
had freshwater shock until germination

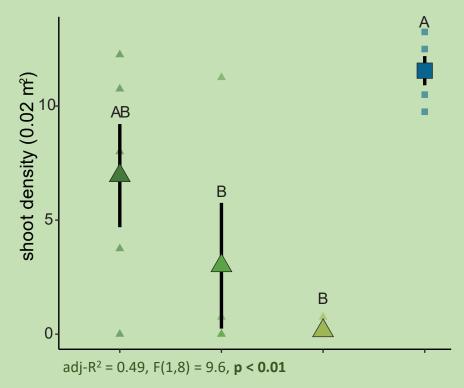
bare sediment control

Ruppia maritima broadcast in the fall with no pre-treatment established bigger and denser plots

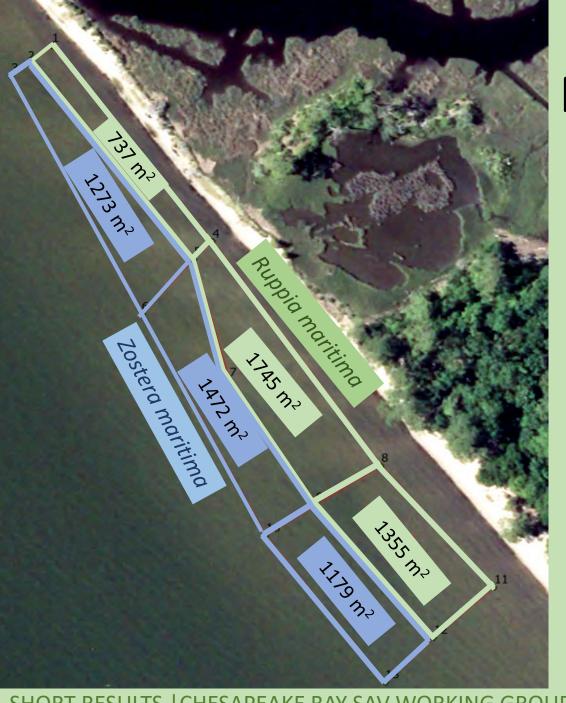
R. maritima & Z. marina established in both sites

R. maritima may be vulnerable in Broad Bay




	Zostera	Ruppia fall	Ruppia spring	Ruppia spring + fw shock	Ruppia spring + gemination
Spring - April					
Lynnhaven	5	3	0	0	0
Goodwin	5	5	0	0	0
Summer - June					
Lynnhaven	5	4	3	4	3
Lynnhaven	5	4	2	2	0
Goodwin	5	5	5	5	5
Summer Final – July					
Lynnhaven	5	3	3	1	2
Goodwin	5	5	4	4	4
%plots w/ plants					
Lynnhaven	100%	75%	100%	25%	67%
Goodwin	100%	100%	80%	80%	80%

Zostera and Ruppia established similar bed area and shoot density


areal cover of 2-3 m²

shoot density of 15-18 shoots

Planted ~ 2 acres of seagrass

Ruppia: 50-100 cm depth at low tide, minimal depth increase at high tide aka nearshore

Zostera: 100-150 cm depth at low tide Seedlings broadcasted & why

- Ruppia maritima 90 seeds per meter-sq
 - Determined by 9.2% and 0.76% germination rate estimates from spring 2021 experimental data as well as seeds available for broad-casting at SAV-CEEL lab.
- Zostera marina 50 seeds per meter-sq

planting area increased by 170 % using both grass species

LYNNHAVEN

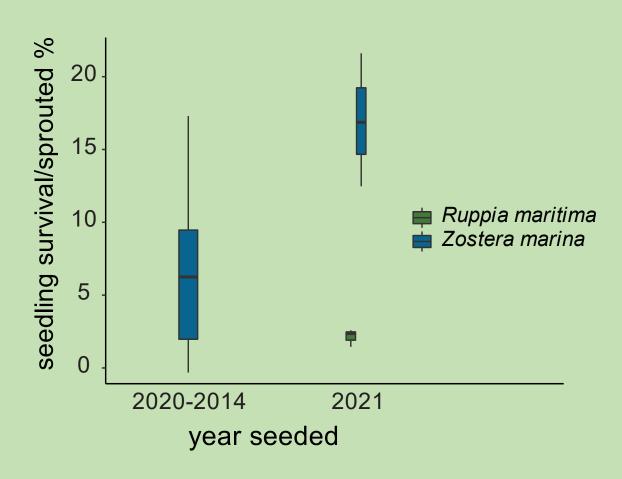
Zostera marina 16.98 % + 4.57 SD

50 seeds dispersed per meter-sq

Ruppia maritima 2.13% + 0.6 SD*

* Still too early to estimate based on 2021 R. maritima shoot emergence timing. Being re-assessed June 2022

90 seeds dispersed per meter-sq


PAST RESTORATIONS 2014-2020

Zostera marina 5.71 % + 4.54 SD

min 25 seeds dispersed per meter-sq, range between various efforts is 25 -100 seeds dispersed per meter-sq

SHORT RESULTS | CHESAPEAKE BAY SAV WORKING GROUP MARCH 2023, manuscript in prep.

early spring seedling rates scale-up!

Experimental 1m² plots had

- 2-3m² areal growth for both species
- Shoot densities 750 900

upcoming monitoring

Ruppia is a proactive restoration choice

- Collection in June --- watch for flowers & seeds
- Processing --- immediately transfer to tanks and help remove plant material
- Storage --- 20-22C lightly packed in aerated saltwater
- dispersal --- broadcast seeding is promising, seed density min 80 seeds per m² recommended due to patchy growth pattern
- outcomes so far
 - Ruppia maritima can not only provide short term restoration success, also provide longer-term restoration success to lost or other species through its engineering

Acknowledgements

coauthors:

Stephanie J. Wilson, Christopher J. Patrick, Bongkeun Song, Robert J. Orth

Dave Shulte and US Army Corps Virginia Team

City of Virginia Beach

- Lauren Alvaro
- Aly Hall
- Marc Hensel
- Corey Holbert
- Julia Mackin-McLaughlin
- Hayden Acors
- Jecy Klinkam
- Alex Solis
- Sean Kinard
- James Reidy (citizen scientist)
- Jason Barney (citizen scientist)

symbols from ian.umces.edu