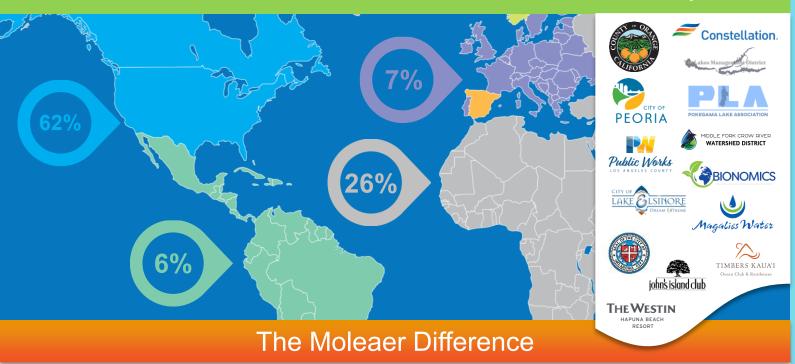


April 2025



Restore Waterbodies Sustainably

with Moleaer nanobubble solutions

Over 4,000 Nanobubble Installations

650+ Nanobubble Installations in Waterbodies & Waterways

- Leader in nanobubble science and it's applications
- Largest R&D and Application Development teams with over 15 PhDs:
 - Investigating nanobubbles and their impacts in various applications
 - Developing prescriptive solutions and monitoring plans
- Largest NB treatment installation and customer base globally

Surface Water Team

Dr. Denise Devotta

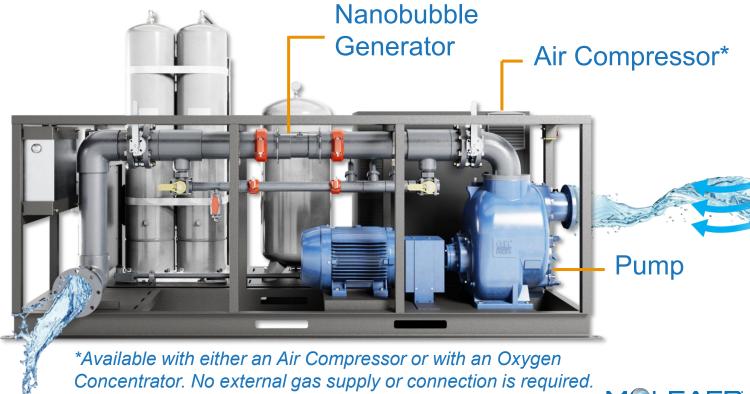
Chris Stephan Global Director of Surface Water

Shane Hoyt

Clint Hanson Business Development

Jon Morales Business Development Manager- Central US

Erin Klores Business Development Manager- Southeast US


Moleaer's Patented Technology

Scalable for any size waterbody: 100's of installations over 1000 GPM

Introduces dissolved oxygen and nanobubbles:

- Most cost-effective way to provide critical dissolved oxygen to waterbodies
- Nanobubbles deliver the oxygen to the bottom where it is needed most
- Promotes natural lake recovery processes

Moleaer's Nanobubble Generator

Best-in-class Oxygen Transfer Efficiency | Scalable, Versatile Easy-to-Install Technology

Moleaer's patented technology introduces two forms of gas into water: **Dissolved and Nanobubbles**

Dissolved Oxygen

Dissolved Oxygen = amount of oxygen in water.

Moleaer's technology dissolves oxygen with best-in-class efficiency in any depth.

Nanobubbles

Charged gas nanoparticles, 1/1000th thickness of hair.

They do not rise, do not easily dissolve, improve gas stability, and catalyze physical, biological, and chemical reactions.

