Reflections on Water Quality Criteria Attainment

Peter Tango and Qian Zhang with contributions from Laura Free and Richard Tian

Status & Trends Workgroup Meeting
June 13, 2017

Outline

Water Quality Criteria

TABLE 6. Summary of Published Water Quality Criteria Addenda and Their Guidance and Documentation Revising and Updating the Original USEPA (2003a) Water Quality Criteria.

Water Quality Criteria Addendum	Guidance and Documentation Revising and Updating the Original USEPA (2003a) Ambient Water Quality Criteria
USEPA (2004a)	Temperature-based criteria to protect endangered short-nosed sturgeon
	Site-specific DO criteria derivation guidance
	Method for delineating upper and lower pycnocline boundaries
	 Water quality criteria attainment alternatives for the shallow water bay grass designated use
TICEPRA (000 41)	Numerical chlorophyll a criteria applications in Chesapeake Bay tidal waters
USEPA (2004b)	 Revisions, decisions, and rationales for Chesapeake Bay management segment schemes
USEPA (2007a)	 Refinements to spatial interpolation and statistical aspects of measuring water quality criteria attainment assessment
	 Recommendations for further development of spatial interpolation and statistical aspects of measuring
	water quality criteria attainment assessment
	 Refinement to procedures assessing DO, water clarity, and chlorophyll a criteria
	 Additions to procedures for assessing DO, water clarity, and chlorophyll a criteria
	 Recommended methods for using shallow water high-frequency continuous monitoring water quality data in criteria assessment
	 Document 303(d) list decision-making framework for water quality criteria attainment assessments
USEPA (2007b)	 Scientific bases to support numerical chlorophyll a criteria applicable to Chesapeake Bay and its tidal tributaries
	 Recommended procedures for assessing attainment of HAB-based numerical chlorophyll a criteria
USEPA (2008)	Refinements to the Chesapeake Bay and tidal tributary management segment scheme
	 Refinements to previously published DO, water clarity, and chlorophyll a attainment assessment procedures
	 Additions to procedures for DO, water clarity, and chlorophyll a attainment assessment procedures
	Chlorophyll a criteria assessment procedures
USEPA (2010a, b)	Refinements to procedures for defining Chesapeake Bay designated uses
, , ,	 Refinements and additions to previously published procedures for deriving biologically based reference curves
	Recommendations for applications of biologically based reference curves for DO criteria assessments
	Refinements to procedures and recommendations for assessing chlorophyll a criteria

Note: DO, dissolved oxygen; HAB, harmful algal bloom.

Water Quality Criteria Dissolved Oxygen

TABLE 1. Chesapeake Bay Water Quality Criteria (from USEPA, 2003a).

Designated Use	Criteria Concentration/Duration	Protection Provided	Temporal Application
Migratory fish spawning and nursery use	Seven-day mean ≥6 mg/l (tidal habitats with 0-0.5 salinity)	Survival/growth of larval/juvenile tidal-fresh resident fish; protective of threatened/endangered species	February 1-May 31
	Instantaneous minimum ≥5 mg/l	Survival and growth of larval/juvenile migratory fish; protective of threatened/endangered species	
	Open water fish and shellfish designated	use criteria apply	June 1-January 31
Shallow water bay grass use	Open water fish and shellfish designated	criteria apply	Year-round
Open water fish and shellfish use ¹	30-day mean \geq 5.5 mg/l (tidal habitats with \leq 0.5 salinity)	Growth of tidal-fresh juvenile and adult fish; protective of threatened/ endangered species	Year-round
	30 -day mean ≥ 5 mg/l (tidal habitats with > 0.5 salinity)	Growth of larval, juvenile, and adult fish and shellfish; protective of threatened/endangered species	
	Seven-day mean ≥4 mg/l	Survival of open water fish larvae	
	Instantaneous minimum ≥3.2 mg/l	Survival of threatened/endangered sturgeon species ¹	
Deep water seasonal fish and shellfish use	30-day mean ≥3 mg/l	Survival and recruitment of bay anchovy eggs and larvae	June 1-September 30
	One-day mean ≥2.3 mg/l	Survival of open water juvenile and adult fish	
	Instantaneous minimum ≥ 1.7 mg/l	Survival of bay anchovy eggs and larvae	
	Open water fish and shellfish designated	use criteria apply	October 1-May 31
Deep-channel seasonal refuge use	Instantaneous minimum ≥1 mg/l	Survival of bottom-dwelling worms and clams	June 1-September 30
-	Open water fish and shellfish designated	use criteria apply	October 1-May 31

¹At temperatures considered stressful to shortnose sturgeon (Acipenser brevirostrum) (>29°C) dissolved oxygen concentrations above an instantaneous minimum of 4.3 mg/l will protect survival of this list sturgeon species.

Water Quality Criteria Water Clarity/SAV

TABLE 2. Options for Measuring Attainment of the Chesapeake Bay Shallow Water Designated Use.

