
Are Blue & Flathead Catfishes Invasive in Tributaries of the Chesapeake Bay?

Mary C. Fabrizio (VIMS)

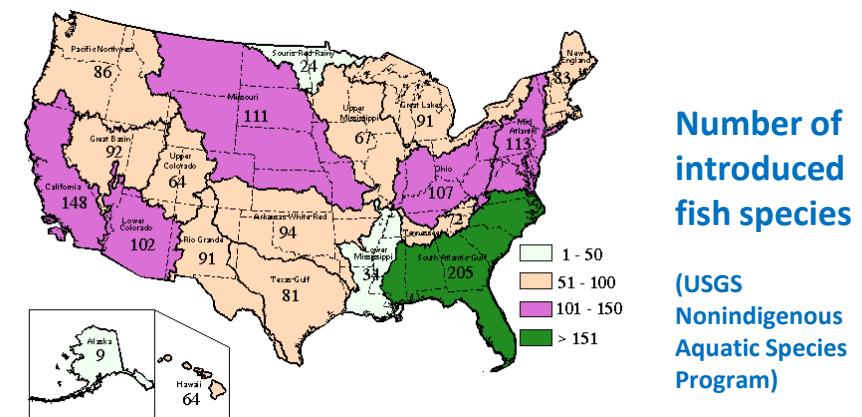
Greg Garman (VCU)

Bob Greenlee (VDGIF)

Mary Groves (MDNR) and
Nancy Butowski (MDNR)

What is an “Invasive Species”?

- National Invasive Species Council 2006 – an alien species whose introduction does or is likely to cause economic or environmental harm or harm to human health
- National Invasive Species Management Plan – a nonnative species that may prey upon, displace or otherwise harm native species, or alter ecosystem processes



