

# **Analysis to Support Criteria Period Selection**

September 9, 2009

#### **Approach**

- ► Flow-based
  - Review Malcolm-Pirnie flow analysis (from 7/16/09 memo)
  - Perform flow analysis to support critical period selection
    - Consider 9 major tributaries
    - Evaluate different combinations of monthly flows
    - Apply allocation multiplier to consider relative impacts
    - Consider correlation between flow and DO exceedances
- ▶ Water quality-based
- ► Regional and national approaches

### Malcolm-Pirnie Flow Analysis - Approach

- ► Evaluated selection of 1996-1998 as 3-year critical condition
- Calculated 3-year running averages of seasonal flow and determined corresponding flow percentiles
  - **1967-2009**
  - January through May
  - Susquehanna and Potomac

### Malcolm-Pirnie Flow Analysis - Results

- ► Highest average Jan-May inflow was 1996-1998
- ► Critical period of 1996-1998 is too extreme
  - contains 93<sup>rd</sup> and 98<sup>th</sup> percentile flow years
  - represents a 40-year return period
  - represents the 100<sup>th</sup> percentile
- ► Recommend:
  - 10-year return period
  - 1993-1995 or 1994-1996

## Replication of Malcolm-Pirnie Flow Analysis

- Repeated the analysis using flow data presented in the report and raw data
  - 3-year averages based on flows in the report did not exactly match what is presented
    - Does not affect the percentile calculations
  - Using USGS data resulted in similar discrepancies in 3-year running averages
- ► Yielded same conclusions

### **Analysis to Support Critical Period Selection**

- ► Flow data analyzed for 1978 through 2009 (Patuxent flow gage limited time period...did not begin until 1977)
- Average flows calculated for 9 tributaries for each year
- ► Evaluated combinations of different monthly flow durations from September through July (e.g., average flows for Jan-May, Dec-March, etc.)
- Calculated running 3-year averages using only flows from the months within the potential critical period under evaluation

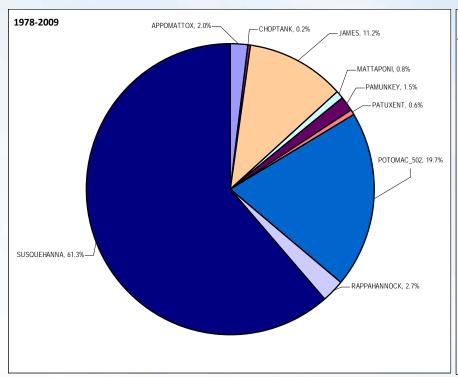
| Time Periods |                                            |           |           |  |  |  |  |
|--------------|--------------------------------------------|-----------|-----------|--|--|--|--|
| Gage ID      | Description                                | Start     | End       |  |  |  |  |
| 1668000      | RAPPAHANNOCK RIVER NEAR FREDERICKSBURG, VA | 9/19/1907 | 8/25/2009 |  |  |  |  |
| 1646502      | POTOMAC RIVER (ADJUSTED) NEAR WASH, DC     | 3/1/1930  | 7/31/2009 |  |  |  |  |
| 2037500      | JAMES RIVER NEAR RICHMOND, VA              | 10/1/1934 | 8/25/2009 |  |  |  |  |
| 1674500      | MATTAPONI RIVER NEAR BEULAHVILLE, VA       | 9/19/1941 | 8/25/2009 |  |  |  |  |
| 1673000      | PAMUNKEY RIVER NEAR HANOVER, VA            | 10/1/1941 | 8/25/2009 |  |  |  |  |
| 1491000      | CHOPTANK RIVER NEAR GREENSBORO, MD         | 1/1/1948  | 8/25/2009 |  |  |  |  |
| 1578310      | SUSQUEHANNA RIVER AT CONOWINGO, MD         | 10/1/1967 | 8/25/2009 |  |  |  |  |
| 2041650      | APPOMATTOX RIVER AT MATOACA, VA            | 10/1/1969 | 8/25/2009 |  |  |  |  |
| 1594440      | PATUXENT RIVER NEAR BOWIE, MD              | 6/27/1977 | 8/25/2009 |  |  |  |  |

