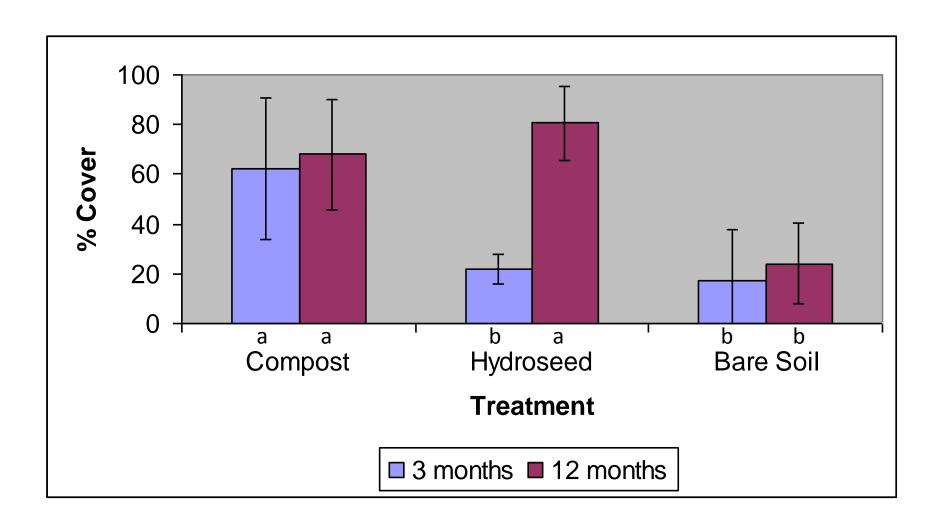
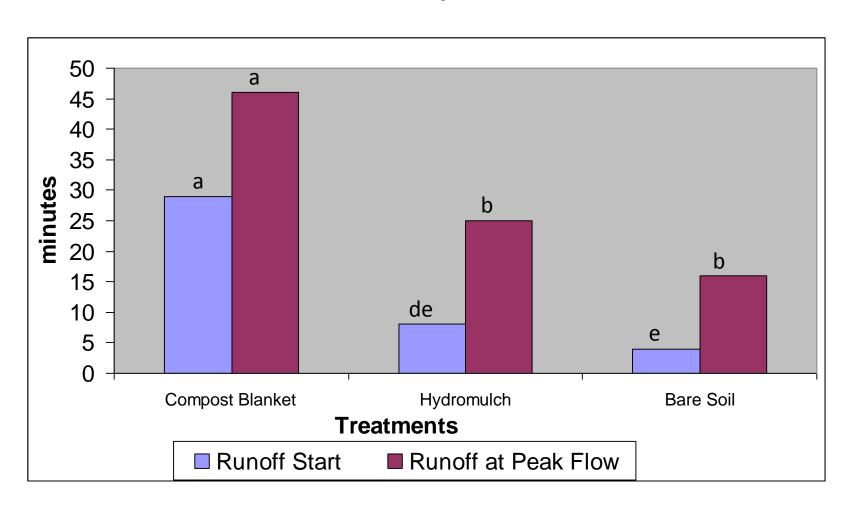


Compost Use for Soil Improvement

Greg Evanylo
Professor and Extension Specialist
Soil Environmental Quality


Compost Blankets for Soil Improvement


- Dissipate energy of rainfall impact
- Hold and infiltrate precipitation
- Optimize vegetation establishment and growth

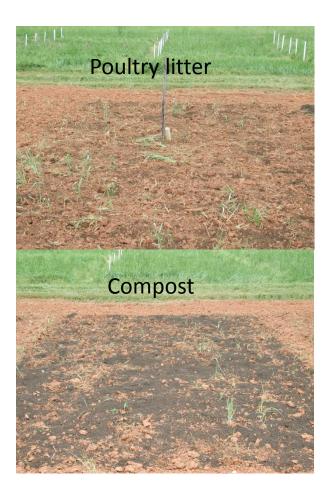
Vegetation Cover

Minutes to Runoff Start & Peak Flow (100 yr Storm)

