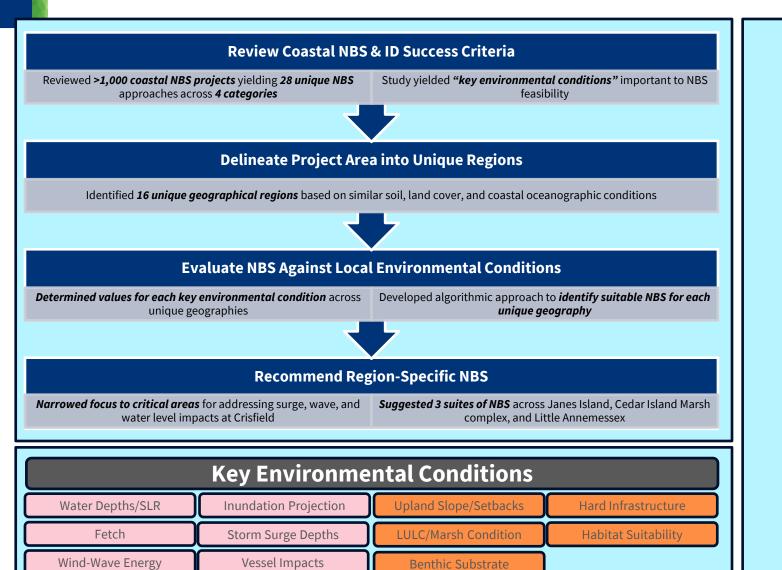


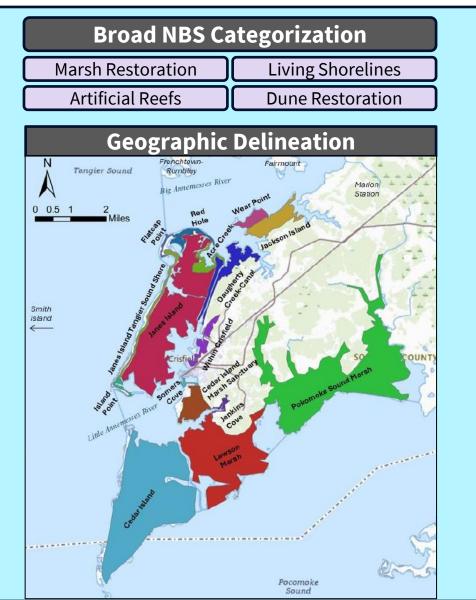
Regional Planning of Nature-Based Strategies for Coastal Hazard Reduction for Crisfield, MD

CBP Wetlands Workgroup Meeting (09/16/2025)

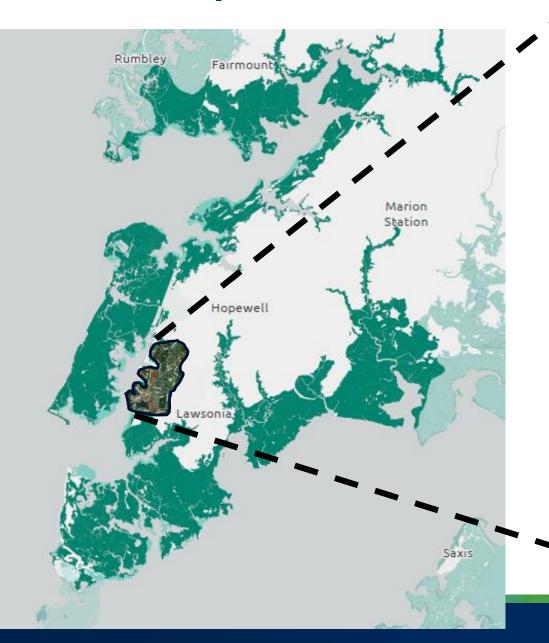
Ryan Hostak - Tetra Tech (ryan.hostak@tetratech.com)
Roxolana Kashuba - EPA Office of Research and Development

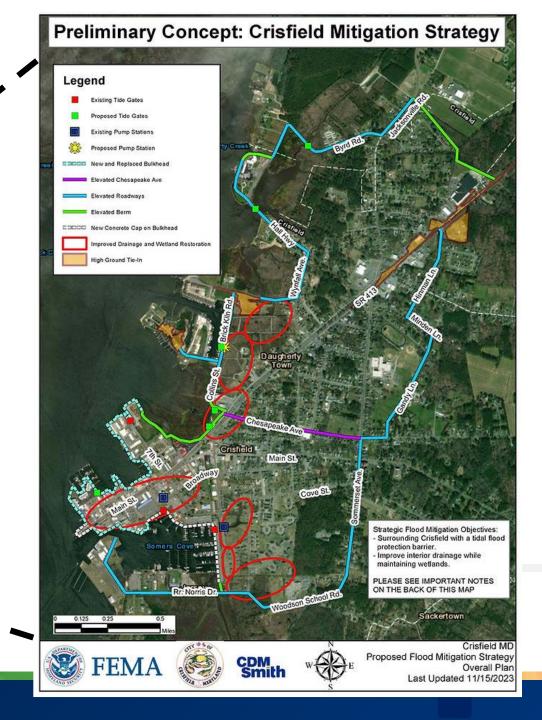
This work was funded through EPA Contract 68HERC22D0026