MOLEAER

Lake Elsinore, California

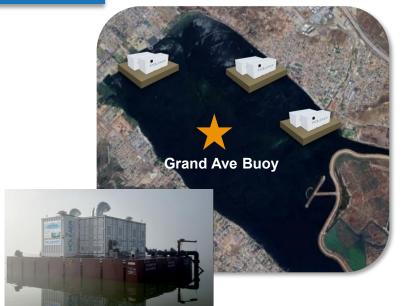
About the Waterbody

Surface Area: 3,311 acres (1334 ha)

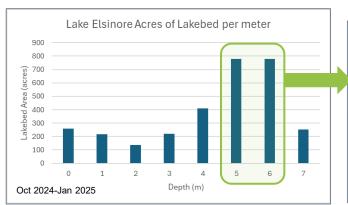
Max Depth: 24 ft (7.3 m)

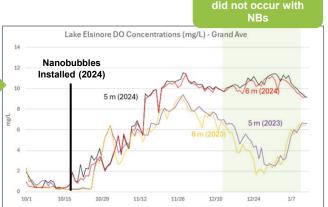
Volume: 30K acre-feet (37 million m³)

Receives 6.5M GPD (24k m³) of treated effluent


Challenges

- Recurrent lake closures due to HABs
- Poor clarity & high nutrient loading
- Economic impacts for community
- Inefficient, outdated aeration system


Results: (1) 2,400 GPM (545 m³/hr) & (2) 4,500 GPM (1022 m³/hr) Nanobubble Barges


- Significant reduction (50-90%) in early-season cyanobacteria levels
- Up to 7,000% reduction in turbidity (highest water clarity reported in 2 Years)
- Elevated DO sustained at critical depth, > 2,000 meters from nearest nanobubble unit

From Closure to Clarity

Seasonal DO decline

Tadd Lake, Minnesota

Pilot: Major Improvements Compared to Control

About the Waterbody

Surface Area: 10 acres (4 ha)

Max Depth: 8 ft (2.4 m)

Volume: 50-acre-feet (61,714 m³)

Terminal lake, connected to Upper Lake (surface)

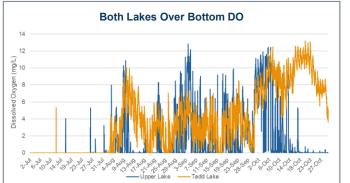
area: 25 acres (10 ha)

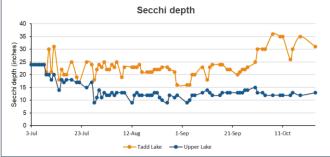
Challenges

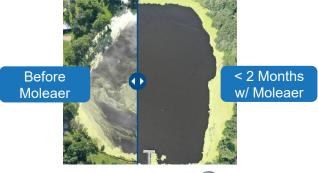
- Poor water clarity
- Excess algae growth and odor issues
- Invasive aquatic plant proliferation
- Unable to use recreationally
- Legacy poor water quality issues

Results: 1,000 GPM (227 m³/hr) Trailer

Compared to Control Lake:


- > 2x clearer
- 2x higher over bottom DO
- ~ 4x lower orthophosphate levels
- > 4x less total algae loads


Nanobubble Pilot:


- July 2 Oct 24, 2024
- Upper Lake: Control site

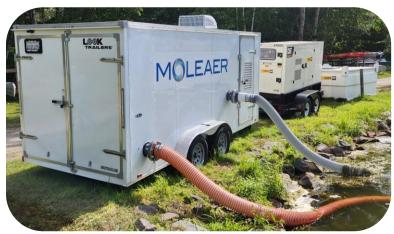
	> 3 mg/L (fish struggle)	> 1 mg/L (fish die)
Tadd	65%	88%
Upper	25%	25%

Lake Arrowhead, Wisconsin

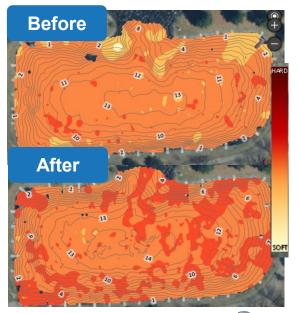
Pilot Marina Shows Remarkable Results in 75 Days

