Delmarva Whole System Conservation Partnership: Geographic Targeting of Priority Practices

USDA Regional Conservation Partnership Program Award

In Field Edge of Field In Stream

Amy Jacobs, The Nature Conservancy
Bill Angstadt, Delaware Maryland Agri-Business Association
Kathy Boomer – Targeting and Monitoring Component

Delmarva Whole System Conservation Partnership From Field to Stream

AGRIBUSINESS/ TRADE GROUPS:

Delaware Soybean Board

Delmarva Poultry Industry, Inc.

Growmark FS

Agrium U.S., Inc.

Willard Agri-Service

The Fertilizer Institute (TFI)

Maryland Grain Producers

CONSERVATION GROUPS:

Chesapeake Conservancy (CC)

Ducks Unlimited (DU)

Eastern Shore Land Conservancy (ESLC)

Lower Shore Land Trust (LSLT)

Midshore Riverkeeper Conservancy

National Fish and Wildlife Foundation

(NFWF)

The Conservation Fund (TCF)

HIGHER EDUCATION:

University of Maryland (UMCES)

University of Maryland Eastern Shore University of Delaware Extension (UDE)

FEDERAL AGENCIES:

U.S. Fish and Wildlife Service (USFWS)

National Oceanic and Atmospheric

Administration (NOAA)

U.S. Department of Agriculture (ARS)

Environmental Protection Agency (EPA)

U.S. Geological Survey (USGS)

STATE AGENCIES:

Maryland Department of Natural Resources

(DNR)

Maryland Department of Agriculture (MDA)

Delaware Department of Agriculture/

Nutrient Management Commission (DDA)

COUNTY/ LOCAL GOVERNMENT:

Worcester County (MD) Department of

Planning

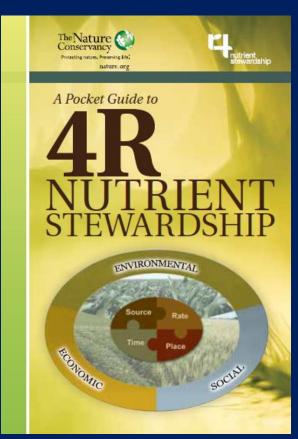
Maryland Association of Conservation

Districts

Delaware Conservation Districts

AVOID: In-field Component

Programs and Practices:


- Conservation Stewardship Program (CSP)
 - Five year agreement encompassing multiple practices such as split application, precision application, incorporation, enhanced efficiency fertilizer etc.
- Environmental Quality Incentive Program (EQIP)
 - Advanced nutrient management
 - Precision Agriculture
 - Grassed waterways

Outreach:

- Chesapeake 4R Alliance
- Public/ private partnership with agribusiness

Program Implementation:

- CCAs and Partners will facilitate applications to NRCS/ SCDs
- SCDs will provide technical assistance to write contracts/ deliver practices

TRAP: Edge of Field/ In-stream Component

Programs and Practices:

- Wetlands through Wetland Reserve Easement Program (WRE)
 - Permanent easements
 - Include restoration and rehabilitation (cropland and forested areas)
- Buffers through CREP (provided significant contribution)
 - Leveraging efforts with new FSA/NRCS focus and funding on forested buffers and potential changes to existing programs to provide flexibility

Outreach:

- Conservation partners perform targeted outreach to priority landowners
- Coordination through 4R Alliance

Program Implementation:

- Partners will facilitate applications to county NRCS (wetlands) or SCDs (buffers)
- NRCS, SCD or other TSPs as needed will provide technical assistance to implement easements and projects
- In Maryland DNR has committed funds to cover restoration/ construction costs for WRE

U.S. Department of Agriculture Natural Resources Conservation Service Commodity Credit Corporation

Financial Assistance Programs Division Programs Deputy Area

Regional Conservation Partnership Progra

The Regional Conservation Partnership Program (RCPP) is au of Title XII of the Food Security Act of 1985 (the 1985 Act), a 2401 of the Agriculture Act of 2014 (2C14 Act). The Secretal delegated the authority to administer LCPP to the Chief of t Conservation Service (NRCS), who is Vice President of the Corporation (CCC). NRCS is an agency of the Department of

DEPARTMENT OF AGRICULTURE

ANNOUNCEMENT TYPE: Announcement for Program Funding

- 2. Project Summary
 - a. Identify the project objectives and the natural resource concerns that will be addressed and how those concerns were identified. A complete list of NRCS approved natural resource concerns may be found on the RCPP Web site at: http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/farmbill/rcpp/.
 - A general description of the plans for evaluating outcomes, including plans for monitoring and modeling, and for reporting on progress to achieve the objectives of the application.
 - c. A brief description of the types of activities including: conservation practices, conservation activity plans, enhancements, wetland restoration activities, easement acquisition activities, other partner activities to be implemented during the project timeframe, and the general sequence of implementation of the project.
 - d. If applicable, indicate how the project will help producers in the area in "assisting producers in meeting or avoiding the need for natural resource regulatory requirements." Section 1271B(d)(4)(A) of the 1985 Act.