Measure of Attainment	Option		
Submerged aquatic vegetation acres only	The single best year of SAV acreage mapped through the bay-wide aerial survey in the pas three years passes attainment of water clarity standards if the acreage in a management segment is equal to or higher than the segment-specific SAV restoration goal target		
Water clarity acres only	If a segment does not pass its SAV acreage goal with aerial survey data, and there are available water quality mapping data, achievement of a water clarity criteria acreage necessary to support the SAV acreage goal can be assessed. Water clarity acres can be assessed regardless of whether or not SAV is present. Water clarity acre goals are 2.5× th SAV goal acres in a Chesapeake Bay management segment		
Integrated measure of submerged aquatic vegetation and water clarity acres	A combination assessment of mapped SAV and water clarity acreage that, taken together, meets acreage goals		

Note: SAV, submerged aquatic vegetation.

TABLE 3. Chesapeake Bay Water Clarity Criteria.

			Wate	r Clarit	y Crite	ria as S	ecchi D	epth		
	Water Clarity Criteria Application Depths									
	Water Classic	0.25	0.50	0.75	1.0	1.25	1.50	1.75	2.0	
Salinity Regime	Water Clarity as Percent Light Through Water (%)	Secchi Depth (meters) for Above Criteria Application Depths					Temporal Application			
Tidal fresh	13	0.2	0.4	0.5	0.7	0.9	1.1	1.2	1.4	April 1-October 31
Oligohaline	13	0.2	0.4	0.5	0.7	0.9	1.1	1.2	1.4	April 1-October 31
Mesohaline	22	0.2	0.5	0.7	1.0	1.2	1.4	1.7	1.9	April 1-October 31
Polyhaline	22	0.2	0.5	0.7	1.0	1.2	1.4	1.7	1.9	March 1-May 31, September 1-November 30

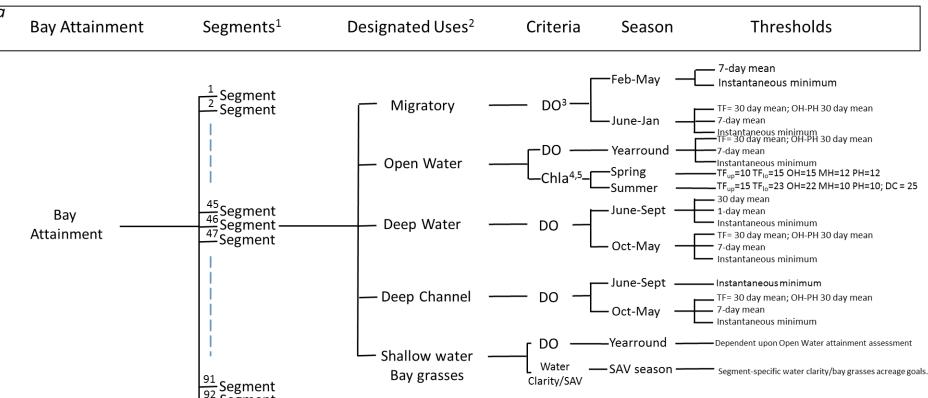
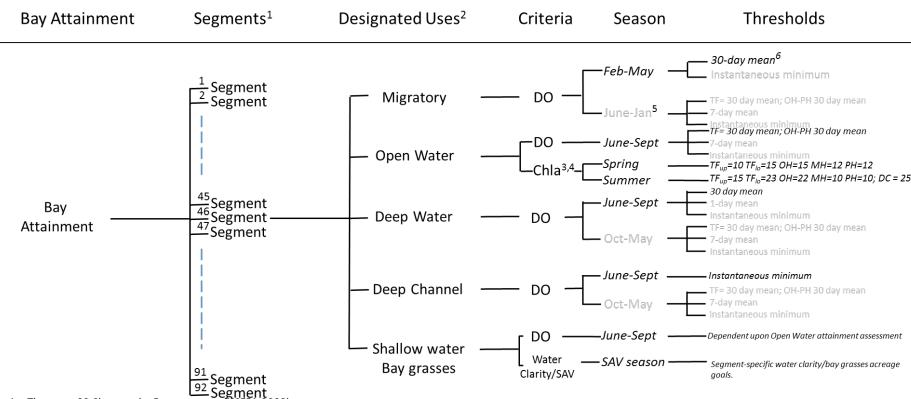

Water Quality Criteria Chlorophyll-a (recommended)

TABLE 5. Chesapeake Bay Chlorophyll a Derivations Toward Numerical Criteria (summarized from USEPA, 2007b).