- Quick Project Recap
- Modeling Approach
- Candidate Nature-Based Solutions
- Conclusion & Next Steps
- Q&A


Quick Project Recap

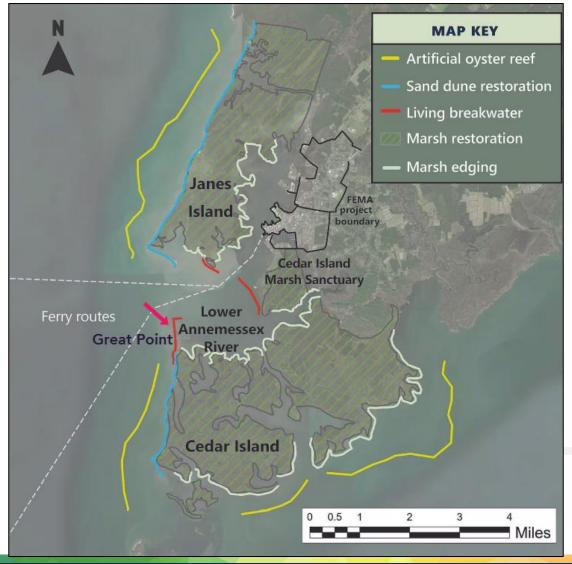
NBS Feasibility and Alternatives





Erosion Potential

Integration with Upland Infra.

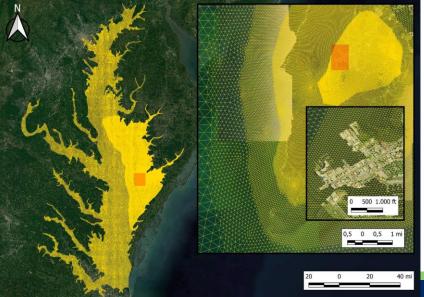


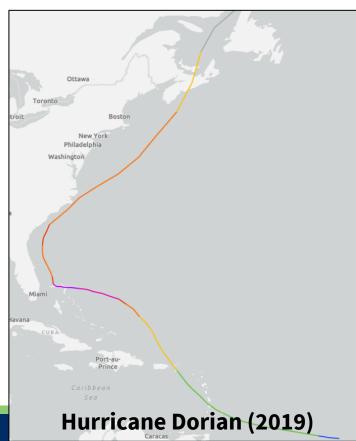
Proposed Coastal NBS Around Crisfield

Location	Solution	Notes		
	Marsh Restoration by sediment placement in existing marsh and open water areas; strategic runneling	Existing, degraded marsh system with large open water areas necessitates material placement and runneling for hydrologic connectivity		
Janes and Cedar Island Marsh and Dune Complexes	Sand Dune Restoration by vegetation planning and stone revetement core	High fetch exposure necessitates dune stabilization; dunes current first line of defense for marsh complex and ultimately Crisfield		
	Oyster Reef Creation by reef balls or similar	High erosion rate and moderate wind-wave energy; dissipates energy prior to dune/marsh system		
Lower Annemessex	Living Coastal Breakwaters	Extreme erosion of sandy cape requires breakwater to protect against longshore drift; primary surge/wave exposure for Crisfield		

Modeling Coastal NBS


Goal:


• Evaluate NBS effectiveness at attenuating waves and storm surge to inform NBS prioritization and future design projects

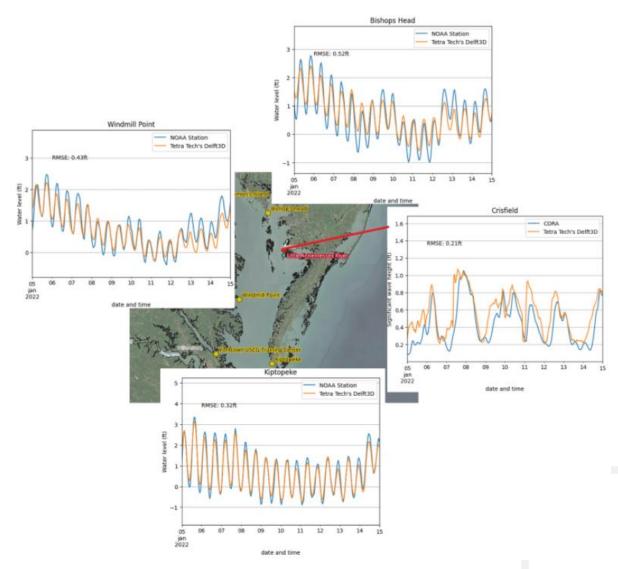

Approach:

