Recommendations of the Expert Panel to Define Removal Rates for Erosion and Sediment Control Practices

Presented to Watershed Technical Workgroup

Members of ESC Expert Panel

Panelist	Affiliation		
Megan Grose	West Virginia Dept of Environmental Protection		
Randy Greer	Engineer VI, Sediment and Stormwater Program, DE		
	Dept. of Natural Resources and Environmental Control		
Summer Kunkel,			
Dean Auchenbach	Pennsylvania Department of Environmental Protection		
Dr. Shirley Clark	Pennsylvania State University, Harrisburg		
Don Lake	State University of New York-College of Environmental		
	Science and Forestry		
Dr. Richard A. McLaughlin	Dept. of Soil Science. North Carolina State University		
Dr. Albert Jarrett	Professor Emeritus, Pennsylvania State University		
Bruce Young	St. Mary's Soil Conservation District (Maryland)		
Kip Mumaw	Ecosystem Services		
John McCutcheon	Virginia Department of Environmental Quality		
Dr. Neely Law	Center for Watershed Protection, Chesapeake Bay		
	Sediment Coordinator		
Tom Schueler	Chesapeake Stormwater Network, Panel Co-facilitator		
Jeremy Hanson	Chesapeake Research Consortium, Panel Co-facilitator		
Non-panelists: Norm Goulet – Chair, USWG; Cecilia Lane, CSN; Chris Mellors –			
Tetratech. Special thanks to the CBPO Modeling Team: Guido Yactayo – UMCES,			
CBPO; Gary Shenk – EPA; Matt Johnston – UMD, CBPO; Jeff Sweeney – EPA			

Charge of the Panel

- Evaluate how construction sites are simulated in the context of CBWM version 5.3.2
- Review available literature on the nutrient and sediment loading rates associated with construction sites, and the effect of conventional and enhanced ESC practices in reducing them.
- Provide specific definitions of "enhanced" and "conventional" ESC practices, and describe the qualifying conditions under which a locality can receive a nutrient and/or sediment reduction credit for each.
- Critically analyze any unintended consequences associated with the sediment and nutrient removal rates and any potential for double or over-counting of the credit.

Charge of Panel

Evaluate whether the existing CBP approved nutrient removal rates for conventional ESC practices developed in 2007 are still reliable, and evaluate the interim rate requested by WV in 2011.

Removal Rates for ESC Practices for Construction Sites					
	TSS	TP	TN		
Existing CBP-Approved Rate ¹	40	40	25		
Interim Rate Requested by WV ²	80	80	80		

¹ approved by USWG, August 15, 2007

Recommend procedures to report, track, and verify that conventional and enhanced ESC practices are actually being implemented and maintained until the site is fully stabilized.

² interim rate requested by WV 9/15/2011 for enhanced ESC controls (see Appendix E)

Summary of Key Recommendations

• Current Level 2 ESC Practices Provide a High Level of Sediment Removal From Construction Sites

ESC Scenario	Discharged Load	Effective Removal Rate
ESC Sites Operating at Level 1	3.1 t/ac/yr	74%
ESC Sites Operating at Level 2	1.75 t/ac/yr	85%
ESC Sites Operating at Level 3	1.25 t/ac/yr	90%
ESC Sites Operating at Level 4	No estimate	No estimate

 Recommended to be applied to construction site acreage in current version of CBWM (5.3.2)

Nutrient Recommendations

- Existing CBWM construction site nutrient loading rates confirmed by mass balance analysis
- No clear evidence that ESC practices actually reduce nutrients
- Some evidence that they may actually be nutrient sources.
- Zero nutrient removal efficiency for all four levels of ESC practice
- Recommend critical monitoring studies to reduce the risk of fertilizer wash-off.

