August 13, 2024

# Use of Binomial Statistics for Assessment



Clifton F. Bell

757.518.2456 cbell@brwncald.com

# Underlying goal for this topic: Quantify and control type 1 and type 2 assessment errors

| Water Body is Assessed as | Water Body is Truly Attaining | Water Body is Truly Impaired |
|---------------------------|-------------------------------|------------------------------|
| Impaired                  | Type I error                  | Correct decision             |
| Attaining                 | Correct decision              | Type II error                |

# Excerpt from EPA (2006) guidance on integrated reporting

- EPA recommends that, when picking the decision rules and statistical methods ...states ...minimize the chances of ...[the] two following errors:
  - Concluding the segment is impaired, when in fact it is not, and
  - Deciding not to declare a segment impaired, when it is in fact impaired.
- States should specify in their methodology what significance level they have chosen to use

# A number of states use the binomial for water quality assessment (for at least some criteria)

- California
- Florida
- Kansas
- Oregon
- Montana
- Mississippi
- New Jersey
- North Carolina
- Texas
- Others

#### Consolidated Assessment and Listing Methodology

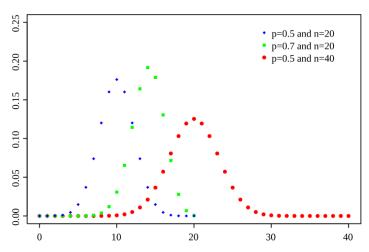
**Toward a Compendium of Best Practices** 

First Edition

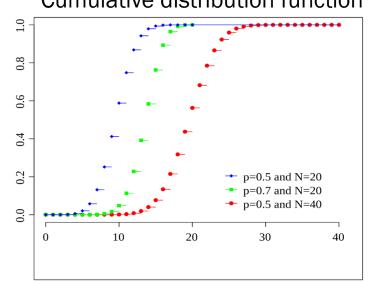
July 2002

...and also described in USEPA technical documents

Prepared By:


U.S. Environmental Protection Agency Office of Wetlands, Oceans, and Watersheds

With Assistance From:
EPA Regional Offices
Office of Science and Technology
Office of Research and Development
Office of Ground Water and Drinking Water
Office of Wastewater Management
Office of Environmental Information


#### The Binomial Distribution

- Discrete probability distribution of number of "successes" in a sequence of n independent trials
- Each trial has two possible outcomes
- Probability of success = p
- Probability of failure = q = 1- p

#### Probability mass function



#### Cumulative distribution function



#### The Binomial Distribution Formula

$$P(x) = \frac{n!}{(n-x)!x!} p^x q^{n-x}$$

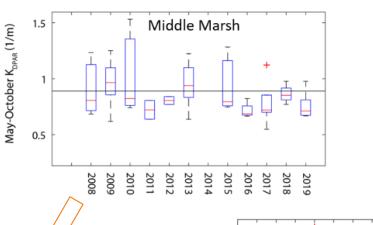
#### Where:

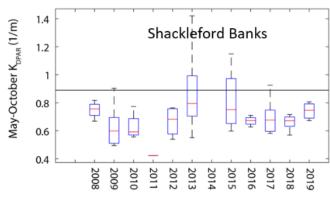
n = number of trials

x = number of successes of interest

p = probability of getting a success in one trial

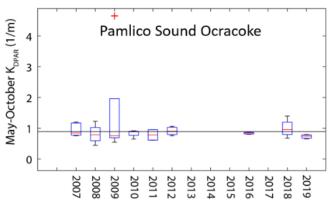
q = 1 - p = the probability of getting a failure in one trial


### Example: Justifying a 1-in-3 allowable exceedance rate for marine chlorophyll-a criteria (Florida DEP, 2012)


- Criteria derived from healthy reference condition, so low concern over Type II errors
- DEP desired to limit Type I error probability to 10%
- The reference condition itself had a 20% probability of exceeding the criteria (set at 80<sup>th</sup> percentile)
- Binomial stats: A 1-in-3 year allowable exceedance equates to a ~10% Type I error probability

| X<br>(# exceedances) | P(X)<br>(probability of X exceedances<br>in 3 trials) | Cumulative P<br>(probability of ≤X exceedances) |
|----------------------|-------------------------------------------------------|-------------------------------------------------|
| 0                    | 0.512                                                 | 0.512                                           |
| 1                    | 0.384                                                 | 0.896                                           |
| 2                    | 0.096                                                 | 0.992                                           |
| 3                    | 0.008                                                 | 1.000                                           |

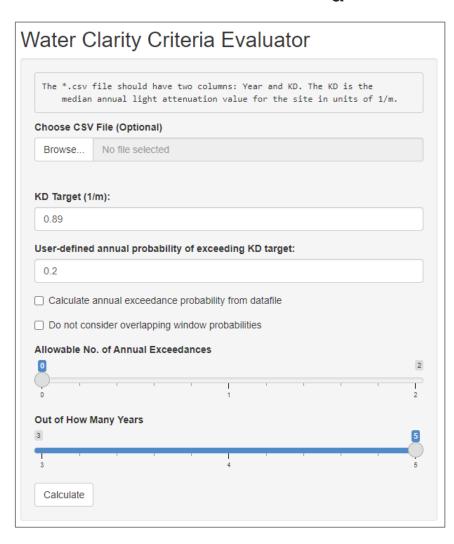
### Example: Reference SAV Sites had a 20% annual probability of failing clarity criteria