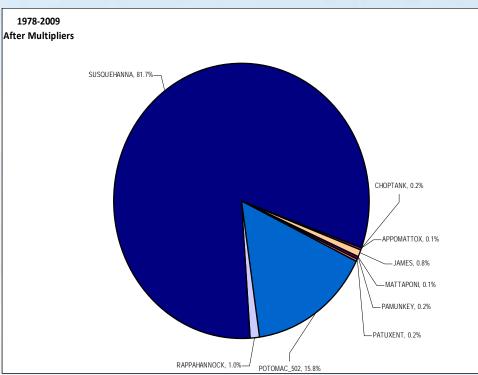
#### Calculations

► Probability of each 3-year flow average was determined using the Weibull Plotting Position computed as:

$$\frac{1}{T_r} = p = \frac{m}{(n+1)}$$

where: p is the probability, m is the rank, and n is the count of the dataset


- Return period is inverse of probability
- ▶ Different approach than Malcolm-Pirnie Study, which used percentile ranks
- ► Regression performed on 3-year flow average to determine correlation with the DO percent exceedances


### **Use of Tributary Multipliers**

- ► Flows from different tributaries don't equally impact conditions in the Bay
- Used CBPO allocation multipliers
- ► Translated to a 0.0 1.0 scale
- ► Flow analysis repeated using multipliers

| Basin        | Multiplier  | Adjusted Ratio |
|--------------|-------------|----------------|
| Appomattox   | 0.533111028 | 0.017          |
| Choptank     | 6.929861533 | 0.217          |
| James        | 0.533111028 | 0.017          |
| Mattaponi    | 0.798423188 | 0.025          |
| Pamunkey     | 0.798423188 | 0.025          |
| Patuxent     | 3.093385849 | 0.097          |
| Potomac      | 6.188243619 | 0.193          |
| Rappahannock | 2.809613056 | 0.088          |
| Susquehanna  | 10.3187158  | 0.322          |
|              |             | 1.000          |

# Tributary Flow Contributions with and without Multiplier Ratios





Flow Contributions

Flow Contributions with Multiplier Ratio

## Return Periods by Monthly Duration: Without Multiplier

| % DO Exceedences> |      | 25.87%    | 25.92%    | 24.26%    | 27.84%        | 26.05%    | 31.11%    | 27.24%    |
|-------------------|------|-----------|-----------|-----------|---------------|-----------|-----------|-----------|
| Interval          | R2   | 1992-1994 | 1993-1995 | 1994-1996 | 1996-1998     | 1997-1999 | 2003-2005 | 2004-2006 |
|                   |      |           |           |           | Return Period |           |           |           |
| SEP-JUNE          | 0.54 | 4.43      | 6.20      | 3.44      | 15.50         | 2.58      | 31.00     | 7.75      |
| NOV-JUNE          | 0.53 | 6.20      | 7.75      | 5.17      | 31.00         | 2.07      | 15.50     | 4.43      |
| SEP-JULY          | 0.53 | 4.43      | 5.17      | 3.44      | 15.50         | 2.58      | 31.00     | 10.33     |
| NOV-JULY          | 0.52 | 6.20      | 7.75      | 4.43      | 15.50         | 2.07      | 31.00     | 5.17      |
| DEC-JUNE          | 0.52 | 7.75      | 6.20      | 4.43      | 31.00         | 2.38      | 15.50     | 3.88      |
| SEP-MAY           | 0.51 | 4.43      | 6.20      | 3.88      | 15.50         | 3.10      | 31.00     | 7.75      |
| DEC-JULY          | 0.51 | 6.20      | 7.75      | 4.43      | 31.00         | 2.21      | 15.50     | 3.88      |
| OCT-JUNE          | 0.50 | 5.17      | 6.20      | 4.43      | 15.50         | 2.38      | 31.00     | 7.75      |
| OCT-JULY          | 0.49 | 5.17      | 6.20      | 4.43      | 15.50         | 2.21      | 31.00     | 7.75      |
| NOV-MAY           | 0.48 | 6.20      | 7.75      | 5.17      | 31.00         | 3.10      | 15.50     | 4.43      |
| SEP-APR           | 0.48 | 4.43      | 5.17      | 3.44      | 15.50         | 3.10      | 31.00     | 10.33     |
| OCT-MAY           | 0.46 | 5.17      | 7.75      | 4.43      | 31.00         | 2.82      | 10.33     | 6.20      |
| DEC-MAY           | 0.46 | 10.33     | 7.75      | 5.17      | 31.00         | 2.82      | 6.20      | 3.88      |
| JAN-JUNE          | 0.44 | 10.33     | 6.20      | 4.43      | 31.00         | 2.58      | 5.17      | 2.21      |
| JAN-JULY          | 0.44 | 6.20      | 5.17      | 4.43      | 31.00         | 2.21      | 7.75      | 2.82      |
| NOV-APR           | 0.44 | 7.75      | 10.33     | 4.43      | 31.00         | 3.10      | 15.50     | 5.17      |
| OCT-APR           | 0.42 | 5.17      | 7.75      | 3.44      | 31.00         | 3.10      | 15.50     | 6.20      |
| SEP-MAR           | 0.42 | 2.82      | 3.44      | 3.88      | 15.50         | 4.43      | 31.00     | 10.33     |
| DEC-APR           | 0.40 | 10.33     | 15.50     | 5.17      | 31.00         | 3.10      | 6.20      | 4.43      |
| NOV-MAR           | 0.39 | 3.10      | 3.44      | 6.20      | 31.00         | 4.43      | 15.50     | 7.75      |
| JAN-MAY           | 0.37 | 10.33     | 7.75      | 6.20      | 31.00         | 3.10      | 4.43      | 2.21      |
| OCT-MAR           | 0.36 | 2.82      | 3.44      | 4.43      | 31.00         | 3.88      | 10.33     | 7.75      |
| DEC-MAR           | 0.36 | 3.44      | 5.17      | 7.75      | 31.00         | 4.43      | 10.33     | 6.20      |
| JAN-APR           | 0.32 | 31.00     | 15.50     | 6.20      | 10.33         | 3.44      | 3.88      | 2.38      |
| JAN-MAR           | 0.26 | 5.17      | 6.20      | 10.33     | 31.00         | 7.75      | 3.88      | 2.58      |