About the Waterbody

- Marina Surface Area: 2 acres (0.8 ha)
- Lake Surface Area: 300 acres (121 ha)
- Flowing Lake System: 900 acres (364 ha)


Challenges

- Excessive algae and very poor water clarity
- High muck accumulation
- Stagnant area of lake with poor circulation
- Legacy poor water quality issues


Results: 1000 GPM (227 m³/hr) Trailer

- DO levels were 50% higher than control
- Increased depth by 1' (30 cm)
- Water clarity improved by 2-3' (61-91 cm)

Greenways Golf Course, Soet River, South Africa

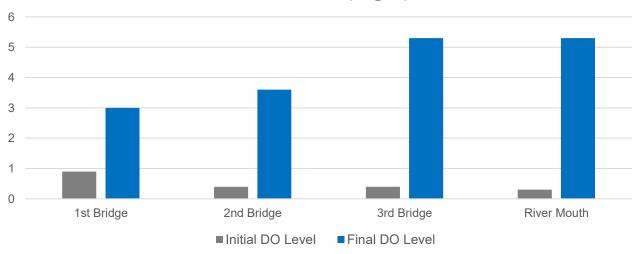
Odor Elimination for Local Community

About the Waterbody

Length: 300 m (984 ft)
Depth: 51 cm (20 in)
River with tidal influence

Challenges

- Incoming river flow with high levels of pollution
- Foul odors from hydrogen sulfide (H₂S) formation
- High turbidity


Results: (2) Clear nanobubble generators

- Increased DO by up to 1600%
- Increased ORP levels to 220 mV
- Reduced water turbidity by 89%
- Decreased COD by 68%
- Eliminated foul odors from H2S

DO Levels (mg/L)

3,000 Locals Return Home in Urban Community

Tidal Stormwater Channel, California

About the Waterbody

 15.7-mile (25 km) brackish, tidal stormwater canal apart of 133 sq mile (344 sq km) watershed

Challenges

- Low oxygen levels in water channel
- Hydrogen sulfide (H₂S) gas production
- Rotten egg smell, displaced 3,000 ppl

Results:

- Eliminated H₂S formation, foul odors and people returned home
- Increased dissolved oxygen
- Digested organics (i.e. "muck")

2022 Water Project of the Year Distinction

- 50,000 GPM (11k m³/hr) treatment capacity equaling 60M gallons (227M liters/day) of water per day treated
- Dates of Treatment: October2021 March 2022

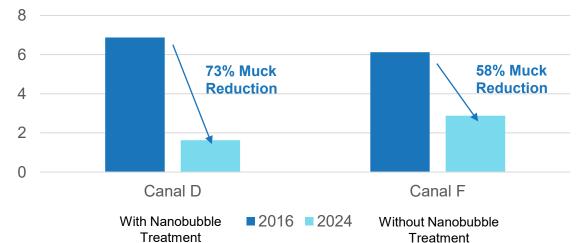
Satellite Beach, Florida

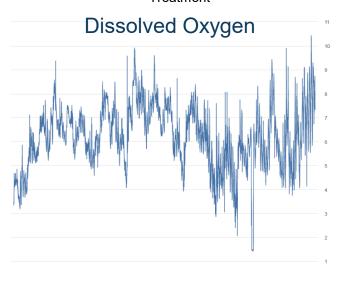
About the Waterbody

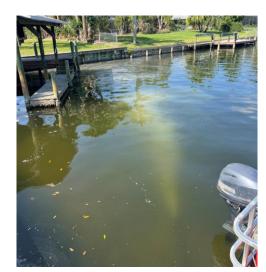
Surface Area: 1.5 acres (0.6 ha)

Brackish water

Challenges


- Thick muck
- Poor water quality


Results: Clear 150 nanobubble generator


- Average 73% reduction in muck in the pilot canal, a 15% improvement over the control
- Elevated dissolved oxygen in the water column and at the sediment-water interface