• Perform *Delft-3D flow and wave modeling* under various NBS configurations, wind fields, climate scenarios, etc

Feature	
Number of triangular elements	254,044
Nodes	129,866
Lower Resolution	2.500 ft
Highest Resolution	150 ft

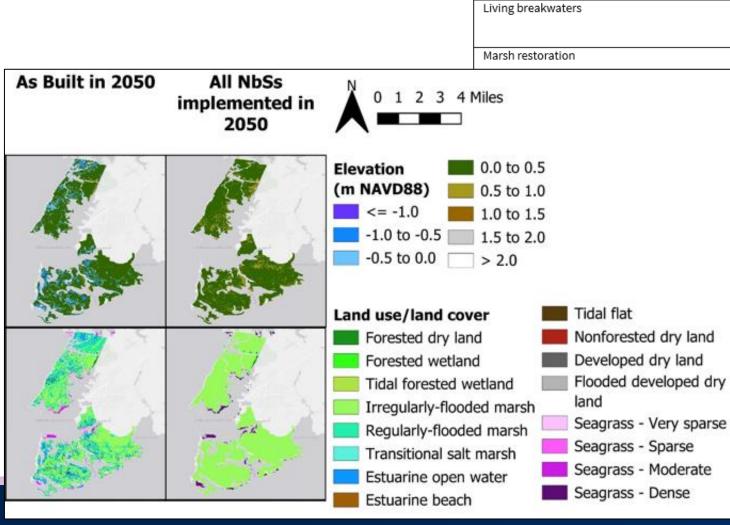
Model Setup, Calibration, Validation

Domain:


- Full Chesapeake Bay (up to 2,500 ft res.); Crisfield local mesh to 150 ft res.
- Water levels NOAA gauges and CORA
- Wave heights NOAA/NDBC buoys

Calibration/Validation:

- Period 1/5/22 through 1/15/22
- Calibrated to "typical" WLs & Hs, plus Dorian surge
- Primary Tuners Roughness & wind field parameterizations
- Comparison to Obs WL (~10% err), Hs (~17% err), accurate tide and peak wave phasing


Overview:

- Good agreement in magnitude and timing builds confidence in water level and wave dynamics under both typical and storm conditions.
- Could be improved with obs data near Crisfield.

NbS Rep. In Domain

Table 3-2. Summary of the NbS feature characteristics.						
Nature-based Solution (NbS) feature	Conceptual NbS characteristics	Model representation				
Subtidal oyster reef	Total linear feet (lf): Janes Island	Linear representation along 6.6-9.8 ft (2-3 m)				
	[approximately (approx) 29,000 lf], Ceder	contour with constant width, height 0.8-3.3 ft				
	Island and Lawson Marsh Complexes (approx.	(0.25-1 m) and trapezoidal profile, crest				
	48,000 lf)	elevation at least 5 ft (1.5 m) below the water surface				
Dune restoration	Total linear feet (lf): Janes Island (approx.	Linear representation with constant width,				
	30,000 lf), Cedar Island and Lawson Marsh	height approx. 5.7 ft (1.7 m) NAVD88 in 2050				
	complex (approx. 15,000 lf)					
	Crest Elevation: Approx. 5.7 ft (1.7 m) NAVD88					
	in 2050					
Living breakwaters	Total linear footage: ~12,000 lf	Linear representation with constant width,				
	Crest height: approx. 5ft (1.5 m) above mean	with constant height 5ft (1.5 m) above MLLW to				
	lower low water (MLLW)	allow for wave overtopping				
Marsh restoration	Total marsh acreage: Janes Island [approx.	Maintain primary channel representation;				
	4,000 acres (ac)], Ceder Island and Lawson	apply elevation changes consistently				
Miles	Marsh (approx. 6,000 ac)	throughout marsh restoration areas; runneling				
rifiles		and marsh edging are not explicitly simulated				

