AMT September Office Hours

9/12/2025

Tom Butler, EPA

Todays agenda:

Land Use Loading Rate Ratios

Exclusion fencing

Land Use Loading Rate Ratios

A quick refresh of how CAST works:

CAST Structure

Average Load △Inputs * Sensitivity **BMPs Acres Land to Water River Delivery**

Load by land-river segment and land use

Average Load ←
+
△Inputs * Sensitivity

BMPs

*
Acres

Land to Water

*

River Delivery

Average nitrogen load to stream for double cropped ag land watershed wide is 40 pounds per acre

Average Load

△Inputs * Sensitivity

BMPs

Acres

Land to Water

River Delivery

FERTILIZER

Your area applies 115 pounds of fertilizer while the watershed-wide average is 140.

Each additional pound of fertilizer results in 0.2 lbs of runoff

(115-140) * 0.2 = -5 lbs/acre

Average Load

△Inputs * Sensitivity

BMPs

Acres

Land to Water

River Delivery

UPTAKE

Your area uptakes 110 pounds of fertilizer while the watershed-wide average is 120.

Each additional pound of uptake results in -0.17 lbs of runoff

(110-120) *- 0.17 = 1.7 lbs/acre

Average Load

△Inputs * Sensitivity

BMPs

Acres

Land to Water

River Delivery

SUM each of the inputs* sensitivities for each input category (e.g. fertilizer, uptake, etc.) with the watershed average load

(-5)+(1.7)+(40)=36.7 lbs

Fertilizer

Uptake

Average Load

Average Load

△Inputs * Sensitivity

BMPs

Acres

Land to Water

River Delivery

BMPs are applied which give, in aggregate, a 20% reduction

36.7 * (1-.20) = 29.36 lbs/acre

Average Load
+
△Inputs * Sensitivity
*

BMPs

Acres

Land to Water

River Delivery

There are 100 acres of double cropped land in this segment

29.36 lbs/acre * 100 acres = 2936 lbs

Average Load

△Inputs * Sensitivity

BMPs

Acres

Land to Water

River Delivery

The land here is 50% leaker than average due to high groundwater recharge in the piedmont carbonate

The river system reduces loads by 30%

2936 lbs * 1.5 * (1-.30) = 3082.8 lbs Delivered to the Bay from this land use and segment

Loading Rate Ratio (LRR)

 Relates the estimated amount of nitrogen, phosphorus, or sediment exported from a land use to a "reference land use"

Chesapeake Bay Average						
Land class	Land Use					
Pasture	Ag Open Space					
	Legume Hay					
	Other Hay					
	Managed Hay*					
	Pasture: Reference Land Use					
	Managed Pasture *					

Why does this matter for ratios?

- Average Load
 - Chesapeake Bay watershed scale
 - Independent of:
 - location
 - local application rates
 - physical characteristics
 - Utilizes Loading Rate Ratios
- CAST Scenarios
 - All use average load value

CAST Structure

Average Load

△Inputs * Sensitivity

*

BMPs

*

Acres

*

Land to Water

*

River Delivery

Load by land-river segment and land use

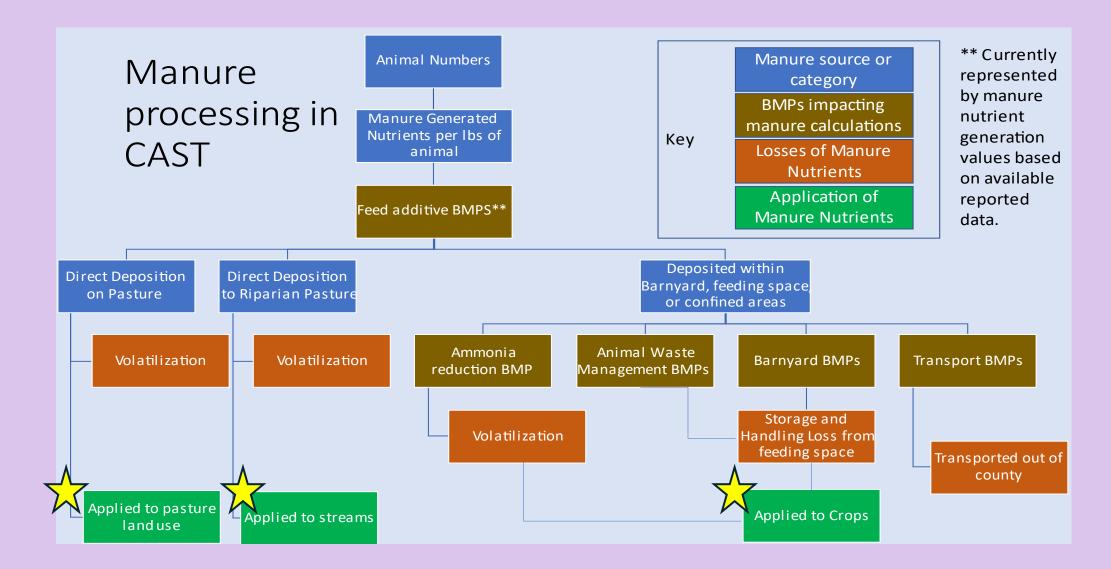
Things to note

The Loading Rate is a factor of additional model processes

• Will change with Phase 7 calibration

Ag sector loads will not change with new Loading Rate Ratios

• Distribution will be altered between ag lands


Questions?

Exclusion fencing

Keep animals from accessing streams

Change where manure nutrients are deposited

Exclusion fencing

What is impacted by exclusion fencing?

- In the real-world pastures have different properties
 - Some <u>DO</u> have streams in/touching them
 - Some DON'T have streams
- In the CAST world is not that specific regarding pasture
- If the population has access to a stream, then all the animals have access

Table 3-5: Bee	f percent manure d	eposited by	area in West	Virainia	arowth region 1

Growth Region	Animal Type	Month	Barnyard Percent	Pasture Percent	Access Area Percent
WV_1	beef	1	6	91	3
WV_1	beef	2	6	91	3
WV_1	beef	3	0	96	4
WV_1	beef	4	0	94	6
WV_1	beef	5	0	94	6
WV_1	beef	6	0	90	10
WV_1	beef	7	0	90	10
WV_1	beef	8	0	90	10
WV_1	beef	9	0	94	6
WV_1	beef	10	0	96	4
WV_1	beef	11	0	96	4
WV_1	beef	12	6	91	3

What pieces to this practice are relevant?

Conversion

 Currently 1000 linear feet reported excludes 17.6 Animal Units (applied across the watershed)

Current width

- 10ft wide for narrow buffers
- 35ft wide for regular or full buffers

Conversion:

Virginia specific study led to a conversion factor for linear feet to Animal Units (AU).

- Accounted for Animal Units being in upland pasture
 - Pasture acres that have no stream (Not the same as pasture with a stream that is fenced out)

CAST AUs and Pasture acres are a possible comparison point

- Does not separate out upland pasture and animals
- Can show general stocking density of AU per area of buffer eligible pasture

Width

- RECOMMENDATION ONLY
- State reported values may differ from current default values
- Want to see if there is additional information on how these data may be updated.

Questions?

Thank you for attending office hours!

We will begin our main meeting at 09:00.