## Return Periods by Monthly Duration: With Multiplier

| % DO Exceedences> |      | 25.87%    | 25.92%    | 24.26%    | 27.84%        | 26.05%    | 31.11%    | 27.24%    |
|-------------------|------|-----------|-----------|-----------|---------------|-----------|-----------|-----------|
| Interval          | R2   | 1992-1994 | 1993-1995 | 1994-1996 | 1996-1998     | 1997-1999 | 2003-2005 | 2004-2006 |
|                   |      |           |           |           | Return Period |           |           |           |
| SEP-JUNE          | 0.53 | 4.43      | 5.17      | 3.44      | 7.75          | 2.21      | 31.00     | 15.50     |
| NOV-JUNE          | 0.53 | 5.17      | 6.20      | 4.43      | 15.50         | 1.94      | 31.00     | 7.75      |
| DEC-JUNE          | 0.52 | 6.20      | 7.75      | 3.88      | 15.50         | 1.94      | 31.00     | 4.43      |
| SEP-JULY          | 0.52 | 3.88      | 5.17      | 3.44      | 10.33         | 2.07      | 31.00     | 15.50     |
| NOV-JULY          | 0.52 | 5.17      | 6.20      | 4.43      | 15.50         | 1.94      | 31.00     | 10.33     |
| DEC-JULY          | 0.51 | 5.17      | 6.20      | 3.88      | 15.50         | 1.94      | 31.00     | 7.75      |
| OCT-JUNE          | 0.49 | 5.17      | 6.20      | 3.88      | 15.50         | 2.07      | 31.00     | 7.75      |
| SEP-MAY           | 0.49 | 4.43      | 5.17      | 3.88      | 7.75          | 2.58      | 31.00     | 15.50     |
| OCT-JULY          | 0.48 | 5.17      | 6.20      | 3.88      | 15.50         | 1.94      | 31.00     | 10.33     |
| NOV-MAY           | 0.46 | 6.20      | 7.75      | 4.43      | 31.00         | 2.38      | 15.50     | 5.17      |
| SEP-APR           | 0.46 | 4.43      | 5.17      | 3.44      | 6.20          | 2.82      | 31.00     | 15.50     |
| JAN-JULY          | 0.46 | 10.33     | 5.17      | 4.43      | 31.00         | 1.55      | 15.50     | 3.88      |
| JAN-JUNE          | 0.46 | 10.33     | 6.20      | 4.43      | 31.00         | 1.82      | 5.17      | 2.82      |
| DEC-MAY           | 0.45 | 7.75      | 10.33     | 5.17      | 31.00         | 2.21      | 6.20      | 4.43      |
| OCT-MAY           | 0.44 | 5.17      | 6.20      | 3.88      | 15.50         | 2.21      | 10.33     | 7.75      |
| NOV-APR           | 0.42 | 7.75      | 10.33     | 3.88      | 15.50         | 2.58      | 31.00     | 6.20      |
| SEP-MAR           | 0.41 | 2.07      | 3.10      | 3.88      | 10.33         | 4.43      | 15.50     | 31.00     |
| OCT-APR           | 0.41 | 5.17      | 6.20      | 3.44      | 10.33         | 2.58      | 31.00     | 7.75      |
| DEC-APR           | 0.40 | 15.50     | 31.00     | 4.43      | 10.33         | 2.58      | 7.75      | 5.17      |
| NOV-MAR           | 0.38 | 2.58      | 3.10      | 5.17      | 31.00         | 3.44      | 15.50     | 10.33     |
| JAN-MAY           | 0.37 | 15.50     | 7.75      | 6.20      | 31.00         | 2.38      | 5.17      | 2.82      |
| DEC-MAR           | 0.37 | 2.58      | 3.44      | 6.20      | 31.00         | 3.88      | 15.50     | 10.33     |
| OCT-MAR           | 0.35 | 2.38      | 3.10      | 4.43      | 31.00         | 3.44      | 10.33     | 15.50     |
| JAN-APR           | 0.32 | 31.00     | 15.50     | 6.20      | 10.33         | 2.58      | 5.17      | 3.44      |
| JAN-MAR           | 0.28 | 2.58      | 3.88      | 10.33     | 31.00         | 7.75      | 6.20      | 2.82      |