Reporting, Tracking and Verification

Existing regulatory and self-inspection programs at Bay construction sites are more than sufficient for BMP verification for the TMDL, and no new field verification protocols are needed

States have two options for reporting their annual statewide construction acres:

- Existing CBP ratio based on new impervious cover
- Submit aggregate data from Construction General Permit (CGP) state-wide databases

Local governments have no new reporting requirements, beyond existing MS4 permits and/or state regulations

Construction In the Bay Watershed

- Highest Unit Area
 Sediment Load of any Bay
 Land Use (Edge of Field)
- About 84,500 acres of construction in any given year
- CBWM: 16% of delivered sediment load from urban sector

Comparison of Edge of Field Sediment Loads By Land Use in the Bay Watershed (CBWM 5.3.2)

	Annual EoF
Bay Model Land Use Category	Sediment Load
	(tons/acre/year)
Construction Sites, No ESC Practices	24.4
Construction Sites, with ESC Practices ¹	14.6
Degraded Riparian Pasture	14.0
Extractive, Uncontrolled	10.0
Crops, Conventional Till	5.8
Urban Impervious Cover	5.0
Crops, Conservation Till	3.9
Pasture	1.6
Hay	1.5
Urban Pervious Cover	1.2
Forest (un-harvested)	0.3

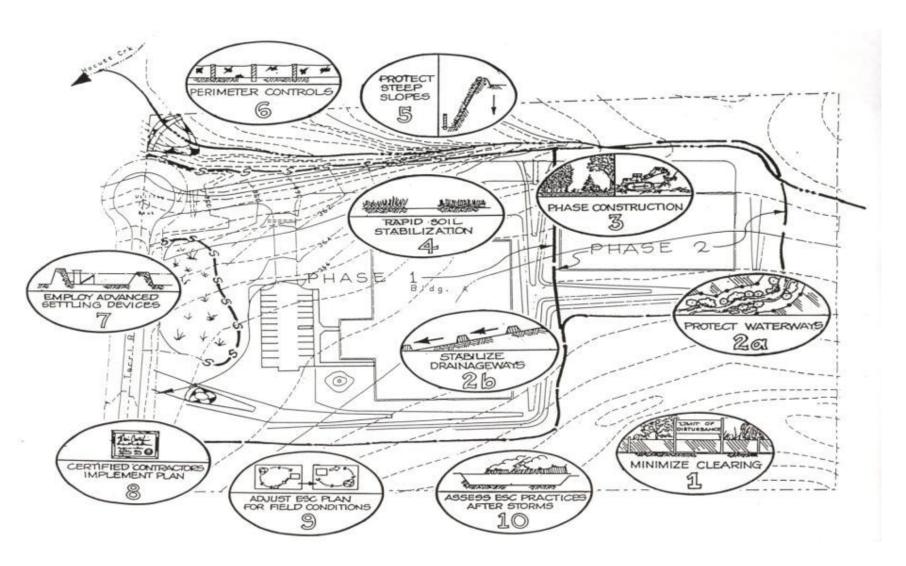
Sources: Table 9-1 and 9.12 in Chesapeake Bay Phase 5.3 Community Watershed Model (EPA CBP, 2011)

Note: Application of BMPs can reduce sediment loads as shown above

¹ ESC practices are assumed to have a 40% removal rate, per the existing CBP-approved removal rate

Construction Sites are More than Bare Ground

Construction Sites are Highly Dynamic



Construction process involves initial clearing and grading, earth-moving, installation of streets and storm drains, building construction and finally, the final stabilization of the site.

The hydrology of a construction site constantly changes, based on soil exposure, new slopes, the growing season, grass cover, addition of hard surfaces, stormwater conveyance, and the condition and performance of ESC practices.

Construction site erosion potential changes constantly over time, although significant soil loss is always expected during heavy or intense rainfall events.