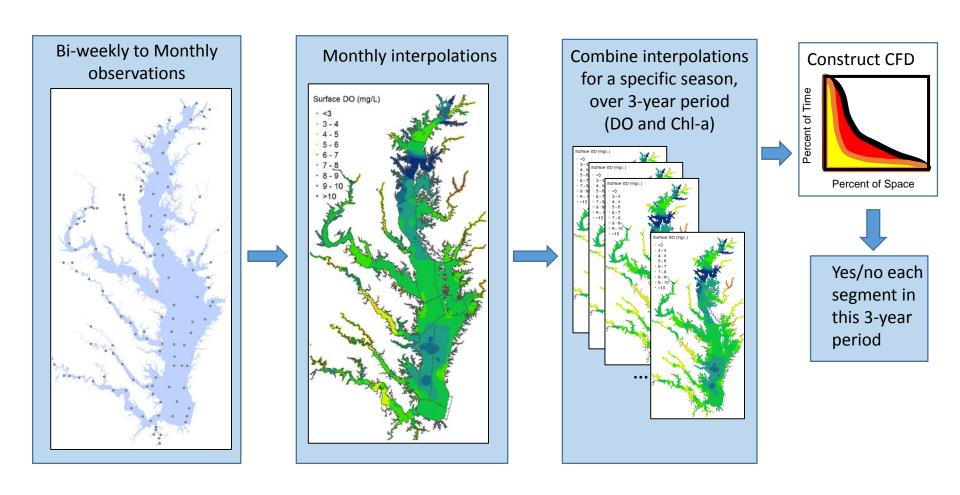
Method	Season	Salinity Zone	Criteria	Application
Historical	Spring	OH	18	90th percentile of a log normal
reference DO		MH	8	distribution
		PH	4	
	Summer	OH	46	90th percentile of a log normal
		MH	23	distribution
		PH	5	
DO impairment	Annual	TF-OH-MH-PH	10-15	Mean, deep water
-			30	Mean, shallow water
Water clarity	SAV growing	TF-OH	43, 11, N/A	Seasonal means for restoration
reference condition	season	MH-PH	39, 16, 3	targets of clarity are 0.5-, 1.0-, and 2.0-m depths, respectively
HAB impairment	Summer	TF-OH	27.5	90th percentile of a log normal distribution

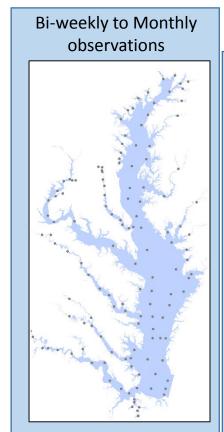
Note: TF, tidal fresh; OH, oligohaline; MH, mesohaline; PH, polyhaline; DO, dissolved oxygen; SAV, submerged aquatic vegetation; HAB, harmful algal bloom.

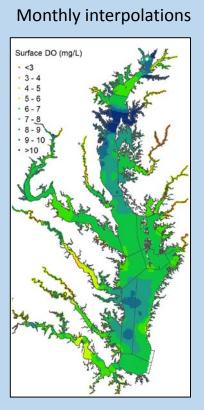

FULL Water Quality Standards Attainment Assessment for Chesapeake Bay Dissolved Oxygen, Water Clarity and Chlorophyll

- 1. There are 92 Chesapeake Bay segments (USEPA 2008)
- 2. Designated uses are segment specific. Not all designated uses apply to each Chesapeake Bay segment
- 3. DO = dissolved oxygen. Thresholds are listed in USEPA 2003, Executive summary, Table 1,
- 4. Salinity zone-specific thresholds on the James River, VA: TF_{up}=Tidal Fresh upper segment, TF_{lo}=Tidal Fresh lower segment, OH=Oligohaline, MH=Mesohaline, PH=Polyhaline. DC= Washington District of Columbia.
- 5. The James River chlorophyll a criteria are assessed for attainment of a geometric mean measure of the water quality.

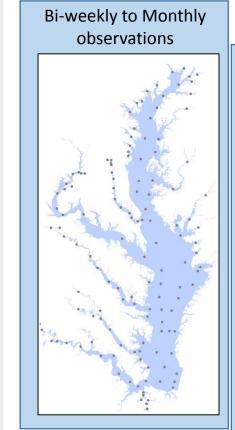
Water Quality Criteria Indicator Assessment

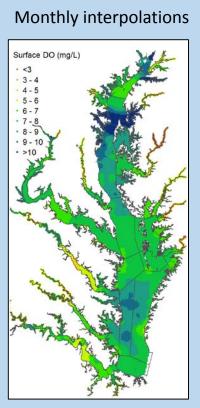

INDICATOR Water Quality Standards Attainment Assessment for Chesapeake Bay DO, Water Clarity and Chlorophyll a


- 1. There are 92 Chesapeake Bay segments (USEPA 2008)
- 2. Designated uses are segment specific. Not all designated uses apply to each Chesapeake Bay segment.
- 3. Salinity zone-specific thresholds on the James River, VA: TF_{up}=Tidal Fresh upper segment, TF_{lo}=Tidal Fresh lower segment, OH=Oligohaline, MH=Mesohaline, PH=Polyhaline. DC= Washington District of Columbia.
- 4. The James River chlorophyll a criteria are assessed for attainment of a geometric mean measure of the water quality.
- 5. Gray text are elements of the full water quality standards attainment not included in the indicator calculations.
- 6. USEPA (2003) does not have a 30-day mean Feb-May DO threshold. The decision for the indicator used a 30-day mean of 6 mg/l as Feb-May DO threshold, same as the 7-day mean.


Outline

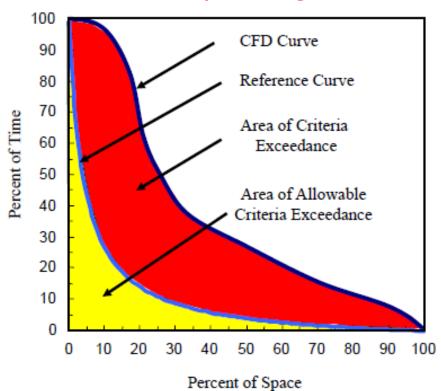
- 1. Collect data at ~ 175 long-term water quality monitoring locations.
 - generally 2/mo May–September 1/mo at other times
 - Average if >1 data in a given month.
- 2. Spatially interpolate the monthly data across each of the 92 segments using the following method.
 - Vertically interpolate for a sampling cruise (first or second) (grid resolution: 1 m)
 - Horizontal interpolation of a cruise (grid resolution: 1 km²).
 - If 2 or more cruises in a month, average interpolations within that month.
 - Apportion results by designated uses.