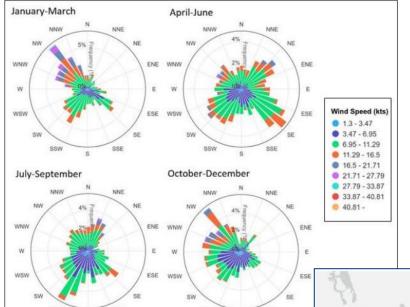
Modeling Approach

Batch 1 & 2 Simulations

Batch 1:

- Understanding basic model performance
- Contribution of individual, combination, and regional NbS
- All Dorian, dynamic wind field

Batch 2:


- Simplify and target prevailing wind directions and peak surge
- Adjust linear NbS representation

	#	Туре	Year	Scenario				
	1	Baseline	2020	No NbS				
	2	Daseille		All NbS				
	3	Treatment	2050	No NbS				
	4	Heatment		All NbS				
01	5		2020	Oyster reef only				
	6	Standalone NbS		Dune only				
ВАТСН 01	7	Standarone NDS		Marsh only				
BAI	8			Breakwater only				
	9			All but breakwater				
	10	NbS Combination		Marsh and dune				
	11			Dune and oyster reef				
	12	Large Scale		All NbS – Janes Island only				
	13	Geographies		All NbS – Cedar Island only				
	14		2020	No NbS - NW wind				
	15			No NbS - SW wind				
	16	Static Wind Field		All NbS - NW wind				
	17			All NbS - SW wind				
	18			No NbS - NW wind / Maximum water level surge (max. surge)				
02	19			No NbS - SW wind / max. surge				
ВАТСН 02	20			All NbS - NW wind / max. surge				
BAT	21			All NbS - SW wind / max. surge				
	22	Wider NbS	2020	All NbS				
	23	Widel NDS	2050	All NbS				
	24		2050	No NbS - NW wind / max. surge				
	25	Static Wind Field		All NbS - NW wind / max. surge				
	26	+ Wider NbS		No NbS - SW wind / max. surge				
	27			All NbS - SW wind / max. surge				

Batch 2 Info

Scenarios:

- Steady, SW or NW winds at 20m/s (~40 kts) – prevailing wind directions, storm wind speeds, Dorian peak surge
- Dorian, SW to NE trajectory
- Parameters of interest –
 Wave impact force, significant wave height, shear stress, tidal circulation

Octowa Date
Operation
Octowa Detroit
Operation
Octowa H2
Wind SPEED
SS L Louis

Washington

Wind AND PRESSURE
200 kt
1025 mb

Wind AND PRESSURE
200 kt
1025 mb

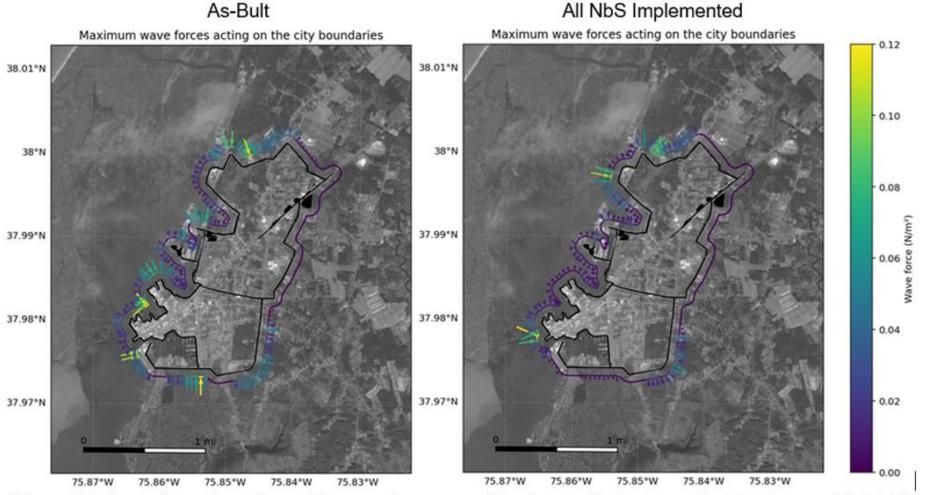
Monterrey
RICCO
Harana
Mexico City

Prince

OATE
Operation
Octowa
Prince

OATE
Operation
Octowa
Prince
Octowa
Octow

Candidate NbS


Candidate NbS Ranking Approach

- Prioritize based on *protection* afforded from coastal hazards
- 2. Prioritize NbS that are *adaptive*, *independent*, *and additive*
- 3. Prioritize around estimated *CapEx*, *O&M costs*, *and cobenefits*

NbS Effects - Wave Impact Force at Crisfield

Figure 3-2. Comparison of wave impact forces on the proposed flood protection levees and bulkheads around Crisfield averaged over the course of a Hurricane Dorian-like storm event, were it to occur in 2050.