Delmarva Whole System Conservation Partnership: Evaluation of Outcomes / Monitoring RCPP Grant

Amy Jacobs, The Nature Conservancy
Bill Angstadt, Delaware Maryland Agri-Business Association
Kathy Boomer – Targeting and Monitoring Component

Delmarva Science Consortium

GOAL: Advance a more synthetic understanding of how agricultural bmp performance varies over space and time.

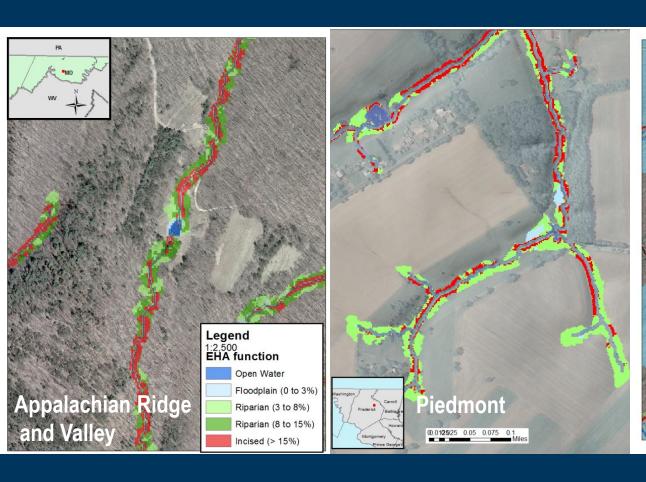
APPROACH: Develop an adaptive watershed management framework to align science partners to address uncertainties:

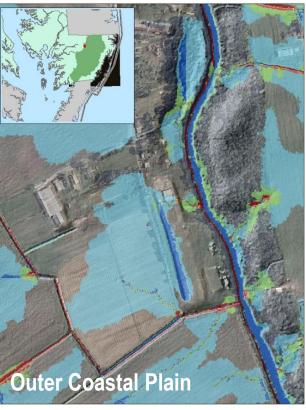
- Explicitly articulate habitat/water storage objectives
- Evaluate decision tool uncertainties
 - (Water Quality) Model comparison
 - (Water Quality) Monitoring coordination

Management Alternatives:

Floodplain Reconnections

Decision Tool Requirements -

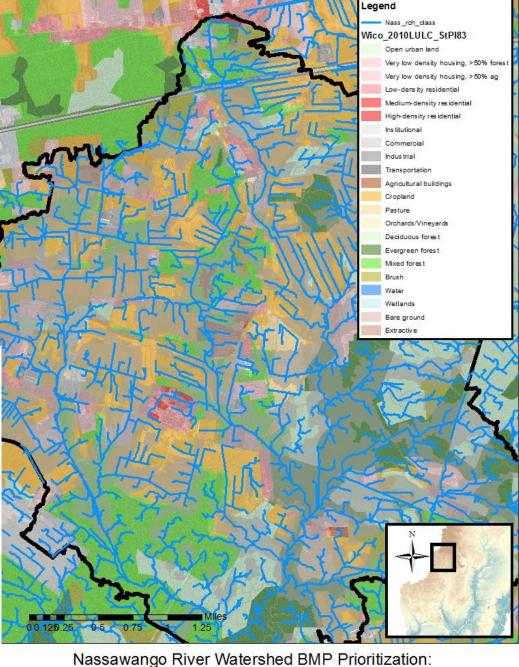

MODEL GOALS:


- Provides information at a meaningful spatial scale
- Generates credibility with partners
- Compliments or links to regulatory watershed model
- Predicts measurable outcomes