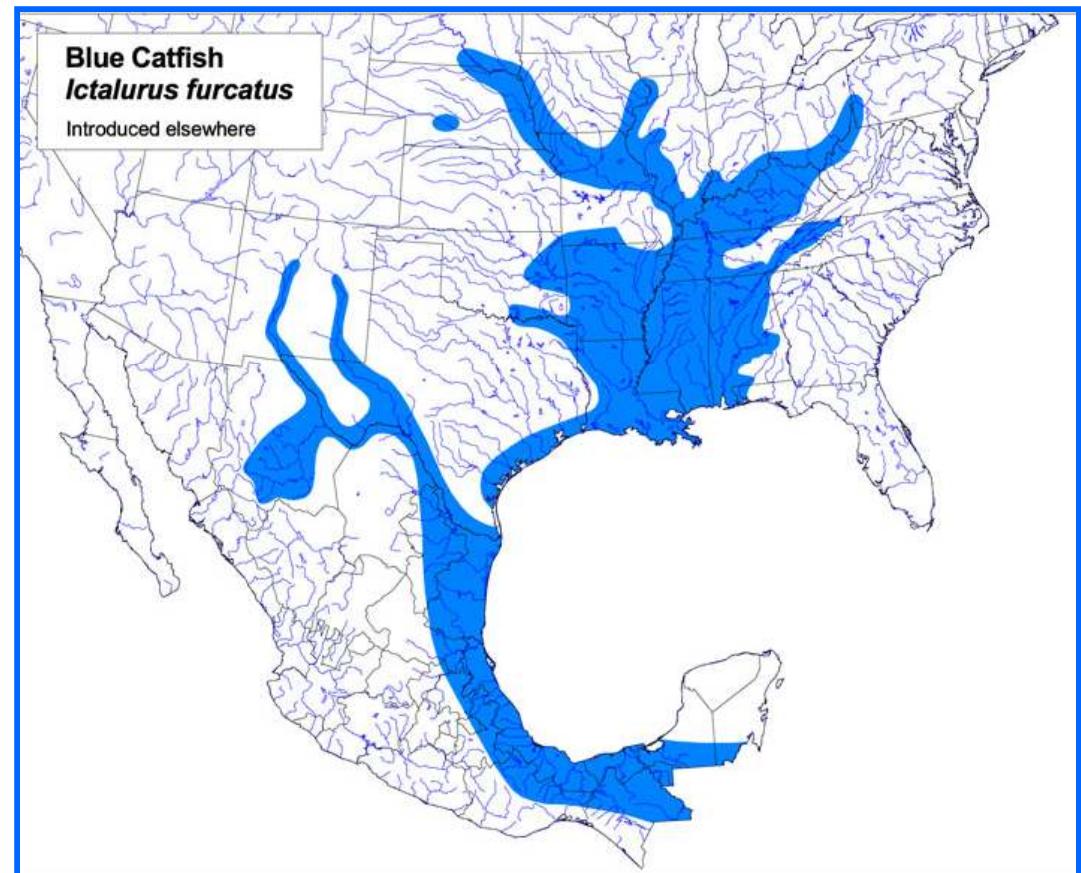
DAVE GRANLUND © www.davegranlund.com

Introduced Species

- May not be invasive
- May have the potential for ecological harm, but may not be targeted for management action
- What is degree of harm to the environment, the economy, or human health?
 - Determine prior to implementing a baywide management plan