H_s Attenuation

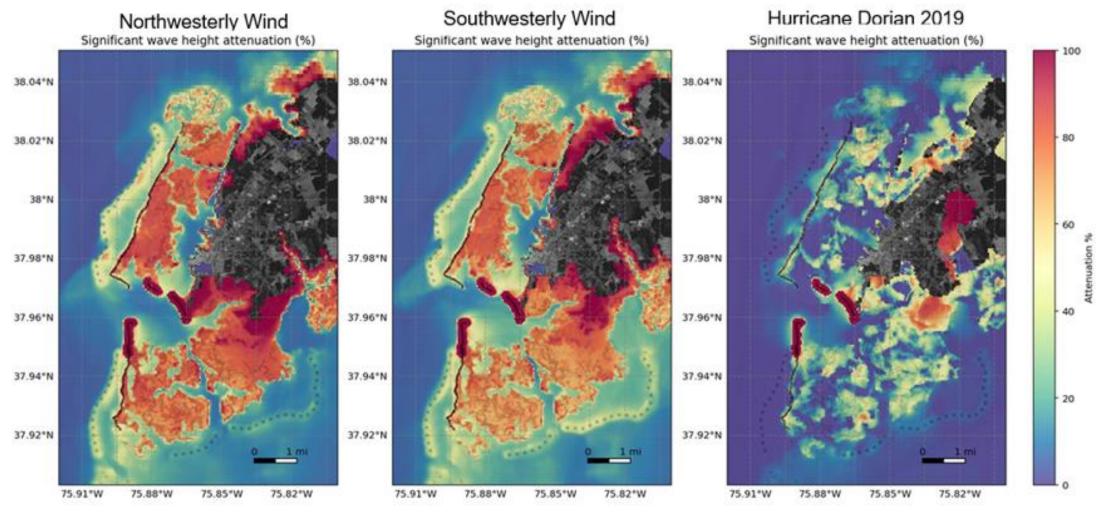
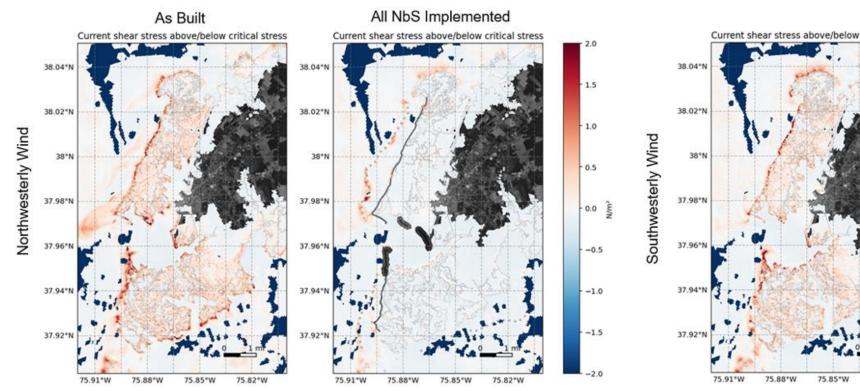
