

Future Directions and the Importance of Scale in Estimating Atmospheric Nitrogen Loading to the Next Generation Chesapeake Bay Model

Jesse O. Bash¹, Donna Schwede¹, Christian Hogrefe¹, Kristen Foley¹

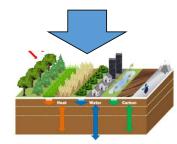
¹U.S. EPA ORD/CEMM

June 8th

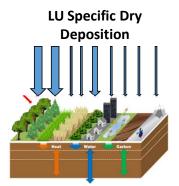
Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA.

Motivation

- Atmospheric nitrogen deposition contributes to surface water eutrophication and biodiversity loss
- Air quality models typically have a base resolution on the order of 1-36 km
 - Simulations at finer resolution are problematic due to bulk atmospheric physics parameterizations
- The next generation of distributed watershed models have a resolution in the tens of meters
 - Can we leverage sub-grid scale data to better match atmospheric loading to watershed models?



CMAQ v5.3


Deposition Updates

- Option to output land use specific deposition
 - Deposition fluxes estimated for each land use type
 - Land use based aggregation to the grid cell (NLCD or MODIS)
- More comprehensive parameterization of organic nitrogen chemistry and deposition
- Correction to coarse aerosol dry deposition

Grid Cell Average Dry Deposition

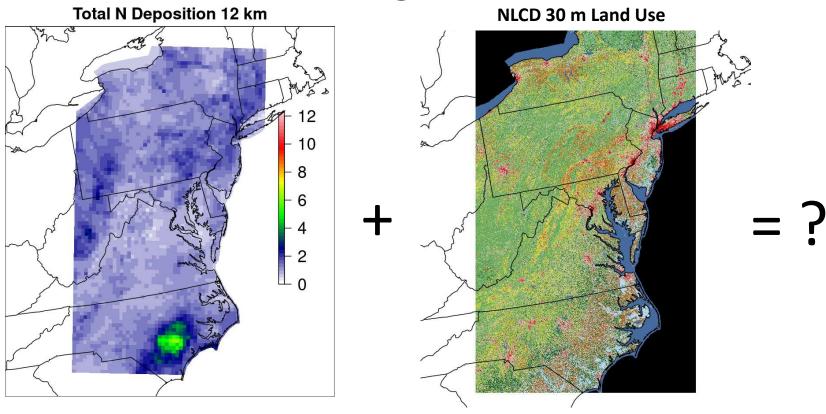
Earlier versions of CMAQ

CMAQ v5.3+

Wet Deposition Updates

- Annual 2016 model simulation
- CMAQ v5.3.1 precipitation was biased low compared to NADP/NTN observations in the summer months when deposition is usually the highest
- Model improvements due to updates to coarse aerosol treatment

Species	CMAQ v5.2.1 NMB	CMAQ v5.3.1 NMB
NO ₃ Wet Deposition	-14.8%	-9.1%
NH _x Wet Deposition	-50.0%	-43.7%
SO ₄ Wet Deposition	-28.5%	-22.4%
Precipitation	5.0%	-9.6%



Planned simulations

- Dry deposition by land use planned for 2002-2017
 - CMAQ v5.3.2 simulations
 - MODIS 250 m base resolution
 - 12 km grid resolution
- Air Quality Modelling Evaluation International Initiative (AQMEII)
 Phase 4
 - Dry deposition intercomparison project (primarily for ozone) including simulations for 2010 and 2016 as well as box model comparisons with field data
 - CMAQ v5.3 deposition will be well evaluated
- Potential 1990 simulation being scoped

How can we leverage sub-grid cell data?

Office of Research and Development Center for Environmental Measurement & Modeling

Disaggregating flux estimates

Grid cell flux

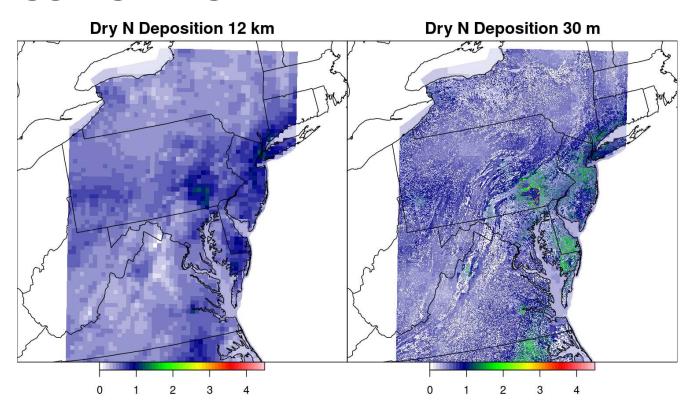
$$Flux_{Grid} = \sum_{LU} Frac_{LU,Grid} Flux_{LU,Grid}$$