#### **Monthly Span**

- Monthly span should be extended beyond that in the Malcolm-Pirnie Study (Jan-May)
- Jan-May had one of the lower correlations with DO exceedances
- ➤ 3-year average flows with the highest correlation to DO exceedances generally include longer monthly spans (i.e., from early fall of the previous year through summer)
- ➤ 3-year average flow spanning Sep-Jun had highest correlation to DO exceedances

### **Preliminary Interim Findings**

- ► 2003-2005 and 1996-1998 generally represent highest return periods
  - **2003-2005** 
    - highest for longer monthly span (when flow is more closely correlated with DO exceedances)
  - **1996-1998** 
    - highest for shorter monthly span (as in Malcolm-Pirnie study)
    - closer to 10 year return period for months when flow more closely correlates with DO exceedances
- ▶ 1992-1994 and 1993-1995
  - generally lower than 10 year return periods
  - higher return periods (10 year or more) when flow is not strongly correlated with DO exceedances

## Next Steps for Completion of Flow-based Critical Period Analysis

- ► Determine return periods using USGS methodology
  - Log Pearson III Method of flood frequency analysis
    - Bulletin 17B: Guidelines for Determining Flood Flow Frequency
- Compare Log Pearson III results to Weibull Plotting Position results
- ▶ Other analytical methods, e.g. Gringorten and Cunnane, may also be considered
- ▶ Bring updated results to the September 14 or September 21 WQGIT conference call for final decision on the critical period

#### Water Quality-based Critical Period Assessment

- ► Flow
  - Reasonable surrogate for climate
  - Does not capture all wind, rain, temperature, and other factors
- ► Water quality
  - Incorporates climate
  - Considers anthropogenic factors
    - Point source loads
    - BMPs
    - Land use