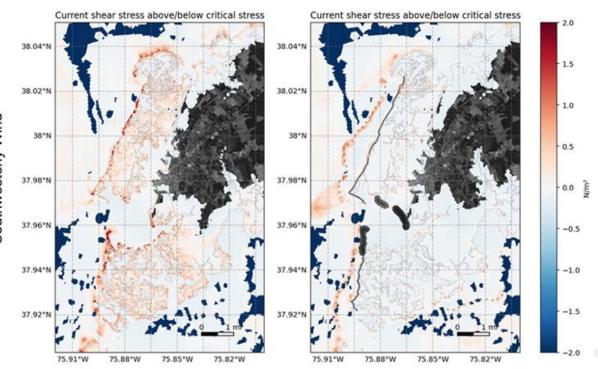
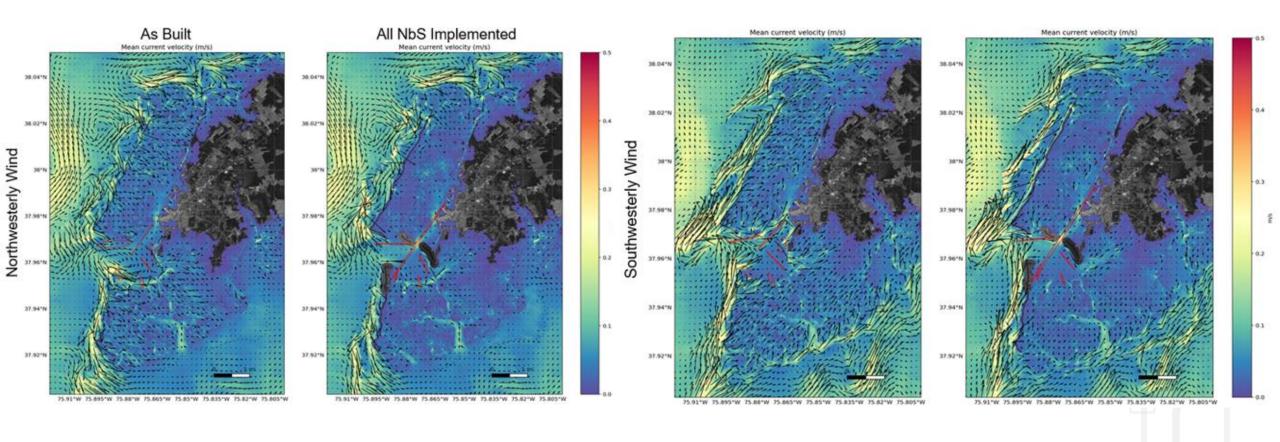
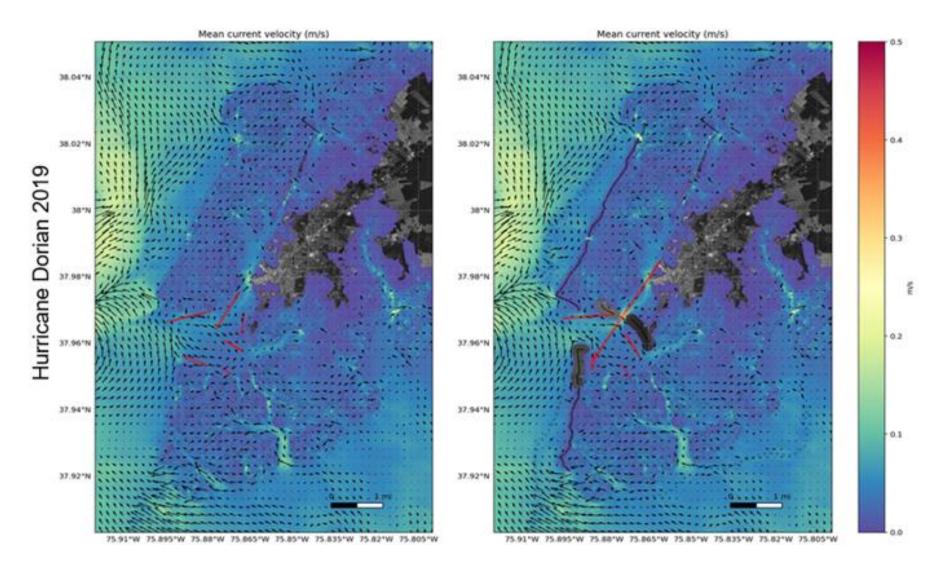