Erosion and Sediment Control Practices

Four Levels of ESC Practice

Practices	Level 1 ESC	Level 2 ESC	Level 3 ESC	
Protect Natural Resources	Locate natural areas and mark LOD (up to edge of natural area)	Do #1 and add buffers to LOD to prevent discharge to natural area	Do # 2, and provide enhanced perimeter controls at LOD boundary for sensitive areas	
Minimize Disturbance	No numeric construction phasing requirement	Construction phasing required for largest projects (e.g., 25 + acres)	Construction phasing required for smaller projects	
Stabilize Soils	Stabilize w/in 14 to 21 days	Stabilize w/in 7 -14 days	Stabilize w/in a week	
Internal Drainage	Temporary swales	Swales/diversions with check- dams and erosion control blankets	Do #2, but enhance with passive use of polymer (e.g., floc logs or wattles)	
Perimeter Controls	Standard Controls (e.g., hay bales, entrance stabilization)	Reinforced silt fence and berms/diversions	Enhanced perimeter controls (i.e., super silt fence, compost logs, and filtering practices).	
Sediment Traps and Basins	Sediment traps, filters, and basins that meet the 0.5" (1,800 cu.ft/acre) standard	Sediment basins that meet the 1.0" (3,600 cu.ft/ac) standard, with permanent pools and/or dewatering control devices (e.g., skimmers)	Do # 2, but enhance performance with passive use of chemical additives to improve settling, filtration and surface outlets	
Inspections	Monthly	Every 1 to 3 weeks	Inspections once every seven days and after each precipitation event > 1.0"	
Level 4 ESC	- Controls, setting tanks, and sand inters that are specifically designed to achieve low numeric			

Level 1 ESC Practice

- Historical Level of Practice (2005 and before)
- Assumed Performance for CBWM Calibration (1990-2005)
- Less stringent sizing, technology and inspection requirements
- No Bay states currently operate at this level of practice

Level 2 ESC Practice

- Reflects more stringent ESC regulations and permits adopted in recent years
- Improved sizing, stabilization, phasing and inspection requirements
- All Bay states now safely operating at Level 2 ESC

Level 3 ESC Practice

- ESC Practice Level 2, plus additional passive chemical treatment to reduce turbidity, with a reliance on polyacrylamide (PAM) and other flocculants
- Enhanced design features on ESC practices to improve performance
- No Bay states are currently operating at this level, although several states are shifting toward it

Level 4 ESC Practice

- Best available technology for turbidity control to achieve low numerical turbidity standards
- Has been piloted at some sites in Pacific Northwest
- Involves expensive Active Treatment Systems that pump, treat and filter construction site runoff
- No Bay state is operating at this level

Functional Deficiency

- The four levels of ESC practice assume proper installation and maintenance of practices, as well as normal rainfall conditions that are within the design capacity of the practices. These assumptions are violated at some proportion of all construction sites, and at all sites during extreme storm events.
- Two levels of functional deficiency defined based on hydrologic considerations
 - Moderate deficiency occurs for rainfall events that exceed the designed sediment trapping capacity of ESC practices.
 - Extreme functional deficiency occurs for major storm events that exceed intensity or volume thresholds, and overwhelm the treatment capacity.
- The Panel developed method to compute the additional sediment load produced at functionally deficient sites, which is added to the estimated sediment load during normal conditions for appropriate level of ESC practice.

Summary of Bay States' Erosion & Sediment Control Programs

	Delaware	Maryland	New York	Pennsylvania	Virginia	West Virginia
First ESC regulations/ permits took effect	1991	1970	1993	1972	1973	1992
Most recent ESC Design Manual or Regulations	2013	2011 Manual effective 1/9/13	2005	Manual - 2012 Regulations – 2010	Manual1992; Regulations 2012	2006 Manual
Area threshold for regulations	5,000 sf.	5,000 sf.	1 acre	5,000 sf	10,000 sf or 2,500 sf. in CBPA	1 acre
Sizing requirement for on-site retention	3,600 cf/acre or one inch	3,600 cf/acre or one inch	3,600 cf/acre or one inch	6,000 cf/acre (basin); 2,000 cf/acre (trap)	3,600 cf/acre or one inch	3,600 cf/ acre; half wet, half dry
Stabilization requirement *	14 days	7 days or less	7-14 days	within 4 days	7-14 days	7- 14 days
Regulatory inspection requirements	Weekly	Every other week	Weekly. more frequent at larger sites	Every 30 days	Every 2 weeks and within 48 hrs. of a runoff event	At least one visit for all sites ≥ 3 ac.
Self-inspection requirements	Weekly	Weekly and next day after a storm event	Daily	Weekly and after each storm event.	Daily to Bi- weekly, and after each storm event	Every 7 days and within 24 hrs after storm
Construction phasing	Phasing required to keep LoD < 20 acres	Required for projects with 20 + acres	Required on all projects.	Not required	Not required	Not required
* requirements may differ for temporary vs. final stabilization						