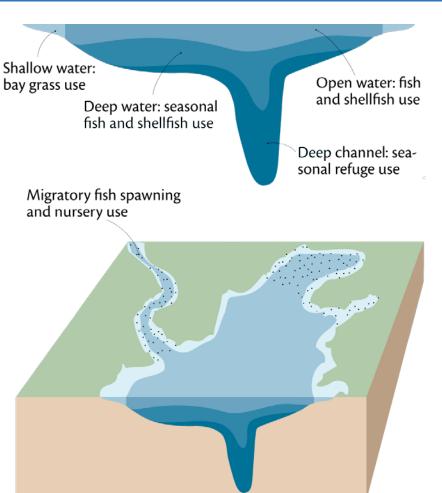


Parameters Involved

- DO in mg/L
- SAV acreage
- in vivo fluorescence and chlorophyll a measurements (ug/L).
- Secchi depth (m)
- salinity (unitless)
- water temperature (T oC)


→ Salinity and water temperature are necessary to compute the vertical density structure of the water column, which is translated into designated use layers for open water, deep water, and deep channel boundaries of the DO attainment assessments.

- 3. Determine the compliance status of each cell in the segment volume.
- 4. Produce a percent compliance matrix with sample period and percent space in compliance.
- 5. Rank the percent compliance in space from greatest to lowest values and assign percent of time associated with the compliance values.
- 6. Plot ranked percent space (x-axis) against percent time (y-axis).
- 7. Evaluate compliance against the reference curve.



Single combined indicator

A Bay-wide fractional attainment indicator computed on a surfacearea basis for all designated uses

- Equal weight of the three criteria for each segment
- Surface area-weighting (considering relative size)

Criteria	Designated Use	Threshold	Number of Applicable Segments
Dissolved Oxygen	Open Water (OW)	30-day mean, June- September	92
	Deep Water (DW)	30-day mean, June- September	18
	Deep Channel (DC)	Instantaneous, June- September	10
Chlorophyll-a	Open Water (OW)	Chlorophyll-a concentrations	7
SAV and or	Shallow Water (SW)	Segment-specific	79
Water Clarity		water clarity and bay	(91/104
		grass acreage goals	split)

Conceptual diagram illustrating the designated use areas in Chesapeake Bay to help determine threshold values needed for different indicators when reporting water clarity, and other water-quality indices.

Diagram courtery of the Integration and Application Network (ian.umces.edu), University of Maryland Center for Environmental Science. Source: Longstaff, B.J., T.J.B.
Carruthers, W.C. Dennison, T.R. Lookingbill, J.M. Hawkey, J.E. Thomas, E.C. Wicks, and J. Woerner (eds) (2010) integrating and applying science: A handbook for effective coastal ecosystem assessment. IAM Press, Cambridge, Maryland.

The attainment indicator presently uses a subset of the criteria otherwise necessary for a complete accounting of the three WQ criteria categories.

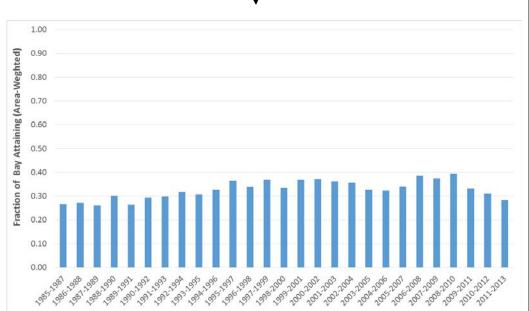
1. DO Criterion

- **Assumption**: the attainment of the **30-day mean** dissolved oxygen criterion can serve as an "umbrella" assessment to the remaining criteria applicable.
- Migratory Fish and Spawning Nursery: applied the **6 mg/L** 7-day mean DO criterion as if it were a 30-day mean to represent protections.
- Open-Water: 5 mg/L 30-day mean DO criteria.
- Deep-Water: 3 mg/L 30-day mean DO criteria.
- Deep-Channel: 1 mg/L instantaneous minimum DO criteria.

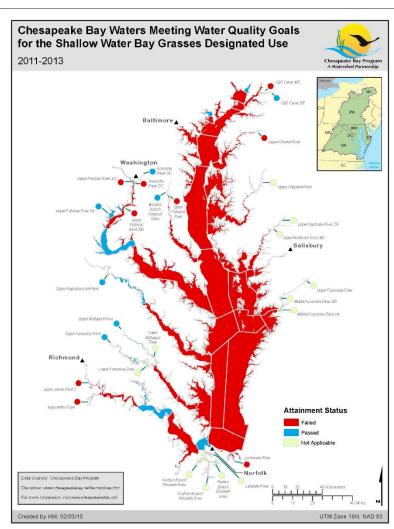
2. Shallow-Water SAV Criterion

When water clarity assessment data are available, the shallow-water bay grasses designated use is considered in attainment if:

- 1. sufficient acres of SAV are observed within the segment; and/or
- 2. enough acres of shallow-water habitat meet the applicable water clarity criteria to support restoration of the desired SAV acreage for that segment.