Figure 4-2. Wave height attenuation maps for all NbS implemented in 2050 compared to as built conditions.

Shear Stress Anomoly



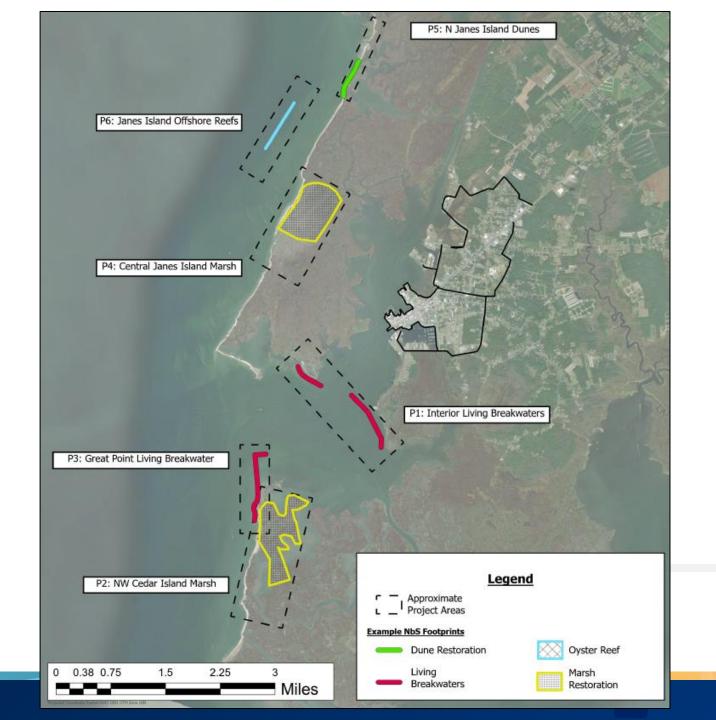

Residual and Tidal Circulation

Residual and Tidal Circulation

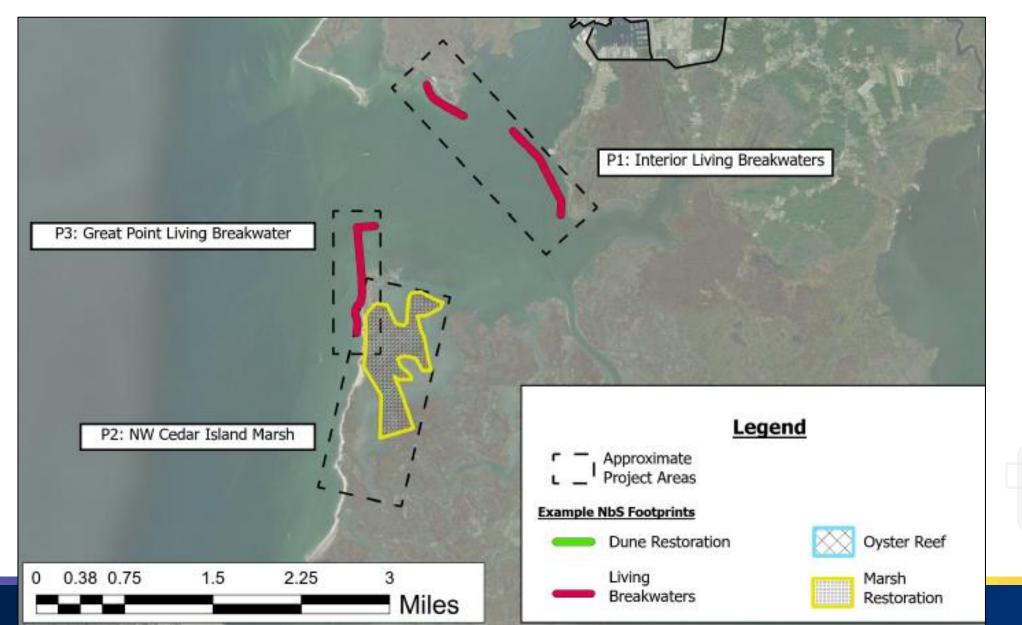
Rough NbS Cost Estimation

Nature-based solution feature	Unit dimension at median cost	Unit cost (low end)¹	Unit cost (high end) ¹	Estimated Cost Low	Estimate Median Cost	Estimated Cost High	Notes on cost coverage
Oyster reef	~33,950 square feet (ft²) [implemented as a series of ten parallel staggered broken lines spaced 3 ft apart]	\$203/lf	\$386/lf	\$4,208,000.00	\$9,994,000.00	\$15,780,000.00	Ecological baseline assessment, design, permitting, restoration materials (oyster substrate), labor, monitoring, and maintenance
Dune restoration	~2,855 linear feet (ft)	\$2,000/lf	\$5,000/lf	\$5,710,000.00	\$9,992,500.00	\$14,275,000.00	Ecological baseline assessment, design, engineering, permitting, materials (e.g. plants), equipment for purchase or lease, and monitoring
Marsh restoration	~263 acres (ac)	\$16,000/ac	\$60,000/ac	\$6,891,850.00	\$9,998,275.00	\$13,104,700.00	Ecological baseline assessment, design, engineering, permitting, materials, equipment for purchase or lease, monitoring, labor and maintenance
Living breakwater	Preliminary dimensions and costs of these breakwaters are evaluated in a United States Army Corps of Engineers feasibility study (USACE 2012). The following are the breakwater lengths as modeled: Great Point (~5,700 lf), Interior Breakwaters (~6,700 lf). Costs for breakwaters can greatly exceed \$1,000/lf .			Alternative 1, Option B of the USACE study includes breakwaters at Great Point and Long Point/Cedar Island Marsh Sanctuary for a total cost of \$9.2M. Due to its age, this estimate is included only for demonstration purposes only. Based on a \$2,000/lf cost: Great Point (~\$11.4M) and Interior Breakwaters (~\$13.4M)			USACE Cost for Great Point, Long Point, and Cedar Island Marsh Sanctuary Breakwaters ² .