All Bay States and DC Operating at Level 2 ESC Practice

Review of the Science

- Construction Site Hydrology
- Sediment Discharge
- Turbidity Discharge
- Nutrient Dynamics

Construction Site Hydrology

- Four Methods to Define Runoff Coefficient for Construction Sites
 - One Monitored Site
 - Three Models
 - All Converged

Monitored Construction Site Hydrology

106 storms by Line and White (2007) NC Piedmont ⁵

STAGE	Runoff Coefficient	TSS (tons/acre)
Construction ¹	0.50	13
Establishment ²	0.60	2.8
Post Construction ³	0.55	0.9
Undeveloped 4	0.21	0.16

¹ from initial clearing, grading, installation of infrastructure and seeding (0.7 years)

² Most homes constructed, and lawns and landscaping are becoming established (1.4 years)

³ After home build out (3.6 years)

⁴ Undeveloped reference watershed

⁵ 6 years of sampling during and after construction at a 10 acre residential subdivision, compared to an undeveloped reference forest catchment less than a mile away (also sampled for same 5.6 years)

Modeled RVs (EPA, 2009)

Reported Volumetric Runoff Coefficient (Rv) for Construction Sites						
by Hydrologic Soil Groups (EPA, 2009)						
HSG A HSG B HSG C HSG D						
Annual Rv ¹ 0.15 0.27 0.39 0.49						
Rv for 2 year Design Storm 0.37 0.57 0.70 0.79						
¹ for the technical assumptions, see Section 9 and 10 of EPA (2009)						

Percent of each of the 4 HSG's in each Bay State ¹						
Bay State	HSG A	HSG B	HSG C	HSG D		
Delaware	21%	31%	13%	35%		
Maryland	10	39	26	25		
Pennsylvania	6	28	54	12		
New York	10	19	51	21		
Virginia	2	54	32	12		
West Virginia	7	22	54	17		
Mean of States ²	9%	32%	38%	21%		
Bay-Weighted MEAN ³	6%	38%	40%	16%		

¹ State-wide from STATSGO

Computed Annual Construction Rv Using the EPA (2009) method		
State	Annual Rv	
	Ailliuai Kv	
Delaware	0.34	
Maryland	0.34	
Pennsylvania	0.35	
New York	0.37	
Virginia	0.33	
West Virginia	0.36	
Mean of States ²	0.35	
Bay-Weighted MEAN ³	0.35	

 $^{^{\}rm 2}$ Value shown is simply the mean of the six Bay states, including non-Bay watershed area

 $^{^{\}rm 3}$ Mean adjusted to account for fraction of total state area that is located in Bay watershed

Sediment Loads Discharged from Construction Sites

Review of about 25 recent and historical studies

Measured Sediment Loading Rates for Construction Sites, w/ or w/o ESC

Study	Region	Tons/acre/yea	ESC	Notes
	_	$ \mathbf{r} $	Used?	
CBWM	Bay	24.4	No	Model
				Assumption
Yorke and Herb, 1978	MD	33	No	
Nelson, 1984	SE US	100 to 300	No	
Cleaves et al, 1970	SE US	218.9	No	
Likens and Borman, 1974	NE US	48.4	No	
Cywin and Hendricks,	SE US	134	No	
1969				
Line and White,2007	NC	13.0	Yes	Residential
Daniel et al, 1979	WI	7.8	Yes	Residential
Line, 2007	NC	18.5	Yes	Highway
Line and White, 2001	NC	4.4	Yes	Residential
Owens et al, 2000	WI	1.7-6.7	Yes	Resid./Comm.
Lee and Ziegler, 2010	KS	0.5 to 2.5	Yes	Residential

Sediment Discharged From Construction Sites

Mean TSS Inflow and Outflow Concentrations					
in Relationship to ESC Practice Level					
EGG Il	Sediment Removal				
ESC Level	(Mg/l)	(Mg/l)	Efficiency		
LEVEL 1 ESC	1583	812	49%/50% 1		
LEVEL 2/3 ESC	6188	55 7	90%/83% 1		
Grand Mean 3598					

¹ First is based on level 1 means, second is mean percent removal

Based on 13 research studies 1990 to 2008, N=6 for Level 1 and N=7 for Level 2/3.