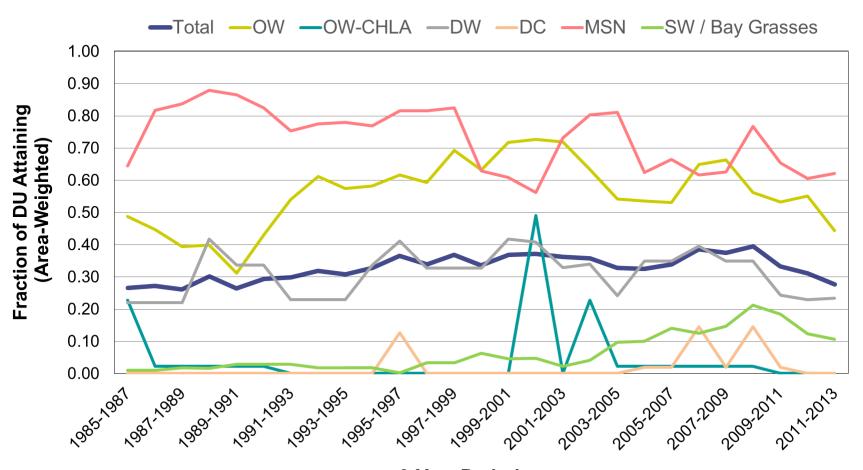

3. Chlorophyll criterion

- Applied to the open-water designated use for:
 - James River segments: Criteria attainment assessed during spring (Mar1-May31) and summer (Jun1-Sep30) seasons; both seasons must be meeting the standards for the segment to be in attainment.
 - District of Columbia's Upper Potomac River and Anacostia River segments: Criteria attainment only assessed during the summer (Jun1–Sep30) season.


1+2+3. Single combined indicator

- Summarized for every applicable designated use and criteria contained within each of the 92 segments.
- A Bay-wide fractional attainment indicator.
 - Equal weight of the three criteria for each segment
 - Surface area-weighting (considering segments' relative size)

Area-Weighted Fraction of Bay In Attainment for Each 3-year Period



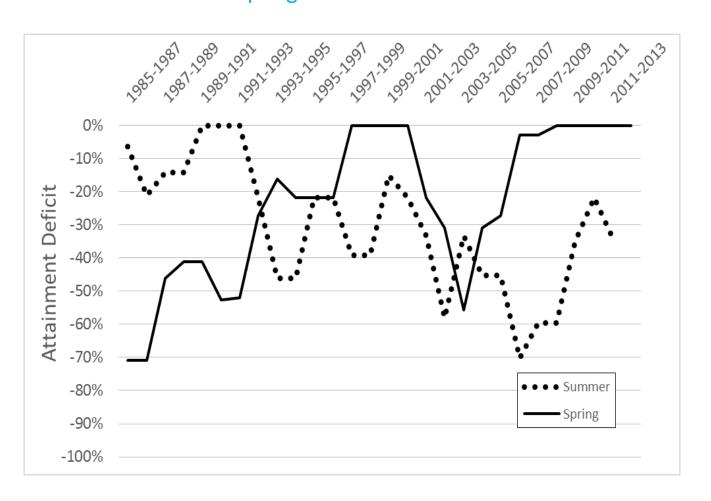
Single 3-year Period Pass/Fail for Shallow Water Segments

Water Quality Criteria Attainment Indicator By Designated Use

Attainment by Designated Use 1985-2013

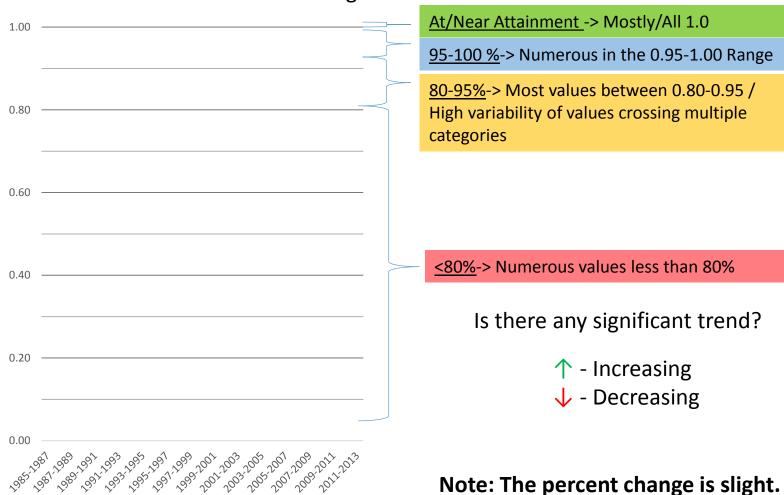
Outline

Percent to Attainment If not at attainment, is it getting closer?