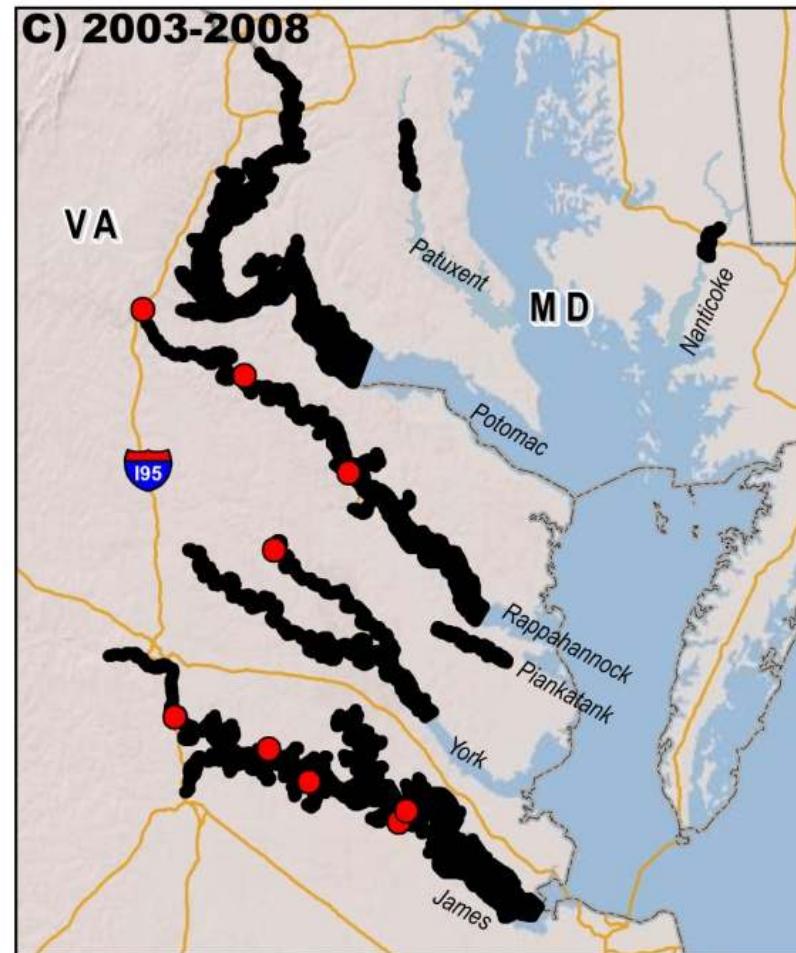
Introduced Catfishes

Blue catfish *Ictalurus furcatus*



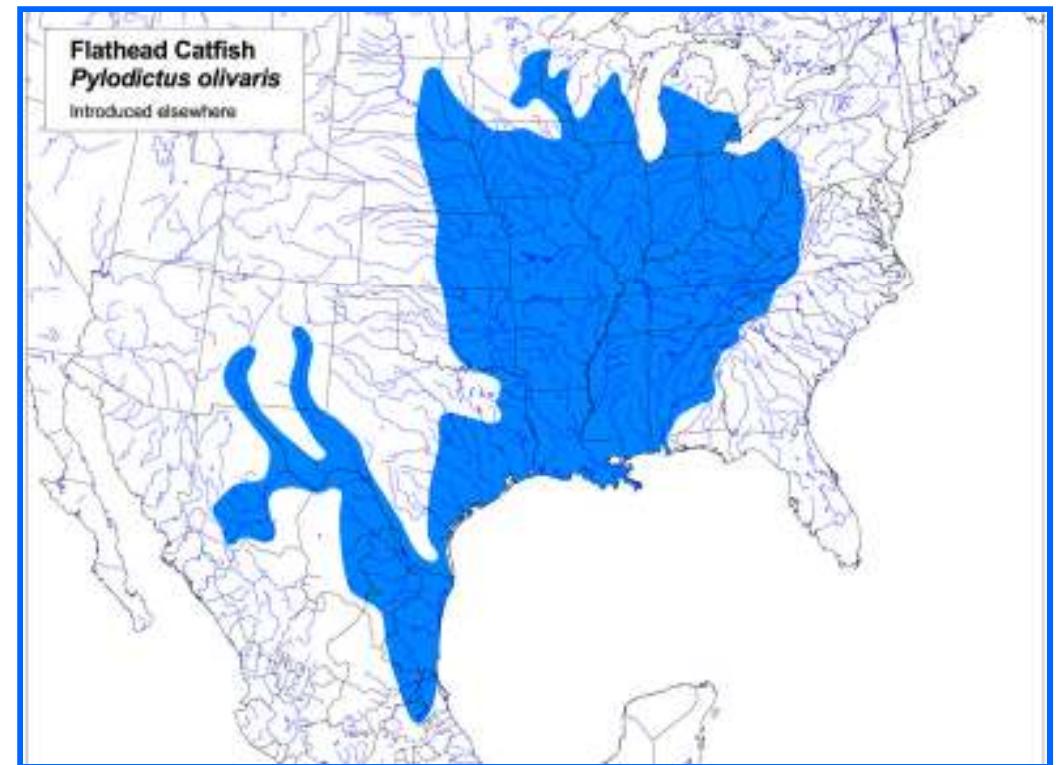
Flathead catfish *Pylodictis olivaris*

Blue Catfish


- Native to Mississippi, Missouri, & Ohio River drainages

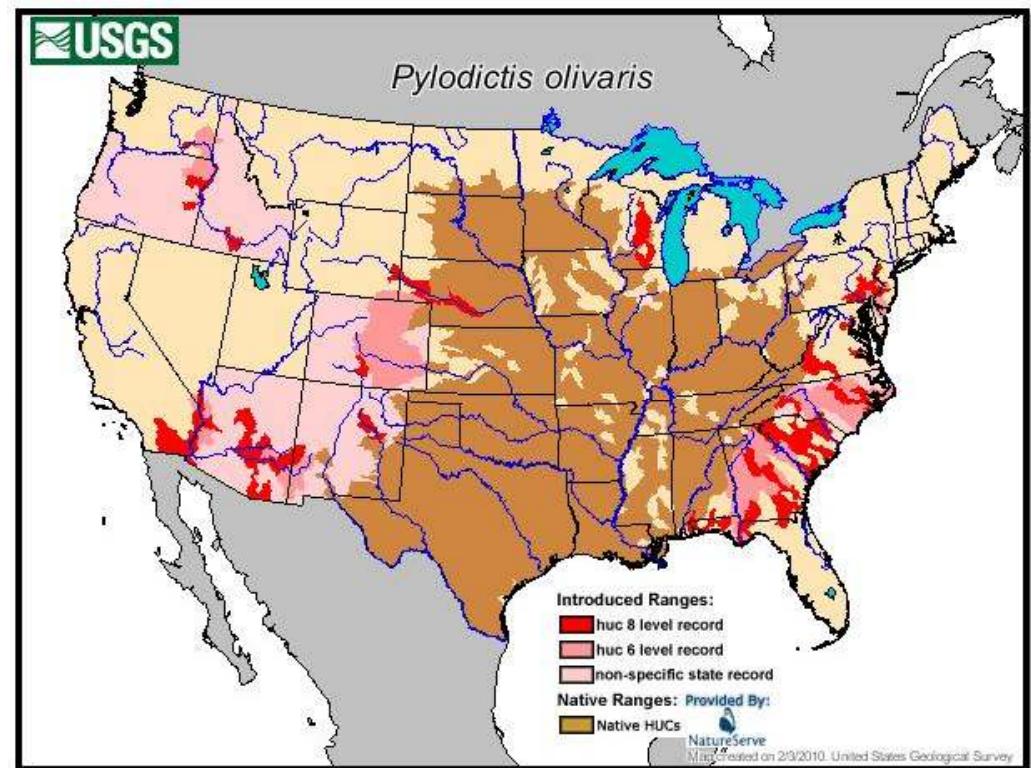
FL Museum of Natural History

Blue Catfish


- Native to Mississippi, Missouri, & Ohio River drainages
- Introduced in 1970s, 1980s

Current distribution of blue catfish
(not shown: Susquehanna River)

Flathead Catfish


- Native to Mississippi, Missouri, & Ohio River drainages

FL Museum of Natural History

Flathead Catfish

- Native to Mississippi, Missouri, & Ohio River drainages
- Introduced 1965-1970
- Currently found in
 - James River
 - York River
 - Potomac River
 - Susquehanna River

Predictors of Invasiveness

Predictor	Blue Catfish	Flathead Catfish
High propagule pressure	?	?
Prior invader	X	X
Large native range	X	X
Environmental tolerance	X	X
Long life span	X	X
Large body size	X	X
High adult trophic status	X	X
Broad diet	X	
Fast growth		X
High fecundity	X	
Parental care	X	X

Other predictors: short distance to native source; young age at maturity; large egg diameter; long reproductive season