Land use fraction

$$Frac_{LU,grid} = \frac{\sum_{i} LU_{i,30m}}{Area_{Grid}}$$

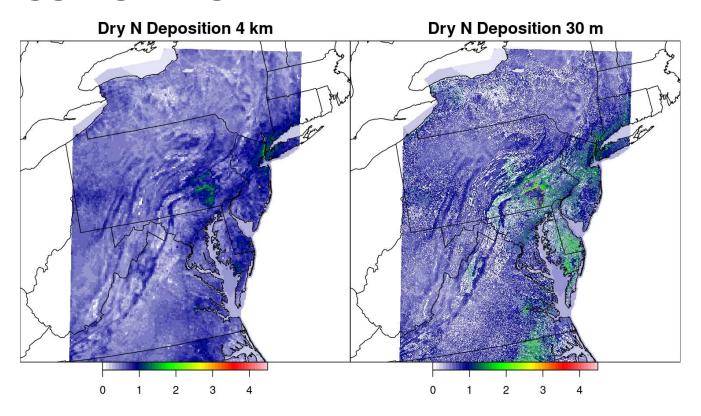
Disaggregated Flux

$$Flux_{Gri} = \sum_{LU} \left(\frac{\sum_{i} Flux_{LU,Grid} LU_{i,30m}}{Area_{Grid}} \right)$$

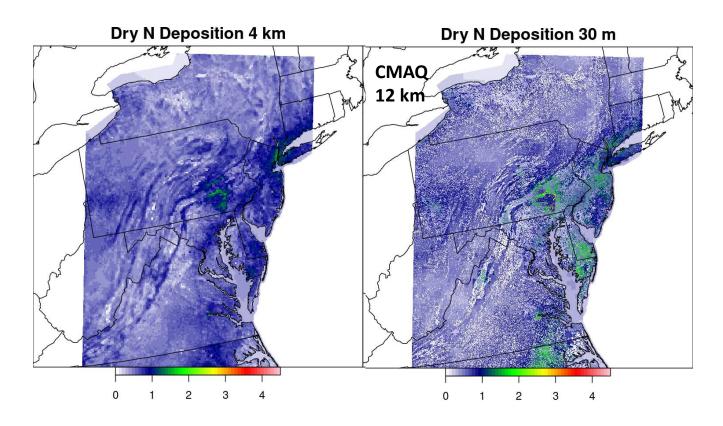


Disaggregating Flux Estimates

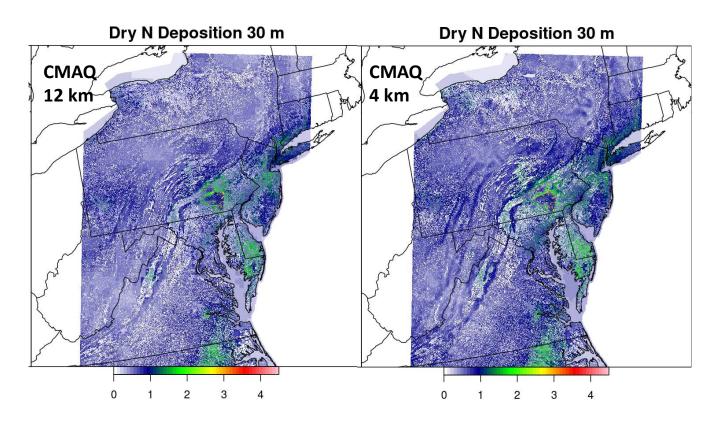
- Developed an R script to disaggregate land use specific flux data
- Confirmed that the mass of the 30m disaggregated flux is equivalent to the 12 km grid cell flux
- 30 m fluxes estimated for CMAQ 5.3 July 2014 simulations at a 12 and 4 km resolution over the Chesapeake Bay Watershed
 - ~10 hours of processing time on one core for an annual simulation
 - Viable for production runs
 - Not exactly an exact comparison
 - 4 km used CMAQ v5.3 beta and 12km used CMAQ v5.3.1