Better Muck Reduction Over Control

Average Muck Thickness

Hartbeespoort Dam, South Africa

Success in South African Dam Spurs Community

About the Waterbody

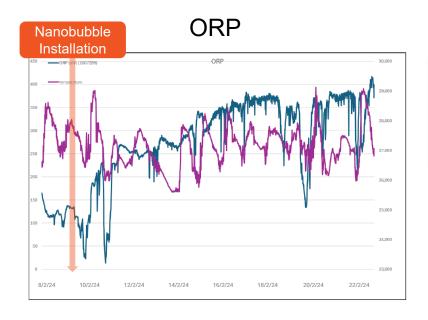
Surface Area: >2,000 haMax Depth: 30 m (84 ft)

Average Depth: 9.8 m (65 ft)

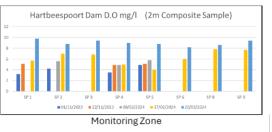
■ Volume: 192,800,000 m³ (51B gal)

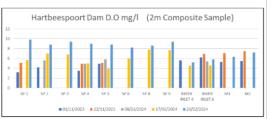
Ret Time: 6 mo to 1 yr

Challenges


- Poor water clarity and legacy of poor quality
- Excessive algae growth
- Invasive aquatic plant proliferation
- Unable to use recreationally
- Odor issues

Results: 2,400 GPM (550 m³/hr) NB System


- Nutrient reduction (Ammonium, Orthophosphate)
- COD increase
- Significant bottom muck digestion in treatment zone
- Reduced nutrient flux in treatment zone and outfall
- Improved resilience against incoming nutrient load
- Cyanobacteria, Microcystin & E. coli reductions in treatment area & outfall

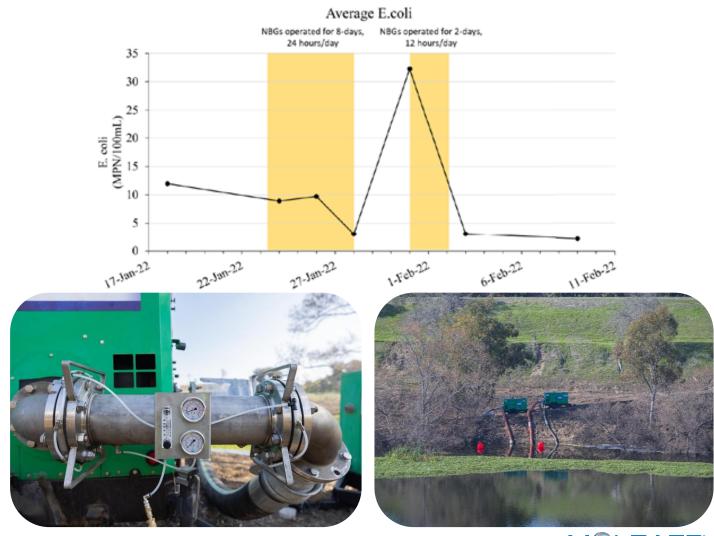


Dissolved Oxygen

Stormwater Basin, California

Coliform Control in Urban Stormwater Basin

About the Waterbody


- 25 surface acres (10 ha)
- Max depth: 100 ft (30 m)

Challenges

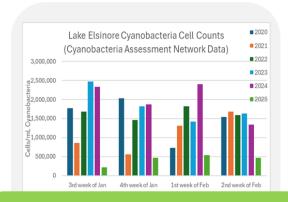
- Foul odors
- Microbial contamination
- Poor water quality

Results

- Increased DO from 0.5 to 4.4 mg/L at sediment
- Increased sediment ORP from -260 to +160 mV
- Reduced coliforms up to 75% in 8 days