Reach	Subbasin	Reach Length (ft)	Watershed Area (acres)	Retention Area (acres)	Restoration Type	Number of Owners	EOS TN (lbs/yr)	TN captured (lbs/yr)	EOS TP (lbs/yr)	TP captured (lbs/yr)	EOS TSS (lbs/yr)	TSS captured (lbs/yr)	Cost
6297	Nass	266	749.64	19.36	buffer	1	212,264	39,177	32,779	11,318	144,877	3,449	\$104,544
6588	Nass	1043	28.88	5.58	plug	1	78,430	61,379	12,501	11,975	6,187	717	\$3,232
6592	Nass	1260	292.3	6.31	buffer	1	193,895	30,415	30,546	9,111	47,800	662	\$34,074
7232	Nass	492	85.19	2.82	buffer	1	140,458	32,306	22,332	9,352	15,881	285	\$15,228
10123	Nass	1053	79.63	7.53	buffer	1	53,676	28,240	8,463	6,667	7,860	952	\$40,662
6621	Nass	541	16.91	2.69	plug	1	45,920	32,842	7,319	6,779	3,622	346	\$2,076
6685	Nass	669	213.19	3.91	buffer	1	187,775	25,308	29,688	7,706	27,376	398	\$21,114
6796	Nass	164	10.99	10.91	plug	2	29,836	29,825	4,756	4,756	2,354	1,402	\$5,364
6853	Nass	371	64 17	10.99	nlug	1	35 353	26 218	5.550	5 216	10 176	1 180	\$5,396

1. Identify BMP Opportunities

2. Assess Water Quality Impacts


Chesapeake Bay Program A Watershed Partnership

> Predicted Edge-of-Stream (EOS) and Delivered (Del) Average Annual Loading Rates (Ibs/acre-year) for Total Nitrogen (TN)

AWM Modeling Framework:

CBP5 SOURCE ALLOCATIONS... mostly CAFOs

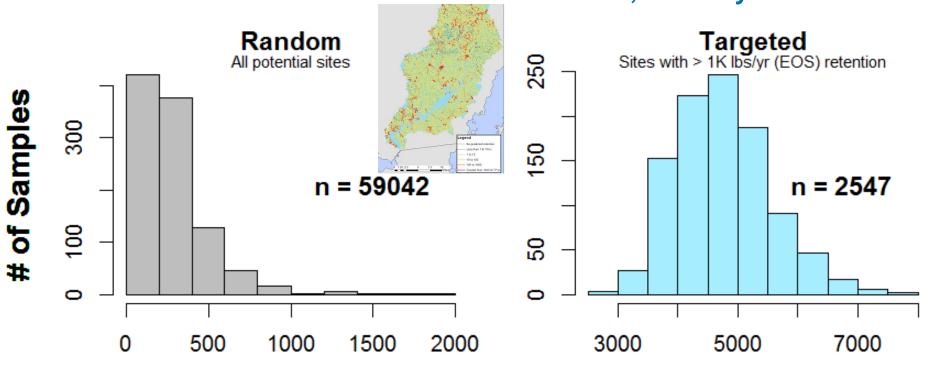
CBP LU	TN_EOS_2010	TN_DEL_2010
Agriculture - animal feeding operation	227.2	197.47
Agriculture - concentrated animal feeding operation	1,890.47	1,643.13
Agriculture - degraded riparian pasture	84.7	73.61
Agriculture - hay without nutrients	2.25	195
Agriculture - nursery	136.43	118.58
Agriculture - nutrient management alfalfa	8.29	7.19
Agriculture - nutrient management hay with nutrients	4.1	3.56
Agriculture - nutrient management hightill with manure	15.79	13.36
Agriculture - nutrient management hightill without manure	14.85	12.75
Agriculture - nutrient management lowfill with manure	20.09	17.34
Agriculture - nutrient management pasture	5.41	4.7
Agriculture - pasture	4166	36.21
Forest	199	1.77
Forest - harvested forest	9.04	8.02
Non-tidal atmospheric	14.82	14.44
Urban NonReg - extractive	10.95	10.33
Urban NonFleg - impervious developed	6.88	6.23
Urban Reg - construction	17	15.28
Urban Reg - extractive	10.95	10.95
Urban Reg - impervious developed	10.76	9.88
Urban Reg - pervious developed	5.87	5.43

Nassawango River Watershed BMP Prioritization: Potential Nutrient and Sediment Sources