Disaggregating flux estimates 12km



Disaggregating flux estimates 4km

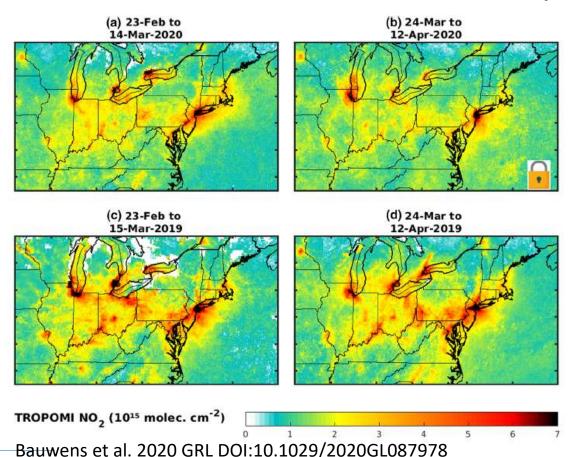


12 km versus 4 km fluxes

12 km versus 4 km fluxes

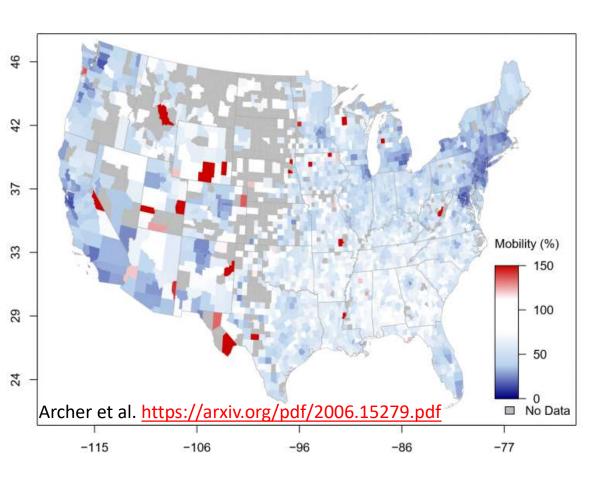
Summary Part 1

- The land use specific fluxes can differ from grid cell fluxes by a factor of two
 - Forested land use types have the largest deposition fluxes
 - Highest deposition rates are where forested landscapes are collocated with high emission sources
- Deposition hot spots are focused around NH₃ emission sources
 - Higher levels of deposition are not seen in the I-95 corridor (a large NOx source)
 - NO_x deposits relatively slowly
 - HNO₃ deposits quickly but is a secondary pollutant (formed downwind from sources)
- 12 km and 4 km simulations resulted in remarkably similar deposition totals over the domain
 - 4 km domain had more variability in deposition



Summary Part 2

- Improvements in modeled wet deposition when compared to NADP observations
 - Despite larger precipitation biases in the more recent WRF simulations used for the comparison
- Land use specific fluxes can be disaggregated and still maintain the model mass balance
 - Code has been developed to do this disaggregation
- Increased model spatial resolution primarily impacts reduced nitrogen deposition near ammonia emission sources and wet deposition
- Disaggregated 12 km model data captures much of the spatial variability of the 4 km simulations


COVID 19 and Air Quality

- NO₂ OMI and TROPOMI columns
 10-12% lower in the US
 - Approximately 28% lower over major Northeastern Cities
- This change in emissions is likely to have an impact on atmospheric N deposition
- How do we translate the observational data into model emissions?
- Similar reductions not seen in PM_{2.5}

COVID 19 and Emissions Modeling

- Where will emissions be reduced
 - Decrease in mobility has been documented
 - Other sectors?
- Likely to impact NO₂ emissions and HNO₃ deposition primarily
- Data is still coming in and being collected
 - Some will be delayed

2020 National Emissions Inventory

- National Emissions Inventories (NEI) are compiled every three years currently
 - 2020 is an NEI year
- Will not be a good base year due to COVID 19 and emission anomalies
- Emission activity data will be arriving late
 - Due to workplace disruptions from COVID 19
 - Typically about 2 years to compile data and estimate emissions for a public release
- Will be collaborating with a COVID modeling team