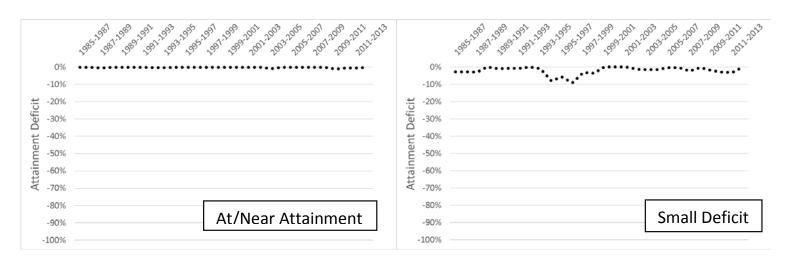

- Single Segment Attainment
 - Is criteria met? Yes/No
 - Either 0 or 1
- Single Segment Percent to Attainment (or Deficit)
 - How close is the segment to attainment?
 - Percent to attainment = 100% –
 percent segment out of attainment
 (%)
 - For DO and Chlorophyll DUs, this is both spatial and temporal (CFD Curves)
 - SW based on acreage goal
 - Are they getting closer to or farther away from attainment in each segment?
 - Previous work led by Mindy Ehrich

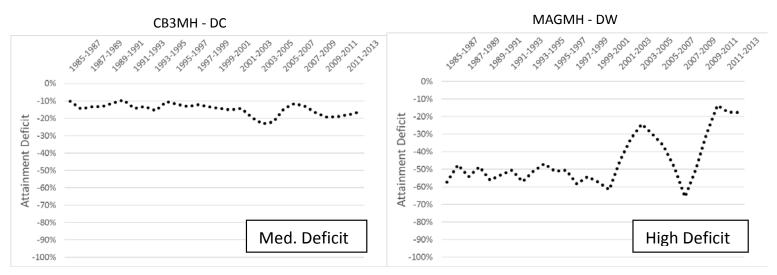
Segment X Open Water DO

Years	Attainment	Percent to Attainment
1985-1987	Υ	0
1986-1988	Υ	0
1987-1989	Υ	0
1988-1990	Υ	0
1989-1991	Υ	0
1990-1992	Υ	0
1991-1993	Υ	0
1992-1994	N	-2.94
1993-1995	N	-9.03
1994-1996	N	-9.04

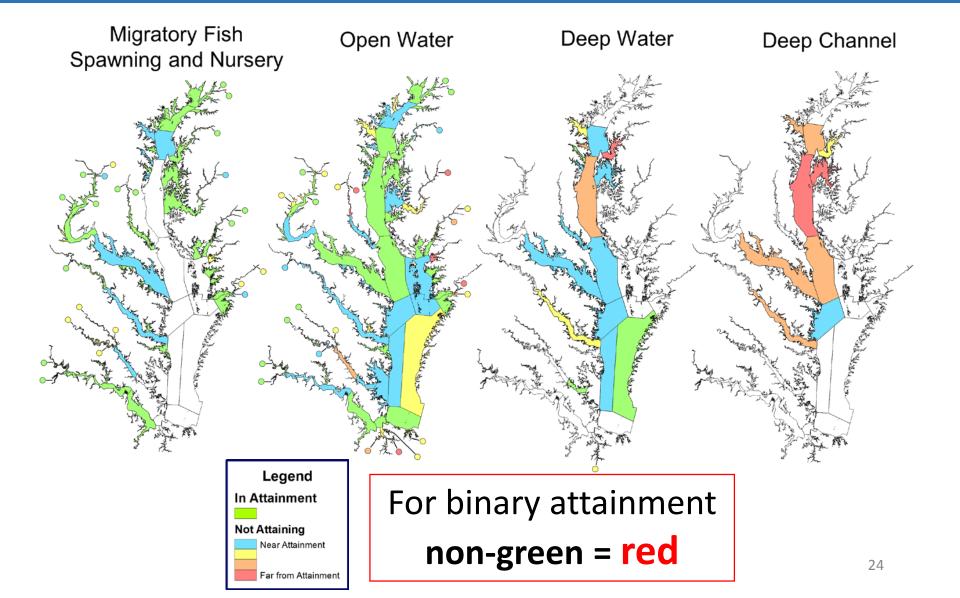

Percent to Attainment If not at attainment, is it getting closer?

Segment <u>JMSPH</u> (Mouth of James River)
Chl-a summer and spring attainment deficits from 1985-2014

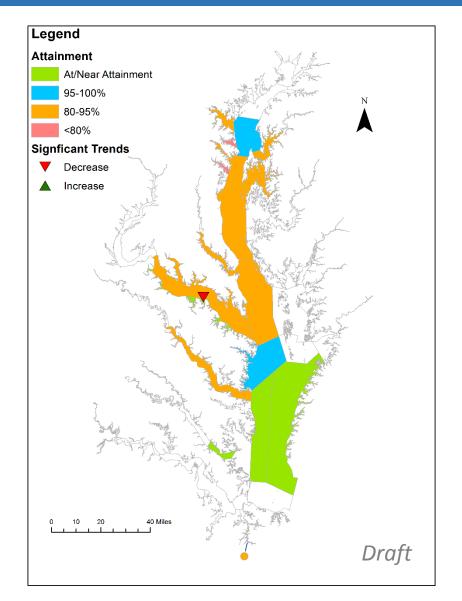



Percent to Attainment Categorization for Dissolved Oxygen

How close to attainment is the segment?