#### Water Quality-based Critical Period

| Period    | DO below ( | Probability | Return Period |
|-----------|------------|-------------|---------------|
| 2003-2005 | 31.11%     | 0.05        | 21.0          |
| 1996-1998 | 27.84%     | 0.10        | 10.5          |
| 2004-2006 | 27.24%     | 0.14        | 7.0           |
| 1998-2000 | 26.57%     | 0.19        | 5.3           |
| 1997-1999 | 26.05%     | 0.24        | 4.2           |
| 2002-2004 | 25.97%     | 0.29        | 3.5           |
| 2001-2003 | 25.93%     | 0.33        | 3.0           |
| 1993-1995 | 25.92%     | 0.38        | 2.6           |
| 1992-1994 | 25.87%     | 0.43        | 2.3           |
| 1986-1988 | 25.60%     | 0.48        | 2.1           |
| 1987-1989 | 25.23%     | 0.52        | 1.9           |
| 1991-1993 | 24.97%     | 0.57        | 1.8           |
| 1994-1996 | 24.26%     | 0.62        | 1.6           |
| 1985-1987 | 23.07%     | 0.67        | 1.5           |
| 1988-1990 | 22.83%     | 0.71        | 1.4           |
| 1995-1997 | 22.58%     | 0.76        | 1.3           |
| 1989-1991 | 22.36%     | 0.81        | 1.2           |
| 1999-2001 | 22.32%     | 0.86        | 1.2           |
| 2000-2002 | 21.60%     | 0.90        | 1.1           |
| 1990-1992 | 21.11%     | 0.95        | 1.1           |

- ► Water quality return period has 1996-1998 as the 10 year recurrence interval
- ➤ Anthropogenic effects are included, but lessened by the observation that 1996-1998 is near the middle of the assessed period
- Another line of evidence

#### Regional Practices - Critical Period

- ► How do States determine the hydrology critical period?
  - All States: Dependent upon pollutant, WQS, TMDL endpoint as well as amount of flow data available
  - All States: Typically use representative data with a range of flows including high, low, and average
  - MD: Time-variable models use worst condition in calibration period; steady state models for nutrients use 7Q10
  - DE: 7Q10 used for free flowing streams; tidal streams use calibration period with critical condition of monthly average or seasonal average
  - VA: Critical period selected based on dry, average and wet years
  - PA: Starting to use growing season average for nutrients
  - WV: Watershed TMDLs use representative precipitation induced flow data over a 6-year period with high, low, and average conditions

#### Regional Practices – Baseline Year

- ▶ Under allocation scenarios, what land uses do States employ?
  - All states typically use the most recent land use data from 2002 or 2007 depending upon state information
  - WV has employed more recent land use modification information for certain transient land uses (i.e., mining)
  - NY has used historical land use data for certain pollutants (i.e., PCBs)

#### Regional Practices – Baseline Year

- ▶ What point source flows do States use?
  - Different approaches for different sources
  - Measured data for calibration and baseline (PA, MD, DE)
  - Design flow/concentrations for allocations (PA, MD, DE, VA, WV)
  - Precipitation induced sources get allocations based on modeled flow (WV, VA)
  - Industrial Wastewater get allocations based on production based maximum flow and permit concentrations (MD, VA, PA)
  - NY starts with measured data (may go to level of technology). Design flow is used as a backstop

#### **What Others Have Done**

- ► TMDL Analysis to Achieve Water Quality Standards for DO in Long Island Sound (NYSDEC 2000)
  - Annual surveys from 1986-1998 and a review of historical data indicated that the 1988-1989 modeling time frame was the most severe period of hypoxia on record.
  - As a result, model simulations of reduced nitrogen inputs were used to predict water quality conditions that would result during the same physical conditions that exist during the 1988-89 period.
  - Use of 1988-89 worst case scenario considered as an implicit MOS
- ► TMDL for Nitrogen in the Peconic Estuary Program Study Area, Including Waterbodies Currently Impaired Due to Low DO (Peconic Estuary Program 2007)
  - EFDC model was calibrated using an eight-year period from October 1, 1988 to September 30, 1996.
    - Included all seasons of the year as well as extreme wet and dry years
  - Monitoring data indicated that the October 2000 to September 2002 time frame was the most severe period of hypoxia on record from 1988-2002.
  - October 1, 2000 to September 30, 2002 was selected as the critical period for the TMDL model runs.

#### Feedback/Direction Requested

- ► Reminder: WQ Team previously decided on the representative hydrologic period of 1991-2000
- Recommend decision criteria for selecting the critical period:
  - Select the critical period within the hydrologic period 1991-2000 (representative of long-term hydrology, within model calibration period, ease of model operations)
  - Three-year period (match criteria assessment period)
  - Representation of around a 10-year return period (consistent with TMDLs in Bay watershed states, supports implicit margin of safety)
- ► Feedback Requested: 1) overall methodology as described, 2) planned next steps and 3) recommended decision criteria