Estimating Nutrient/SedimentRetention Capacity

3. Estimate Wetland Retention Capacity (CBP5)

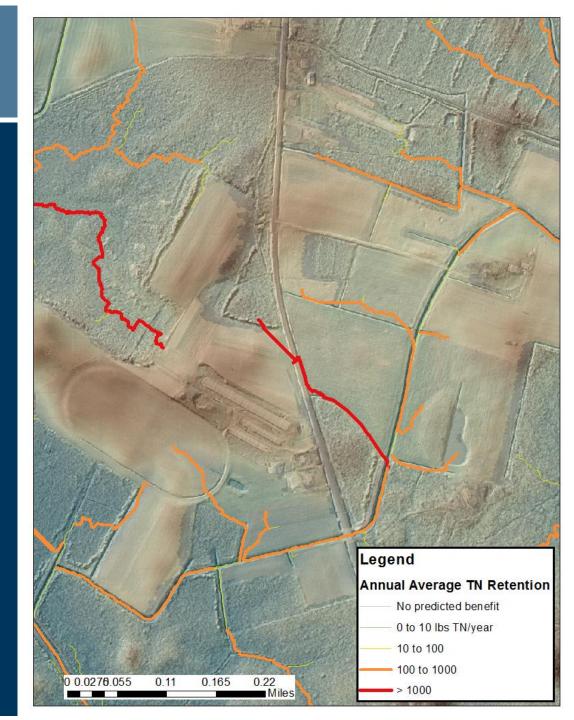
- For TN: Every acre wetland 'treats' <u>25% of load</u> delivered by four upland source acres (based on weighted average loading rate).
- For TP: Every acre wetland 'treats' <u>50% of load</u> delivered by two upland source acres.
- For TSS: Every acre wetland 'treats' <u>15% of load</u> delivered by two upland source acres.



Pocomoke River Watershed:

Opportunistic vs Targeted Outcomes

(sample of 50 sites, drawn 1000 times)


TP TMDL Reduction Goal: ~15,000 lbs/yr

Average Predicted Annual TN Retention (lbs/yr)

Prioritizing Wetland
Restoration Projects
in the Pocomoke
River Watershed

"Embrace Uncertainty"

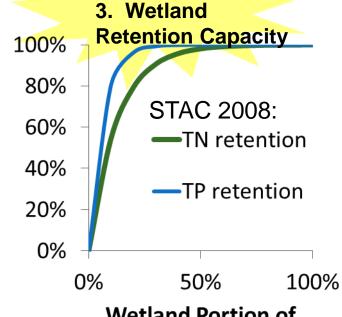
"Model Outcomes'

"Measure

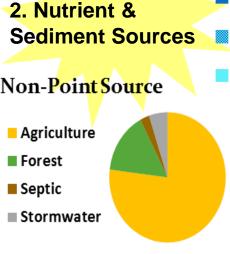
Outcomes"

The U.S. Department of the Interior Technical Guide

Science-Based Targeting Tools (Models)