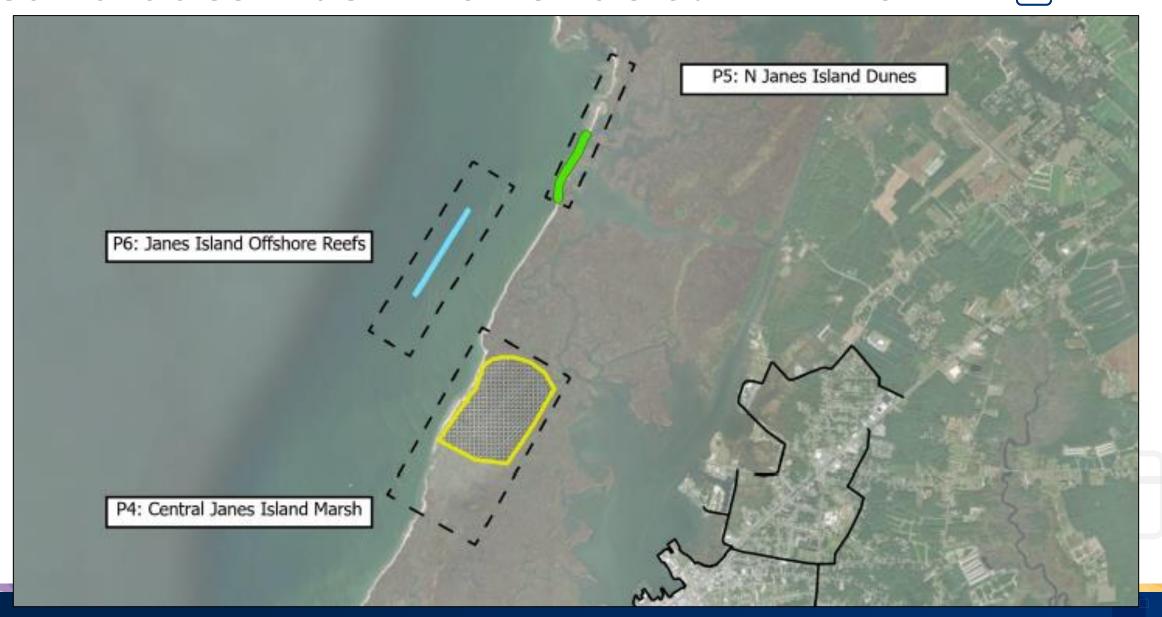
Conclusions & Next Steps


Candidate NbS Prioritization - Scoring

Project Rank & Name	Project Description	Protection for Crisfield prioritization	"Adaptive, Independent, and Additive" prioritization	Benefit-cost prioritization	Total Score	Justification
P1: Interior Living Breakwaters (13)	Long Point and Cedar Island Marsh Sanctuary living breakwaters	5	5	3	13	Offers high protection potential, can be implemented as a standalone project, and provides some co-benefits
P2: NW Cedar Island Marsh (11)	Marsh creation, restoration, runelling, and edging along the Tangier Sound shoreline of Cedar Island	4	3	4	11	Offers high protection potential, can be implemented as a standalone project but would benefit from edge protection, and provides many co-benefits
P3: Great Point Living Breakwater (11)	Living breakwater at Great Point with marsh edging along northern shore of Cedar Island	3	5	3	11	Offers some protection potential, can be implemented as a standalone project, and provides some co-benefits
P4: Central Janes Island Marsh (10)	Marsh creation, restoration, runneling, and edging along Tangier Sound shoreline of central Janes Island	3	3	4	10	Offers some protection potential, can be implemented as a standalone project within an adaptive restoration plan, and provides many co-benefits
P5: N Janes Island Dunes (9)	Dune restoration along Tangier Sound shoreline of north Janes Island near green kayak trail tidal inlet	2	4	3	9	Offers some protection potential, can be implemented as a standalone project within an adaptive restoration plan, and provides some co-benefits
P6: Janes Island Offshore Reefs (8)	Subtidal oyster reefs along Janes Island bayward of green kayak trail tidal inlet	1	2	5	8	Offers minimal protection potential, can be implemented as a standalone project within an adaptive restoration plan, and provides some co-benefits at a reasonable expense


Candidate NbS Prioritization - Map

- Black Dashed Box is general area of interest
- Projects P1-P6 given approximate footprints matching ~\$10M cost estimate


Candidate NbS Prioritization: P1 - P3

Candidate NbS Prioritizatio: P4 – P6

Select Limitations and Next Steps

Limitations:

- Community feedback is needed and coming soon!
- Model is a 2D approximation, with resolution limits, and no explicit representation of sediment transport/morphologic change.
- Model would benefit from local field data collection
- Our **BCA** is **highly generalized**, further analysis needed!
- Our study focuses on science and engineering; access, property rights, material needs, and permit feasability must also be evaluated!

Next Steps:

 Modeling: 1) collect field data, 2) explicitely model sediment transport, 3) dev nearshore wave models (i.e. Xbeach) and other supporting models in support of project level feasibility and design