Visible & Data-Driven Results in Diverse Waterbodies

Tadd Lake

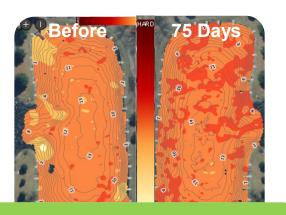

Problem:

- Algal blooms & odor
- Poor water clarity
- Unable to use recreationally

Results:

Compared to Control Lake:

- > 2x clearer
- 2x higher over bottom DO
- ~ 4x lower orthophosphate levels
- > 4x less total algae loads


Lake Elsinore

Problem:

- Lake closures due to HABs
- Poor clarity & high nutrient loading
- Inefficient, outdated aeration system

Results:

- 50-90% reduction in earlyseason cyanobacteria
- Up to 7,000% reduction in turbidity
- Highest water clarity reported

Lake Arrowhead Marina

Problem:

- Algal blooms & poor water clarity
- High muck accumulation

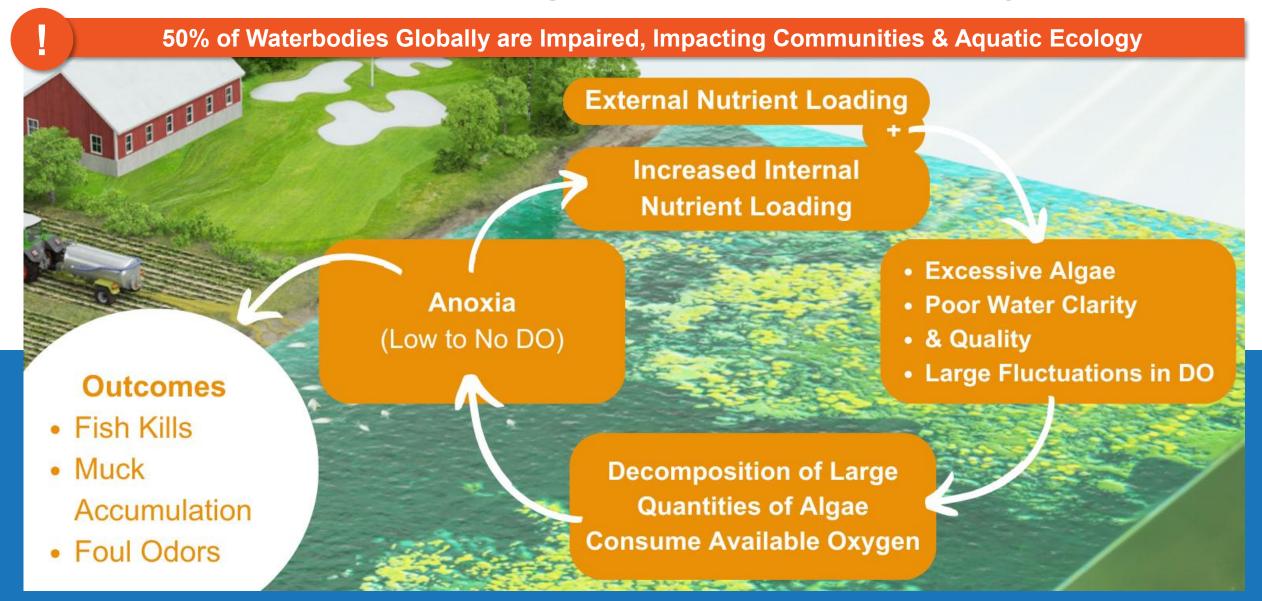
Results:

- DO levels were 50% higher than control
- Reduced muck and increased depth by 1' (30 cm)
- Water clarity improved by 2-3' (61-91 cm) in first 30 days