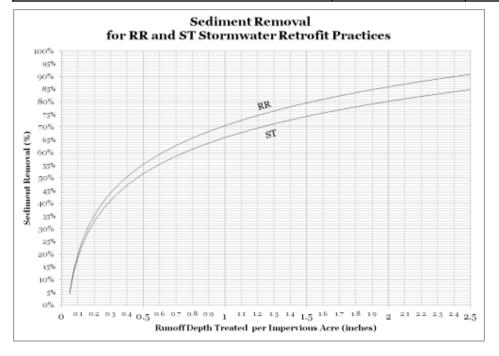
Panel Best Estimates of Base Construction Site Sediment Loads

Table 16 Comparative Summary of ESC Scenarios (tons/ac/yr)					
	Worst	Mid-	Best	Best	
ESC Scenario	Case	point	Case	Estimate	
Construction w/o ESC	22.3	8.6	5.1	12.0	
Sites Operating at Level 1	2.5	1.8	1.1	1.8	
Sites Operating at Level 2	1.6	1.0	0.7	1.1	
Sites Operating at Level 3	1.05	0.57	0.31	0.65	
Sites Operating at Level 4	ND	ND	ND	ND	

Important Note: Actual sediment loads for all 4 ESC levels will be higher when moderate and extreme storms exceed or overwhelm ESC capacity, and thus create functional deficiency, and much lower removal rates. ND= No data

See Appendix A for technical assumptions with each load calculation

Defining Functional Deficiency



Accounting for Functional Deficiency

Computation of Sediment Removal Rates for Four Levels of ESC						
ESC Scenario	Discharged Load ¹	Removal Rate	MFD ² Adjustment	Effective Removal Rate ³		
Sites Operating at ESC Level 1	1.8	85%	3.1	74%		
Sites Operating at ESC Level 2	1.1	92%	1.8	85%		
Sites Operating at ESC Level 3	0.6	95%	1.3	90%		
Sites Operating at ESC Level 4	ND	ND	ND	ND		

Level 1: = 25% of time in MFD Level 2/3 = 15% of time in MFD

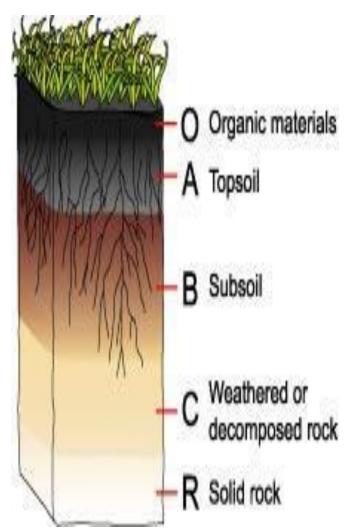
Turbidity Discharged From Construction Sites

Turbidity in relationship to ESC Practice Level, Summary of Literature						
Summary of Research	Turbidity	Turbidity	Removal	Notes		
·	IN	OUT	Efficiency			
	(NTUs)	(NTUs)	%			
LEVEL 1 and 2 MEANS	232 7	1919	~ 25	NO PAM		
LEVEL 3 MEANS	1423	165	80-90	PAM		

Turbidity Findings

- Level 1 and 2 ESC practices have little capability to reduce turbidity
- Concern on turbidity's impact to aquatic health in streams, lakes, rivers and estuaries
- Turbidity indicates fine sediments might have a higher delivery ratio to the Bay
- Recommend shift to Level 3 ESC Practice to provide more effective turbidity control

Nutrient Dynamics At Construction Sites


Five pathways for nutrient export from construction sites:

- 1. Nutrients attached to eroded soils
- 2. Wash off of fertilizer due to hydro-seeding and permanent stabilization
- 3. Wash-off of nutrients deposited from the atmosphere
- 4. Decay of organic material used to cover soil (i.e., compost, mulches, erosion control blankets, etc)
- 5. Leaching into groundwater (primarily nitrate).