High Salinity K<sub>dPAR</sub> Modeled Using the Bio-optical Model





~20% annual exceed rate


• ~67% Type 1
assessment error rate
(5-yr assessment
period)



Solid line in box plot figures = proposed high salinity criteria

Source of charts: Hall (2022b)

# Application allows exploration of Type I error rates based on K<sub>d</sub> target, frequency component

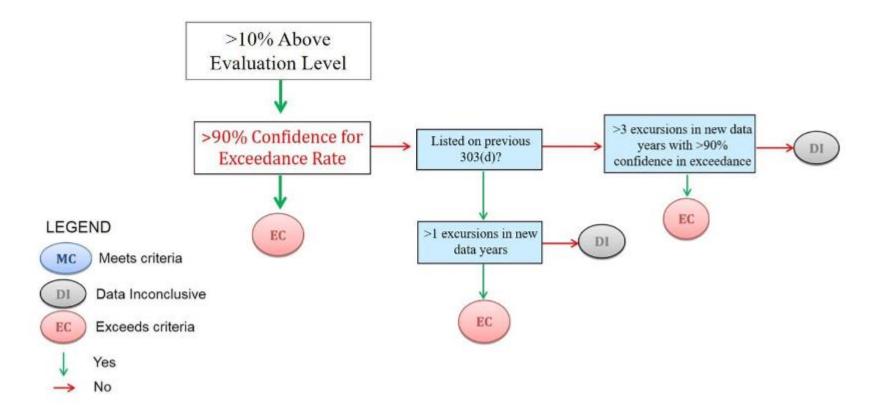


Annual probability of exceeding KD Target: 20 %

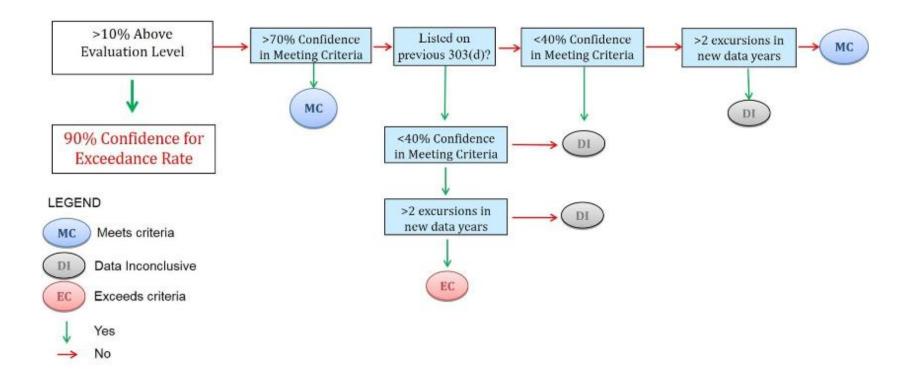
Probability of exceeding the target more than the allowable frequency over the multi-year assessment period: 67 %

### Example: NC's use of the binomial stats for water quality assessment

- Information here taken from NC 2024 303(d) Listing and Delisting Methodology
- https://edocs.deq.nc.gov/WaterResources/DocView.aspx? dbid=0&id=3075212&cr=1


### **NC Listing Basis**

- "NC will use a nonparametric hypothesis testing approach based on the binomial distribution."
- "The binomial method allows a quantifiable level of statistical confidence (90%) for listing decisions, which provides a 10% probability of listing an assessment unit when it should not be listed."
- "The null hypothesis is that the overall exceedance probability is less than or equal to the 10% exceedance allowance."


### Listing/De-listing Decisions Based on:

- Level of confidence that null hypothesis (of ≤ 10% exceedances) should be rejected
  - To list: 90% confidence of >10% exceedances
  - To de-list: 40-70% confidence of ≤ 10% exceedances
- Listing status in previous integrated report
- Number of excursions in new data (most recent two years included)

#### Flow Chart for >10% Exceedance



#### Flow Chart for ≤10% Exceedance



### Example 1

- Current listed as not impaired
- 5 of 30 samples exceed =  $\sim$ 16.7%
- Binomial says if "true" exceedance rate is 10%, only ~8% probability of getting 5 or more exceedances out of 30
- Reject null hypothesis, list water body

### Example 2

- Site currently listed as impaired
- 20 samples in assessment period
- 3 exceed criterion = 15% of samples
- Binomial says if "true" exceedance rate is 10%, only ~32% probability of getting 3 or more exceedances out of 20
- But >1 excursion in new data
- Keep impairment listing

### **Examples of related methods**

- Hypergeometric test
  - Washington Dept. of Ecology (<a href="https://apps.ecology.wa.gov/publications/documents/18100">https://apps.ecology.wa.gov/publications/documents/18100</a>
     35.pdf
  - Analogous to binomial but without replacement
  - Value of interest is "days in a year with an exceedance" instead of % exceedances
- Sequential probability ratio test
  - Proposed by Chen and others (2017)
  - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5331907/
  - Authors claim fewer samples required than binomial

# Summary of concepts embedded in these precedents (beyond the specific method)

- Hypothesis testing of probability of impairment
- Quantifying:
  - ...the % exceedance associated with listing/not listing
  - ...the % confidence required
- Existing listing status affects decisions: Confidence needed to change status
- Asymmetry in the required confidence for listing/de-listing: Higher confidence needed to commit TMDL resources (?)
- Quantitative basis for concluding "data inconclusive"
   category 3