Expansion of Established Populations

- Aided by tolerance for wide range of environmental conditions

Photo courtesy USFWS/Duane Raver

Duane Raver

- Aided by high densities of fish in new environment + high river flow

Photo courtesy USFWS/Duane Raver

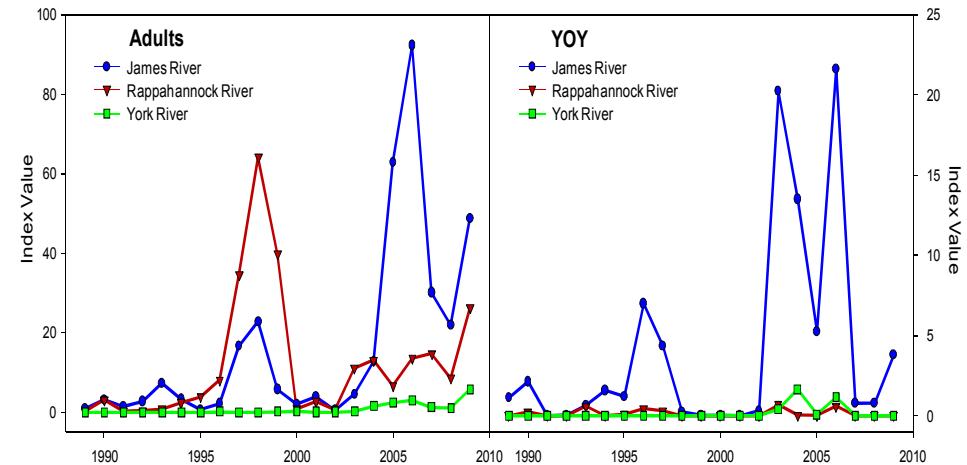
- Aided by angler redistribution

MD

MD, VA

Blue & Flathead Catfishes in the Chesapeake Bay Region

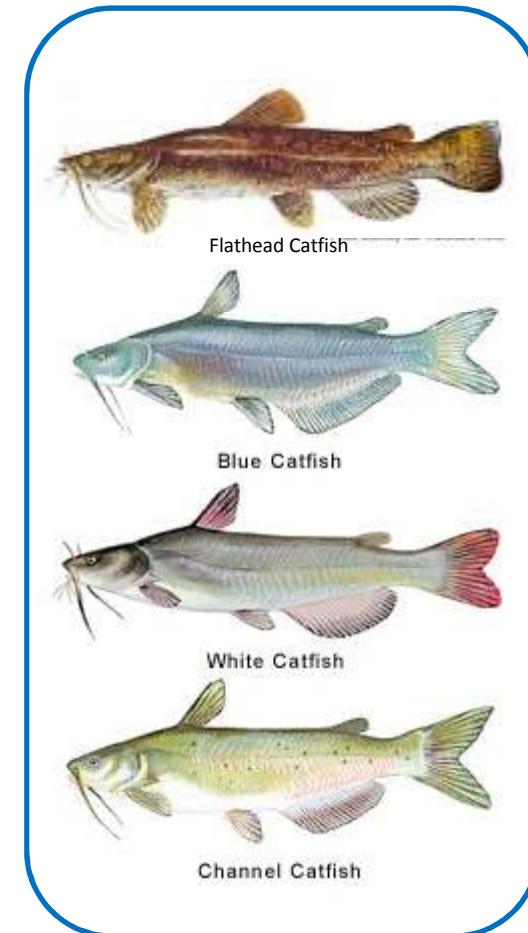
- MAPAIS recognized both as invasive species of interest in 2007
- Outside of their native range, both species are considered ‘biologically harmful’ (Fuller et al. 1999; Pine et al. 2005)
 - Potentially negative effects on native fauna


Potential Negative Effects on Native Fauna?

- Blue catfish:
 - Expanded into mesohaline habitats
 - Large size (130 lbs, Missouri River, Jul 2010)
 - Long lived (30+ years)
 - Include fish in diet
- Flathead catfish:
 - Confined to nontidal & tidal FW and oligohaline habitats
 - Large size (123 lbs 9 oz, Kansas reservoir, May 1998)
 - Long lived (30+ years)
 - Include fish in diet

What Do We Know About the Invasiveness of These Catfishes?

- Distribution
- Diet & trophic status
- Growth
- Recruitment
- Age & size structure


- Caveat: information varies in terms of spatial and temporal coverage

Somewhat Limited Information

- Examine potential mechanisms that may lead to environmental or economic harm
- Identify critical knowledge gaps that warrant research

Potential Interactions Leading to 'Environmental Harm'

- Predation
- Competition

Predation Effects

- Blue catfish consume:
 - Crustaceans, worms, bivalves
 - Fish (>30 cm): American shad, Atlantic croaker, Atlantic menhaden, bay anchovy, blueback herring, blue catfish, gizzard shad, hogchoker, white perch
- Flathead catfish consume:
 - Fish (>20-25 cm)
- Both species:
 - Top predators
 - Feed on anadromous fishes (stable isotope analyses; MacAvoy et al. 2009)

Piscivory by Introduced Catfishes

- Extent and effects on native fish populations in Chesapeake Bay tributaries are poorly understood
- NC, GA: predation by flathead catfish associated with declines in native fishes (Pine et al. 2005; Bonvechio et al. *in press*)
- Blue catfish piscivory is size-dependent:

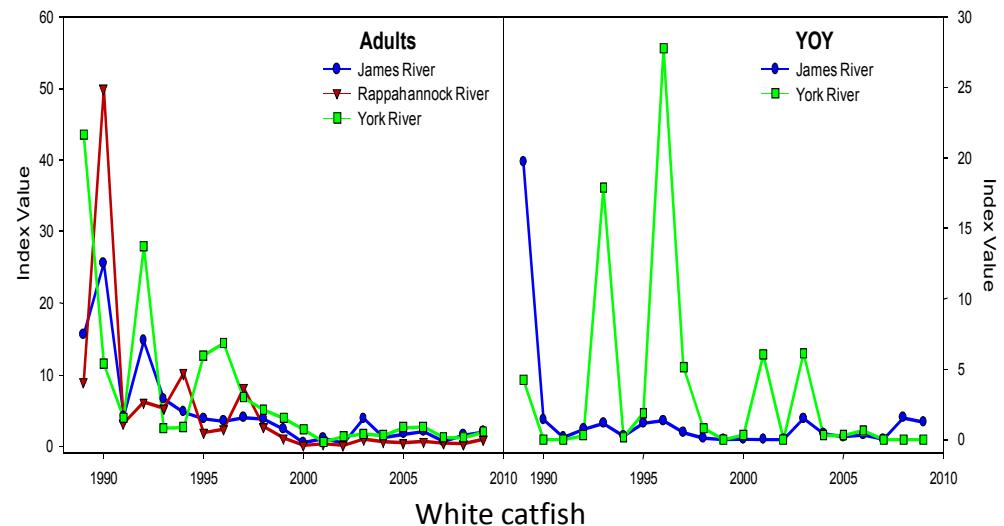
Proportion containing fish (number of non-empty stomachs)

Size class (cm FL)	James River 2002	James, York, Rappahannock rivers 2004 – 2007	Potomac River 2008 – 2010
<30	0 (52)	0.10 (765)	--
30 – 60	0.05 (92)	0.28 (265)	0.21 (108)
> 60	0.48 (61)	--	0.41 (108)

Effect of Size on Piscivory in Blue Catfish

- What proportion of the population consumes fish?
 - In James, only 7% of population exceeded 61 cm FL (2010 data; N=6,275)
- What is size structure of population?
 - Electrofishing not effective for sampling large catfishes
 - Bottom trawl not effective for sampling large catfishes
- Does size structure in freshwater and estuarine habitats differ?

Predation Effects or Scavenging?


- Flathead catfish prey only on live fish, but blue catfish are scavengers
- Is ingestion of fish due to directed predation or from scavenging of fish carcasses?
 - Spines, scales of large adult fish found in stomachs of small blue catfish

Competition

- Competition between native species and blue or flathead catfishes is not well documented
 - Native white catfish – rarely exceed 24" or 6 lbs
 - White catfish abundance in James, York, and Rappahannock rivers declined (Schloesser et al. *in press*)
 - White catfish abundance in Piankatank River declined
 - Cause & effect?

White catfish *Ameiurus catus*
(Illus. by Duane Raver)

Potential ‘Economic Harm’?

- Blue catfish as bycatch in gillnet fisheries in the Potomac River
 - Reduce gear efficiency for target species
 - Similar interactions in the James River?
- What is economic value of foregone harvest?

Conclusion

- Not possible to unequivocally demonstrate ‘ecological harm’ associated with these nonnative fishes
 - Such impacts have been documented in other systems

Flathead catfish (Photo: VA Tech)

Critical Knowledge Gaps

1. Zoogeographical studies
2. Population dynamics
3. Community-level effects
4. Control

Critical Gaps: Zoogeographical Studies

- Determine colonization rates of down-estuary sites by blue catfish in coastal tributaries; identify proximal stimulus for **down-estuary range expansion** of blue catfish; investigate effect of population density on colonization rates and range expansion
- Investigate effect of **population density in freshwater habitats** on abundance of blue catfish in lower reaches
- Determine **migration and movement** patterns of blue and flathead catfishes in tidal tributaries, especially movements associated with spawning and colonization (dispersal into estuarine reaches)
- Investigate **site fidelity of trophy-sized blue catfish**
- Identify critical **nursery areas in estuarine reaches** of the coastal tributaries
- Determine **salinity tolerance** of all life stages (eggs, larvae, juveniles, adults)