Percent to Attainment DO



Percent to Attainment DO 2011-2013

Percent to Attainment Deep Water DO 1985-2013

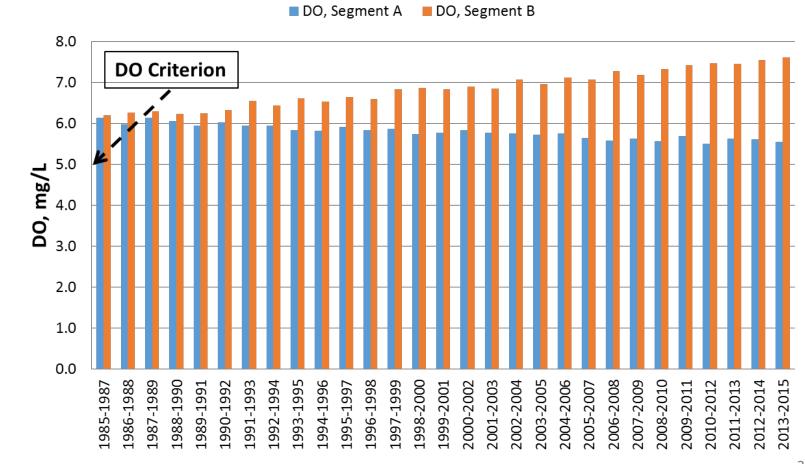
Category	Count	Category	Count
At/Near Attainment	4	80-95%	10
95-100%	2	<80%	2

Trends				
Significant ↑	0			
Significant ↓	1			

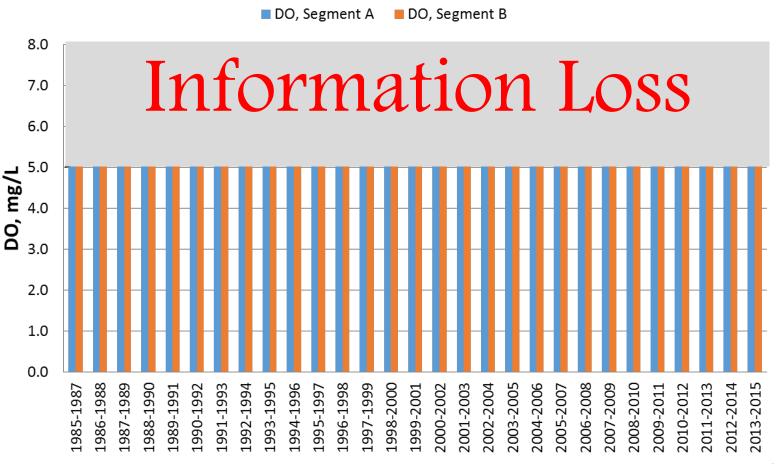
- not been near attainment over the time series.
- The Lower Bay is doing well.
- Mid Bay is not doing well, and the Lower Potomac River has been degrading.

Outline

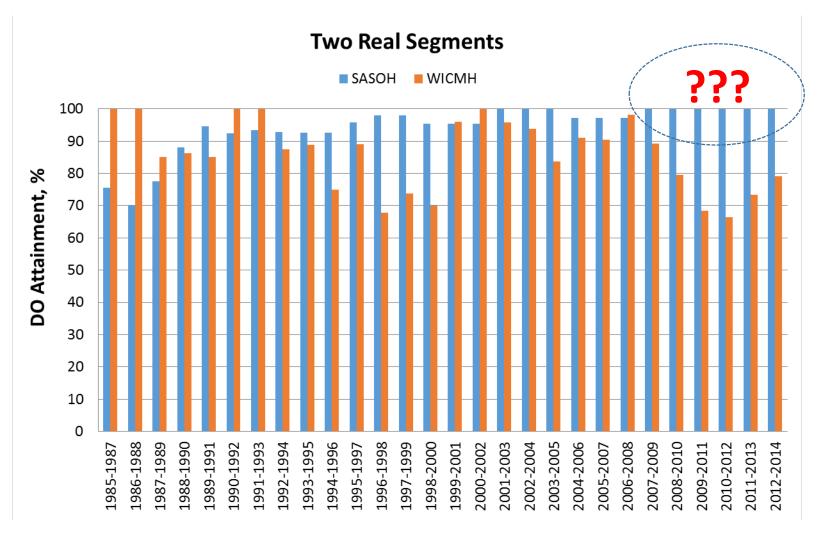
Beyond Capacity


If at attainment, how much buffer does it have?

- Single Segment Attainment
 - Is criteria met? Yes/No
 - Either 0 or 1
- Single Segment Percent to Attainment
- Single Segment Beyond Capacity
 - How much buffer does the segment have?
 - Manipulating the thresholds (e.g., DO criteria) to test the "<u>resiliency</u>" of the segments with respect to a specific criterion
 - What is the max DO threshold for a segment to be classified as at attainment?
 - Examine trend in "resiliency"


PAXTF OW DO

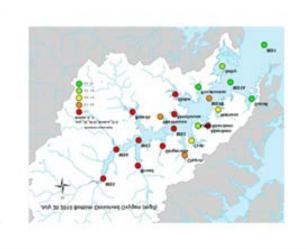
Years	Attainment	Percent to Attainment	Beyond Attainment
1985-1987	Υ	0	+?
1986-1988	Υ	0	+?
1987-1989	Υ	0	+?
1988-1990	Υ	0	+?
1989-1991	Υ	0	+?
1990-1992	Υ	0	+?
1991-1993	Υ	0	+?
1992-1994	N	-2.94	-2.94
1993-1995	N	-9.03	-9.03
1994-1996	N	-9.04	-9.04