Bi-Modal N/P Concentrations in Construction Site Runoff

Comparison of nutrient concentrations in construction site runoff (mg/l)				
Study	TN	DIN	TP	Notes
Kayhanina et al 2001	3.5	1.06	0.95	California, N=72
				Highway
Line, 2007	1.7		0.47	NC, N=16
Cleveland and Fashokun, 2006		1.26	0.47 as Po ₄	Above basin
Cleveland and Fashokun, 2006		1.57	0.21 as PO ₄	Below basin
Kalanaisan et al 2008			0.72 as Po ₄	Below basin
Soupir et al 2004	57.5	15.96	5.6	Fertilized test plot
Faucette et al 2008	Nd	Nd	31.8	Fertilized test plot
McLaughlin and King, 2008	5.18	Nd	3.1	JACK
McLaughlin and King, 2008	19.8		34.6	BUNC
McLaughlin and King, 2008	3.78		0.3	WAKE
Horner et al, 1990			In: 12.3/2.25 /0.55	3 basins in Seattle
			Out: 0.44/0.6/0.14	

Exposed Construction Site Soils Have Low Sediment Nutrient Content

Nutrient Content by Soil Horizon in USDA Soil Survey						
	Silt Loam	Loamy Sand				
Organic Content	O Horizon: 5.5%	O Horizon: 9.5%				
	AB Horizon: 1.8%	AB Horizon: 1.4%				
Total Nitrogen	O Horizon: 2,900	O Horizon: 4,700				
(mg/kg)	AB Horizon: 1,000	AB Horizon: 700				
Total Phosphorus	O Horizon: 35	O Horizon: 16				
(mg/kg)	AB Horizon: 5	AB Horizon: 2				

Typical Fertilization Rates at Construction Sites in Bay States to Achieve Vegetative Stabilization

ESC Stabilization Recommendations	Formulation (N-P-K)	Application Rate lbs/ac	N Rate N lbs/ac	P Rate * P lbs/ac
Temporary Stabilization	10-10-10	500-600	50	27
Permanent Stabilization	10-20-10	500-1000	65	48
Total Fertilizer Application		600 to 1500	115	75

See Table 24 for variation among Bay States.

Suggested application rate in the absence of a soil test or urban nutrient management plan. May be replaced by mulching in the non-growing season.

- 3 to 4 week "hi risk window" for grass to germinate and achieve desired density, as well as 1 to 3 years "moderate risk window" for starter lawns
- Construction sites have 7 or more of the 12 fertilizer wash-off hi risk factors as defined by UNM Expert Panel

^{*} Adjusted to convert phosphate PO₄ to TP

Risk of Fertilizer Wash-off

Mass Balance Comparison of all 5 Nutrient Export Pathways

l	Comparison of Nutrient Loadings by all Five Pathways (low, medium or high)								
	(lbs/ac/yr)								
	Total Nitrogen		Tot	al Phospho	rus				
ſ	Low Med High	_{rh}	LOW	Med	High				

	Total Nitrogen			Total Phosphorus		
	Low	Med	High	Low	Med	High
Pathway 1	2.8	11.2	16.8	0.08	0.30	0.46
Pathway 2	1.1	5.7	11.4	0.7	3.7	7.4
Pathway 3	1.3	3.9	6.5	0.07	0.2	0.4
Pathway 4	0.7	2.8	4.2	0.2	0.8	1.2
Total	5.9	23.6	38.9	1.1	5.0	9.5
CBWM	26.4			8.8		

Note: Pathway 5 "N migration to groundwater" was not included in the analysis, so N load mass balance may be conservative.

Accountability Mechanisms

Inspections as Verification

- Each individual construction site is now subject to both self inspections by the contractor and regulatory inspections by the local or state ESC enforcement authority that occur multiple times during the construction year.
- Construction sites are subject to more on-site verification than any other urban or agricultural BMP used in the watershed.
- Current construction inspection protocols are more than sufficient to meet the CBP verification principles for crediting BMPs in the TMDL.
- Panel does not recommend any additional field verification protocols beyond those that are already in place in the Bay states.