Critical Gaps: Population Dynamics

- Develop **sampling design and methods** to permit estimation of abundance (density) in freshwater and estuarine reaches; calibrate methods using estimate of population abundance derived from mark-recapture study
- Assess temporal **changes in biomass and fish community composition** for major tidal tributaries of the Bay; provide information to EcoPath models
- Determine **biomass, growth, and recruitment** of blue and flathead catfishes in major tidal tributaries of the Bay
- Determine **fecundity, maturity schedules, and spawning frequency** for these species in tidal tributaries
- Determine amount of **harvest** necessary to reduce population densities in tidal tributaries
 - estimate **exploitation rates** of the commercial and recreational fisheries and evaluate these relative to necessary harvest levels

Critical Gaps: Community-Level Effects

- Determine **nature of interaction** of blue catfish and flathead catfish **with native fishes** such as white catfish and blueback herring
- Determine **trophic status** of blue and flathead catfishes with adequate **seasonal, regional, and fish size** considerations
 - investigate **size-dependent feeding habits** and relate these to **habitat** (e.g., salinity regime, depth)
 - explore the use of **bioenergetic models** to understand consumptive needs of nonnative catfishes
 - use **Ecopath models** to determine population-level effects of predation by nonnative catfishes
 - evaluate the **impact of catfish predation on native species** (e.g., river herring, American shad, white catfish, blue crabs, and freshwater mussels) relative to the impact of other predators (e.g., striped bass)
 - evaluate the prevalence of **scavenging** (relative to predation) in blue catfish

Critical Gaps: Community-Level Effects

- Determine the effect of **natural or man-made impediments** that concentrate catfishes and their prey; such impediments include dams, the base of rapids, and constricted reaches below the fall line
 - **non-random distribution** of predators and prey may constitute an inordinately large proportion of the total predation mortality on native species
 - determine **sources of mortality on key native fishes** in order to evaluate effect of catfish consumption (e.g., bycatch mortality, predation by native fishes, etc.)
- Determine the role of blue and flathead catfishes in **nutrient cycling** in the system (consider catfish as predator and prey)
- Determine extent of blue catfish **bycatch in gillnet** and other fisheries
 - assess **economic impact** of foregone harvest

Critical Gaps: Community-Level Effects

- Determine economic and societal **values of trophy fishery** for blue catfish in the James River
- Investigate the **relationship between size and** concentrations of **toxic substances** in blue and flathead catfishes (e.g., Hg, PCBs)
 - investigate human **consumption risks** for all sizes of catfishes

Critical Gaps: Control

- Identify blue and flathead catfish **refugia** and likely **dispersal mechanisms**
- Assess **feasibility of removal strategies** including development of fishery on small individuals (but note consumption concerns due to contaminants)

Thank You

Sequence of Phases for Biological Invasions

1. Transport to a new region
 - No studies on this
2. Release or escapement to the wild
 - Poorly documented
3. Establishment
 - Most studied phase
 - Important factors:
 - reproductive variables,
 - diet breadth,
 - environmental tolerance
 - species-specific climate and environmental matching
4. Dispersal or spread
 - Little work on this: more complex than generally acknowledged
5. Integration or impact

NOTE: different factors mediate each phase (Garcia-Berthou 2007)

Further Thoughts On Eradication

- “Perhaps the greatest truism in invasion biology is that species invasions are generally irreversible and that once a new non-native species establishes, it is almost impossible to eradicate without excessive **collateral damage** on native species”
(Cucherousset & Olden 2011)
- “Because the eradication of established species is so difficult, agencies should be cautious about promising success if they wish to **maintain credibility**....In some cases, slowing the rate of spread may be more feasible and cost effective for an established species than eradication”
(Myers et al. 2000)