Design Criteria for Compost Blankets

- Universal Soil Loss Equation USLE
 - http://www.omafra.gov.on.ca/english/engineer/facts/00-001.htm
 - http://www.evsc.virginia.edu/~alm7d/soils/handouts/USLE.pdf
 - RUSLE2: http://www.ars.usda.gov/research/docs.htm?docid=6010
 - Long term avg soil loss, $A = R \times K \times LS \times C \times P$
 - R = rainfall and runoff
 - K = erodibility
 - LS = length-slope
 - C = cropping
 - P = other practices

C Factors


Erosion Control	C Factor	Influencing Factors	Reference
Single net erosion control blanket	0.15	33% slope	ECTC, 2004
Straw/Wood Mulch	0.08- 0.16	10-50% slope; 1.6"/25 hr – 3.2"/1 hr rain; clay loam - silty sand	Demars and Long, 1998; Faucette et al, 2004
Compost Blanket	0.008- 0.065	10-50% slope; 1.6"/25 hr – 4"/1 hr rain; clay- silty sand	Mukhtar et al, 2004; Demars and Long, 1998; Demars et al, 2000; Faucette et al 2005, 2006
Forest floor	0.001		GA SWCC, 2000

Runoff Coefficients

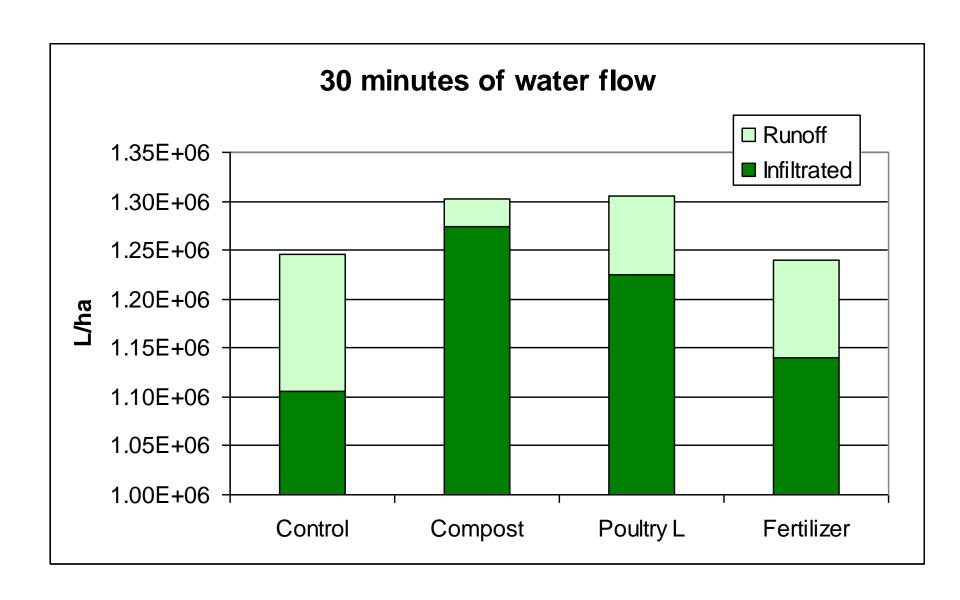
Watershed Surface	Coefficient
Asphalt, concrete, rooftop, downtown area	0.95
Neighborhood, apartment homes	0.7
Single family home site	0.5
Bare graded soil –	
clay, silt, sand	0.6, 0.5, 0.3
Lawn, pasture	0.1 – 0.35
Undisturbed forest	0.15
Compost blanket	0.1 – 0.32 (0.28)