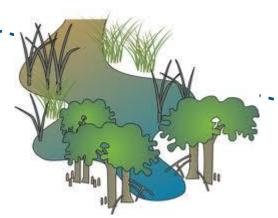


Watershed Modeling Framework: Key Information Gaps

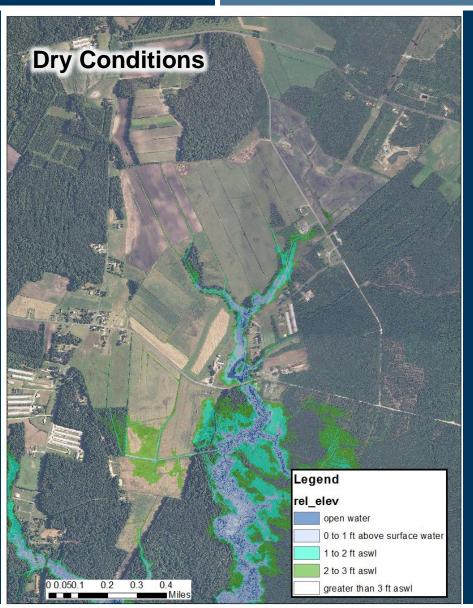


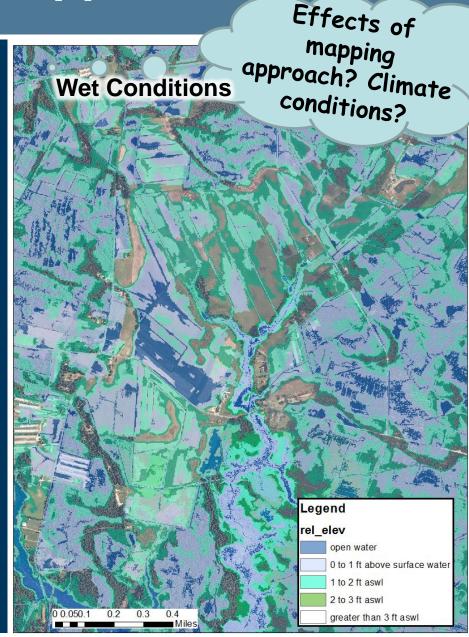
1. Location

Predicted Stream Water Budget


Wetland Portion of the Watershed

Surface Water

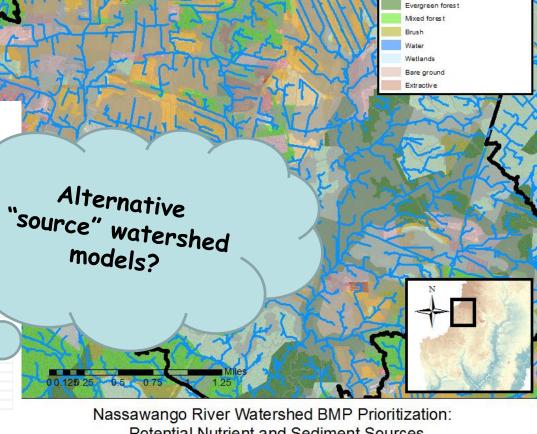

Filtered


Groundwater `

Restorable Opportunities

1. Prioritization:

Edge-of-Stream Delivered Loads from Local and Watershed Contributing Areas


A Watershed Partnership

Predicted Edge-of-Stream (EOS) and Delivered (Del) Average Annual Loading Rates (lbs/acre-year) for Total Nitrogen (TN) **AWM Modeling Framework:**

CBP5 SOURCE ALLOCATIONS... mos

CAFOs

OAI OS	
CBP LU	TN_EOS
Agriculture - animal feeding operation	227.
Agriculture - concentrated animal feeding operation	1,890.47
Agriculture - degraded riparian pasture	84.7
Agriculture - hay without nutrients	2.25
Agriculture - nursery	136.4
Agriculture - nutrient management alfalfa	8.29
Agriculture - nutrient management hay with nutrients	4.1
Agriculture - nutrient management hightill with manure	15.79
Agriculture - nutrient management hightill without manure	14.85
Agriculture - nutrient management lowfill with manure	20.09
Agriculture - nutrient management pasture	5.41
Agriculture - pasture	4166
Forest	199
Forest - harvested forest	9.04
Non-tidal atmospheric	14.82
Urban NonReg - extractive	10.95
Urban NonReg - impervious developed	6.88
Urban Reg - construction	17
Urban Reg - extractive	10.95
Urban Reg - impervious developed	10.76
Urban Fleg - pervious developed	5.87

Legend

Nass_rch_class Wico 2010LULC_StPI83 Open urban land

Commercial

Transportation Agricultural buildings

Orchards/Vineyards Deciduous forest

Cropland Pasture

Very low density housing, >50% forest

Very low density housing, >50% ag Low-density residential Medium-density residential High-density residential

Potential Nutrient and Sediment Sources

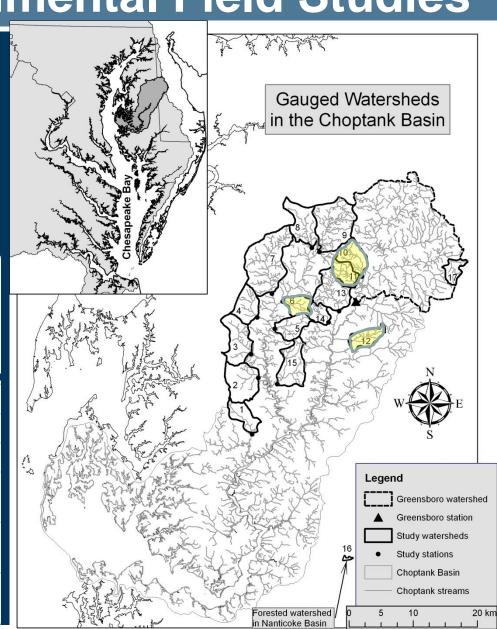
Estimating Nutrient/SedimentRetention Capacity