State and Local ESC Reporting

- **State:** Two options for reporting annual construction acres (existing method or submit annual CGP acreage data)
- **State:** No geographic data, just which ESC Level is being used
- Locals: No reporting requirements, beyond existing permit mandates

Criteria to define when a jurisdiction crosses over the threshold to Level 3 ESC

- Passive chemical treatment is utilized within the construction site by adding PAM or other flocculants to:
 - Hydro-seeding mixes used for temporary stabilization
 - Fiber logs, socks, wattles or check dams installed in internal diversions, ditches, or channels
 - Sediment basins or traps
- Enhanced sediment basin design to include baffles, surface outlets, and/or skimmers
- ESC maintenance inspections at least once a week
- Enhanced measures for perimeter controls and natural resource buffers
- More stringent stabilization and construction phasing requirements than currently required

Future Research and Mgmt Needs

- The Panel urges funding for a short-term, intensive monitoring study
- Focus on sampling nutrient concentrations in construction site discharges during the period of high fertilizer wash-off risk that occurs during and after site stabilization.
- Scope may involve a total of 100 200 flow-weighted composite samples to measure nutrient concentrations in 10 to 15 different construction sites in the Bay region to get more accurate EMC estimates for N and P.

Longer Term Study

- Investigate whether fertilization rate/formulation recommendations, vegetative stabilization methods and/or down-gradient ESC practices could be modified in order to reduce nutrient export......while still maintaining effective vegetative and soil cover during the entire construction process.
- Potential benefits of incorporating low doses of PAM to hydro-seeding mixes on erosion-prone soils should be sampled

CBWM Recommendations

- In next version, either drop the sediment target load for the no-ESC condition to 12 tons/ac/yr, or shift to explicitly simulating construction sites as its own land use, based appropriate target load for the prevailing ESC level
- Incorporate all important nutrient export pathways (especially fertilizer application) in the model simulation of construction sites
- Consider lower sediment loads for low slope coastal plain terrain

Implementation of the ESC Panel Recommendations

Jeff Sweeney, EPA CBPO Matt Johnston, UMd CBPO Gary Shenk, EPA CBPO

Presented to WTWG February 6th, 2014

2 Principles to follow

- Honor the panel recommendations as the accumulation of the best science
- Ensure that we are modeling in a way that best measures real changes on the ground.

Practice	Sedin	ment Nitrogen Ph		Phosph	hosphorus	
Туре	Phase 5.3.2	Phase 6	Phase 5.3.2	Phase 6	Phase 5.3.2	Phase 6
Level 1		74		0		0
Level 2		85		0		0
Level 3		90		0		0

1. Honor the panel recommendations as the accumulation of the best science

Practice	Sediment		Nitrogen		Phosphorus	
Туре	Phase 5.3.2	Phase 6	Phase 5.3.2	Phase 6	Phase 5.3.2	Phase 6
Level 1	40	74	25	0	40	0
Level 2		85		0		0
Level 3		90		0		0

Practice	Sediment		Nitrogen		Phosphorus	
Туре	Phase 5.3.2	Phase 6	Phase 5.3.2	Phase 6	Phase 5.3.2	Phase 6
Level 1	40	74	25	0	40	0
Level 2		85	25	0	40	0
Level 3		90	25	0	40	0

Practice	Sedin	nent	
Туре	Phase 5.3.2	Phase 6	L1 lets through 26%
Level 1	40	74	L2 lets through 15%
Level 2		85	L2 reduces the L1 sediment by 58% (15%/26%)
Level 3		90	

Practice	Sedim	nent	
Type	Phase 5.3.2	Phase 6	L1 lets through 26%
Level 1	40	74	L2 lets through 15%
Level 2	65	85	L2 reduces the L1 sediment by 58% (15%/2
Level 3		90	
		L2 red	uces the L1 sediment by 58% (35%/60%)

Practice	Sedin	nent	Nitrogen		Phosphorus	
Туре	Phase 5.3.2	Phase 6	Phase 5.3.2	Phase 6	Phase 5.3.2	Phase 6
Level 1	40	74	25	0	40	0
Level 2	65	85	25	0	40	0
Level 3	77	90	25	0	40	0

Summary Target Loads

Sediment		Nitro	gen	Phosphorus		
Phase 5.3.2	Phase 6	Phase 5.3.2	Phase 6	Phase 5.3.2	Phase 6	
24.7	12	26.4	26.4	8.8	8.8	

Note:

Actual loads may actually vary +/- 75% in individual river basin segments due to use of regional adjustment factors

Questions