Reference: GA Storm Water Management Manual, 2001

Compost, Manure and Fertilizer Effects on Soil Properties

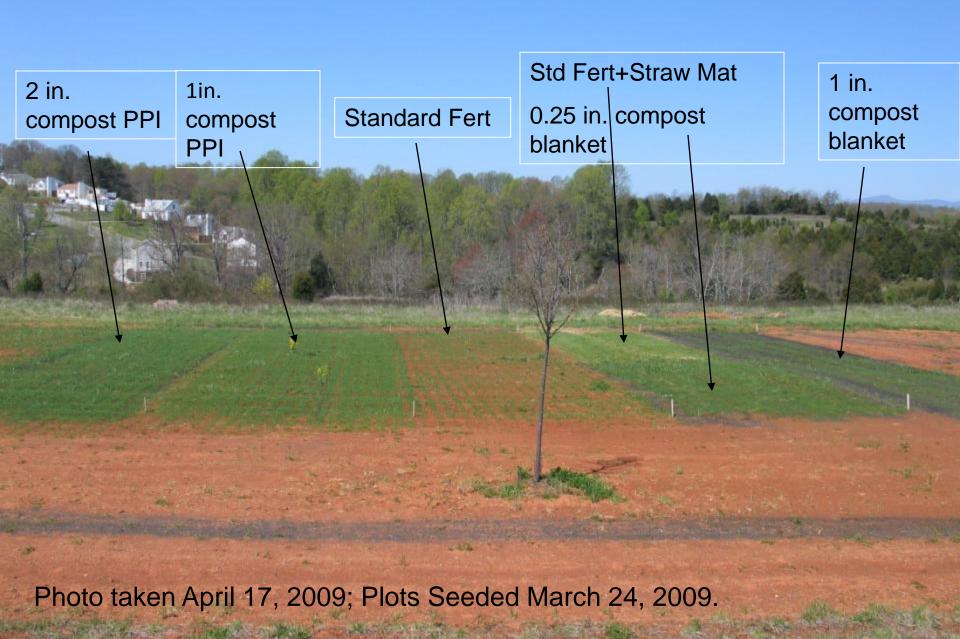
Site: Orange, VA

Dates: 1999-2005


 Soil: Fauquier silty clay loam (fine, mixed, mesic Ultic Hapludalfs)

- Treatments
 - Compost (5)
 - Poultry litter
 - +/- Fertilizer

Rainfall Simulation and Runoff Collection and Analysis



Total loads of key water quality attributes in runoff (P<0.05)

Treatment	TSS (kg/ha)	TKN (g/ha)	Total P (g/ha)
Control	107a	310a	218a
Fertilizer	78ab	250a	161ab
Litter	33 bc	149ab	92 b
Compost	15 c	55 b	39 b

Applying & Incorporating Compost

Compost Analysis

Property	Value
EC (mmhos cm ⁻¹)	3.0
рН	7.9
C:N	18:1
Total Organic C (%)	30
Total N (%)	1.7
P (%)	1.0
K (%)	1.4

2 Years after Treatment

Standard fertility treatment based on soil test, rep 3

2" compost, incorporated, Rep 3

Treatment	TOC (%)	BD (g/cc)	M1-P (ppm)
Fertilizer	1.22b	1.25a	16c
1 in compost, PPI	2.82a	1.24ab	22b
2 in compost, PPI	3.20a	1.18b	26a

1" compost, incorporated, Rep 3

Compost Effects on Soil Properties

(McConnell et al., BioCycle Apr 1993, p 61-63)

Parameter	Rate (T/Ac)	Effect
Organic matter	18-146	6-163%
Water holding capacity	7-146	5-143%
Cation exchange capacity	57-228	31-94%
Bulk density	20-146	4-71%
рН	20-146	0.8-1.4

Recommendations

- Compost use should be promoted for improving the physical properties of impervious soils.
- Compost should meet U.S. Composting Council Seal of Testing Assurance standards.
- Compost is typically incorporated into soil on a 20-35% rate by volume, e.g., 1-2 inches compost per 6 inches soil depth.