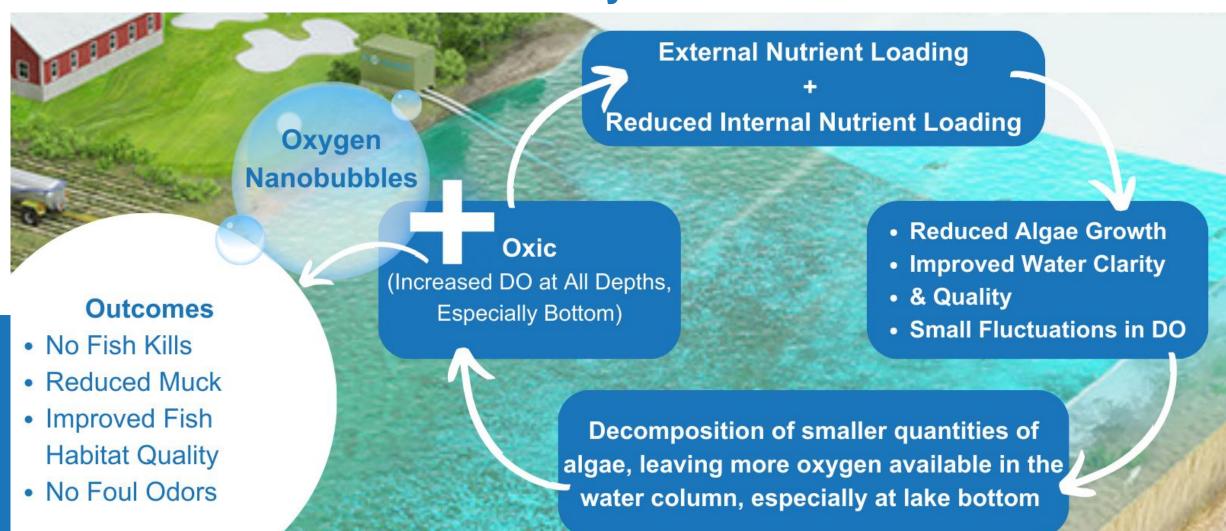
Tidal Stormwater Channel

Problem:

H2S formation causing foul odors & displaced people


Results:

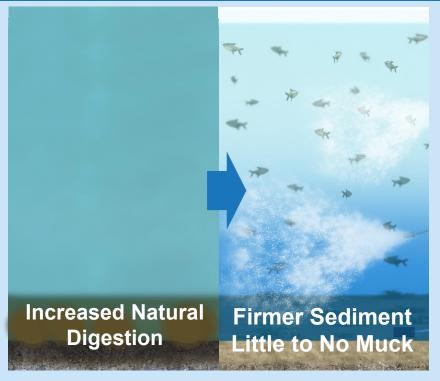
- Eliminated H₂S formation and foul odors
- 3000 people returned home
- Increased dissolved oxygen over 15 mile canal



The Problem: Nutrient Loading & Anoxia Fuel Waterbody Impairment

The Solution: Moleaer Nanobubble Treatment Enhances Oxic Conditions & Increases Resiliency to Restore Waterbodies

How Moleaer Nanobubble Technology Reduces Muck


The Muck Challenge Anaerobic Conditions Limit Aerobic Muck Digestion, Resulting in Muck Accumulation

Enter Nanobubble Technology

Increase Dissolved Oxygen in Water Column & at Lake Bottom

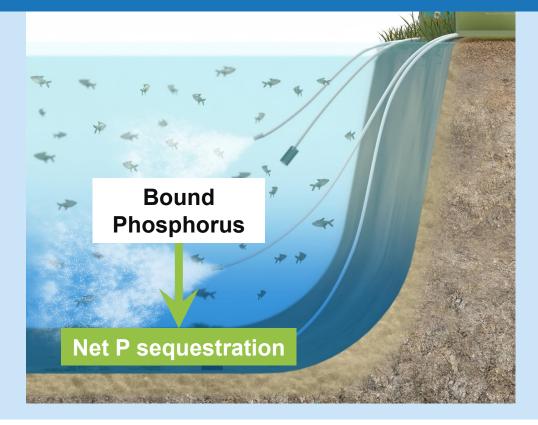
Kick-start & Catalyze **Aerobic Microbial Activity Accelerates Natural** Muck Digestion by Microbes Reduce Muck Depth, therefore Increasing Water Depth