Two Hypothetical Segments

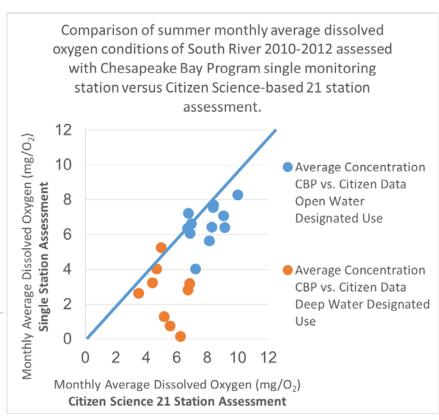
Two Hypothetical Segments

SASOH: Sassafras River WICMH: Wicomico River

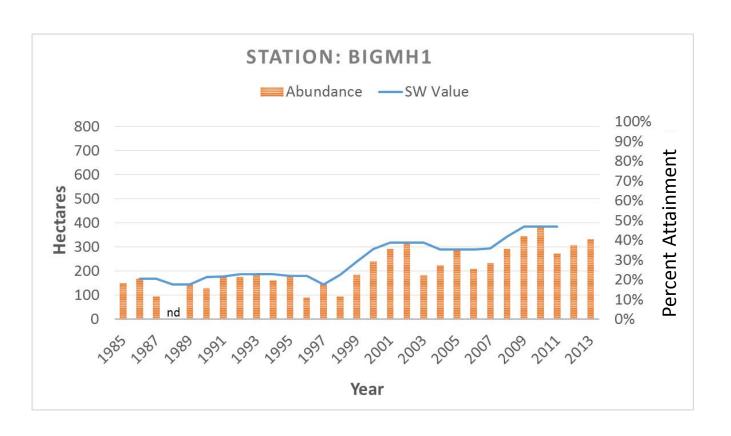
Outline

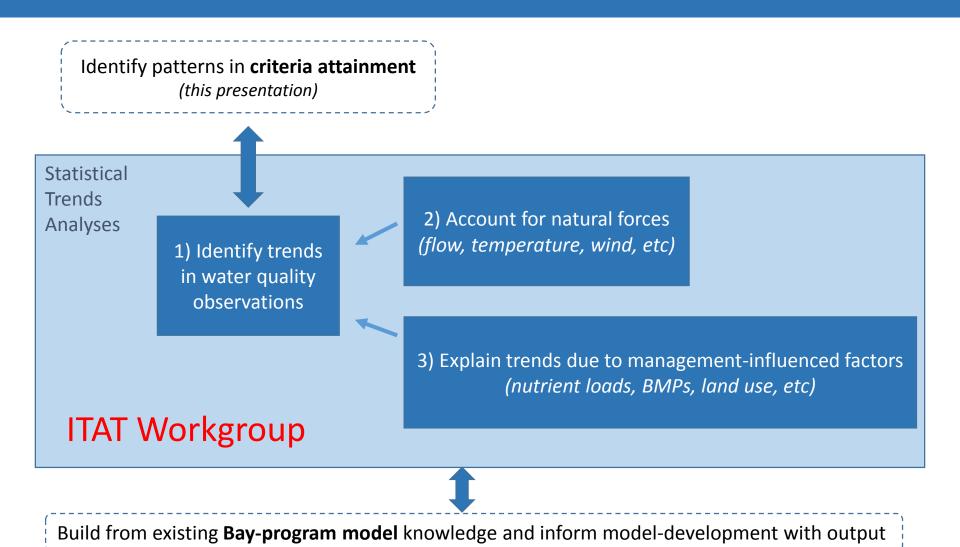

Things to Consider

- The indicator has rules for overcoming the lack of full information on short-term criteria required for declaring a segment's full status.
- We can show the raw accounting compared to data that are missing, if the true attainment measure is wanted.
- The "attainment deficit" and "beyond attainment" quantification provides new information on water quality conditions and trends potentially useful for guiding decision making through more targeted allocations of resources.
 - 2 "failed" segments can be different in terms of severity.
 - 2 "passed" segments can be different in terms of resiliency (and our confidence/certainty in the attainment status).


Data Resolution Uncertainty in Attainment Results

CBP monitoring 1-station


South River Federation monitoring 21-stations


Greater spatial resolution with Cit Sci monitoring suggests that dissolved oxygen conditions are often better in South River than we see with CBP-only data34

Linking to Monitoring Data SW/SAV example

Does the monitoring data tell the same story as the attainment values?

Linking to Watershed Factors

Potential Next Steps

Suggestion? Priority? Timeline? Workplan? Communication?

- 1. Develop "Beyond Capacity" by manipulating thresholds
- 2. Incorporate new assessment protocols for handling short-duration criterion
- 3. Identify and compare long-term trends in (binary) attainment, attainment deficit, and beyond capacity
- 4. Visualize spatial patterns in attainment (with maps)
- 5. Compare attainment results with findings from trend analysis of station-based data (e.g., GAMs)
- 6. Link results to watershed factors (on tributary basis?)
- 7. Evaluate segment behaviors by groups (salinity, rivers, etc)
- 8. Explore/test volume-based indicators (e.g., hypoxic volume)