As time elapses with Nanobubble Treatment

How Moleaer Nanobubble Technology Mitigates Nutrients

Internal Nutrient Loading
The Phosphorus Challenge

Under oxic conditions,
Phosphorus is bound to iron or
manganese in sediments. Under
anoxic conditions, these
compounds get reduced, releasing
Phosphorus


Enter Nanobubble Technology

Increase Dissolved Oxygen in Water Column & at Lake Bottom, Elevating ORP

Iron or manganese binds with Phosphorus

Phosphorus is sequestered in sediment

Reduced Phosphorus levels in water column

Mainly

Chemically

Mediated

How Moleaer Nanobubble Technology Mitigates Nutrients

Internal Nutrient Loading
The Nitrogen Challenge

Anoxic/Low ORP

Rate of
Ammonium
production by
certain
microbes

Rate of Ammonium oxidation by other microbes

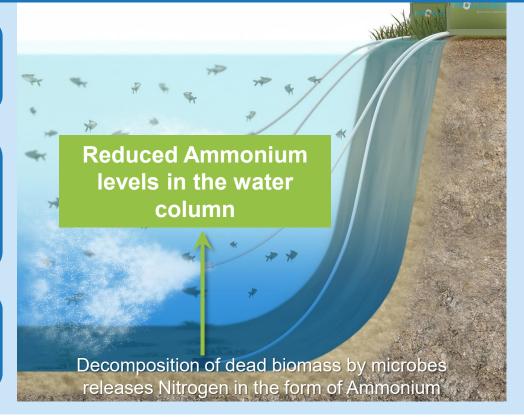
Large N release in the form of Ammonium

Decomposition of dead biomass by microbes releases Nitrogen

Enter Nanobubble Technology

Increase Dissolved Oxygen in Water Column & at Lake Bottom, Elevating ORP

Decomposition of dead biomass by microbes releases


Ammonium

Oxic/High ORP

Rate of
Ammonium
oxidation by
certain microbes

Rate of
Ammonium
production from
other microbes

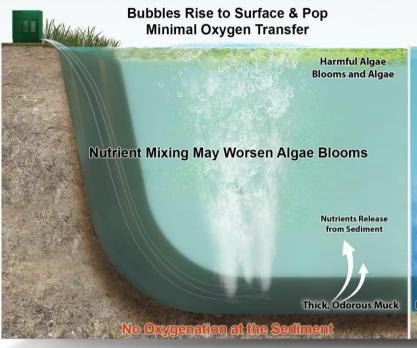
Reduced Ammonium levels in water column

Mainly

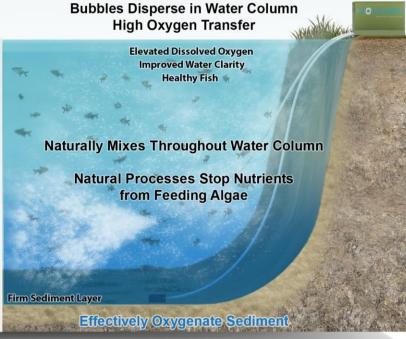
Microbially

Mediated

Nanobubble Technology vs. Aeration / Oxygenation Systems


Aerate means to "supply with air"

No benefits to flowing water


Submerged components or large areas and require high maintenance

May require dredging for installation

AERATION

NANOBUBBLE TECHNOLOGY

Easy to maintain, shoremounted equipment

Single treatment point for large areas

Flexible air sources (air, oxygen or ozone)

Works in all waterbodies (big, small, deep, shallow and flowing)

Nanobubble Treatment vs. Traditional Lake Treatments

Alum "Aluminum sulfate"

Control internal phosphorus release through precipitation and settling

Challenges:

- Treatment lasts ~10-20 years
- No impacts on nitrogen or muck
- Doesn't address anoxia
- Doesn't mitigate external loading
- Potential toxicity to aquatic life if applications are not properly designed and controlled

Mechanical Dredging 10-100x More Expensive

Physically remove organic (muck) and inorganic sediments

Challenges:

- Expensive, requires waterbody closure, heavy machinery, and waste disposal
- Negative ecological impacts
- Extensive permitting requirements
- Doesn't address anoxia
- Potential nutrient/pollution release
- Often only provides short-lived benefits

Nanobubble Treatment

Creates and enhances oxic conditions, increases ORP & accelerates lake recovery processes to:

- Mitigate nutrient loading
- Reduce muck, algae/HABs, foul odors, coliform loads & fish kills
- Improve water clarity
- No heavy machinery, ecological disruption, or waterbody closure needed
- Provides sustained, long-term benefits

How Nanobubble Treatment Benefits Waterbodies

Nanobubbles Create and Enhance Aerobic Conditions, Especially at Depth Enable Natural Lake Processes & Increase Lake Resiliency

Accelerate Muck Digestion

- Improve sediment hardness
- Reduce sediment oxygen demand over time
- Reduce need for dredging

Mitigate Nutrient Levels

Reduce internal nutrient loading

Reduce Algae & HABs

- Less nutrients to fuel algae
- Increased ORP which promotes breakdown of algal toxins

Improve Water Clarity

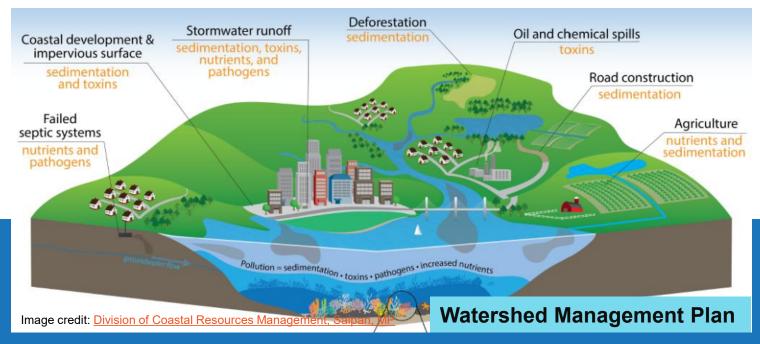
- Reduce blue-green algae dominance
- Promote increased species diversity throughout aquatic food web

Reduce Fish Kill

- Improve and sustain dissolved oxygen levels for fish health
- Reduce muck and improves fish habitat quality for spawning and feeding

Eliminate or Reduce Foul Odors

 Eliminate or greatly reduce H₂S, MIB and geosmin levels that cause foul odors and off-flavor compounds


Reduce Coliforms

- Proven to reduce coliform and E. coli loads without harsh chemicals
- Reduce potential health risks

Not a Silver Bullet: Nanobubbles are the Basis of an Adaptive **Lake Management Program**

Moleaer's Nanobubble Treatment is the Foundational Component of a Multi-Faceted, Adaptive Lake Management Program

- Efforts to Reduce External Nutrient Loading are still key
- Periodic Physical & Chemical Controls: Aquatic weed harvesting and chemical treatments (i.e. nutrient sequestrants, herbicide, algaecide, etc.) may be needed, depending on conditions and goals.

What this Means for You...

Cost Savings

- Reduce or eliminate dredging of accumulated organics
- Reduce or eliminate use of chemicals, algaecides, herbicides, and other treatments

Healthier Aquatic Ecosystem

- Less algal blooms
- Better fish habitat, improved food web and less fish kills
- Better water quality
- Improved hypolimnetic dissolved oxygen levels

Healthier Community

- Safer water
- No foul odors
- Lower risk of HAB toxins in water and air
- Lower levels of coliforms
- Fewer lake closures
- Better recreational experience
- Increased property values

www.moleaer.com

Appendix