2. Wetland Retention Capacity (CBP5)

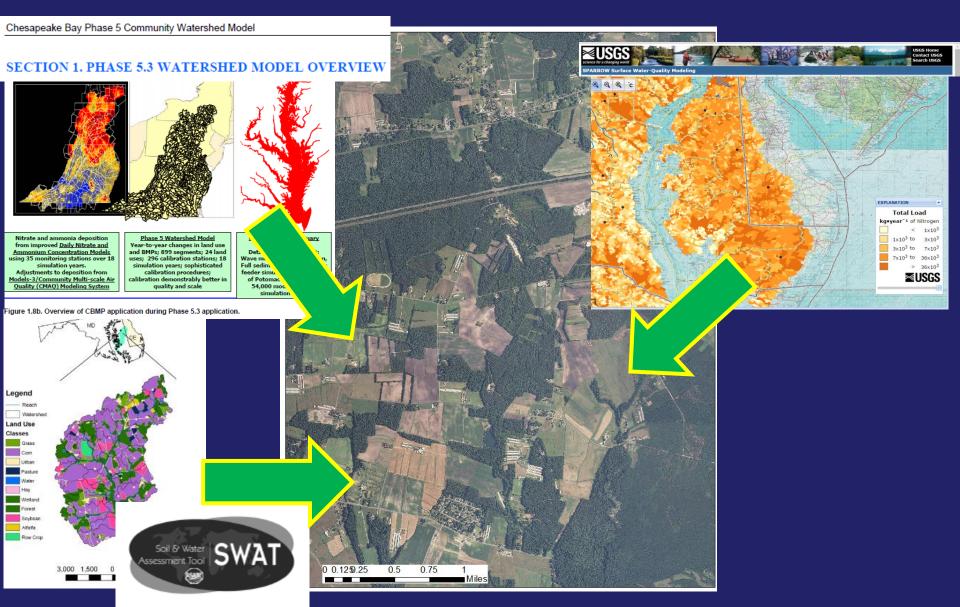
- For TN: Every acre wetland 'treats' <u>25% of load</u> delivered by four upland source acres (based on weighted average loading rate).
- For TP: Every acre wetland 'treats' 50% of load delivered by two upland source cres
- For TSS: Every acre wetland 'treed delivered by two upland source

Alternative BMP performance models?

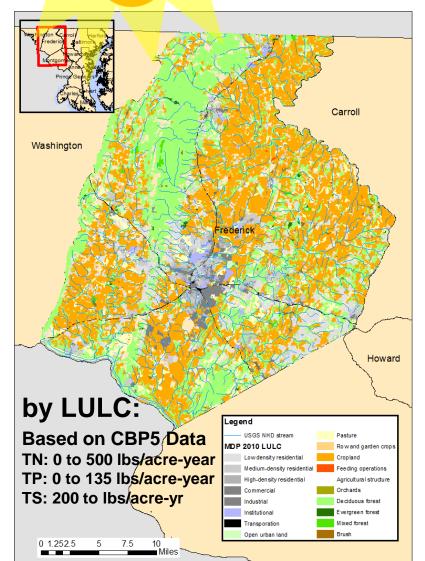
Delmarva Science Consortium

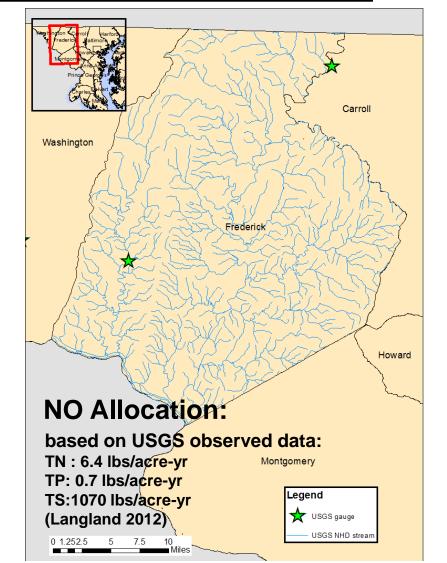

Collaboration Options:

- Invest in experimental field and small-watershed monitoring to measure and compare bmp outcomes (e.g., Upper Choptank)
- 2. Coordinate watershed model comparison to evaluate uncertainty in our decision tools
- Develop centralized BMP/natural filter database for water quality and habitat model validation (recognizing responsibilities to support landowners and managers).



Delmarva Science Consortium – 1. Experimental Field Studies


Delmarva Science Consortium – 2. Model Comparison



Non-Point Source Agriculture Forest Septic Stormwater

Confronting Uncertainty with Multiple Models:

NUTRIENT & SEDIMENT SOURCES

WETLAND TN RETENTION EFFICIENCY

Based on lit review

Function of Wetland Area?

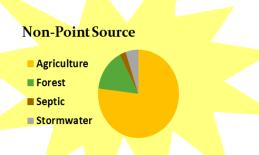
CBT: 28.7 lbs TN/acre-year

Function of Incoming Load/Province?

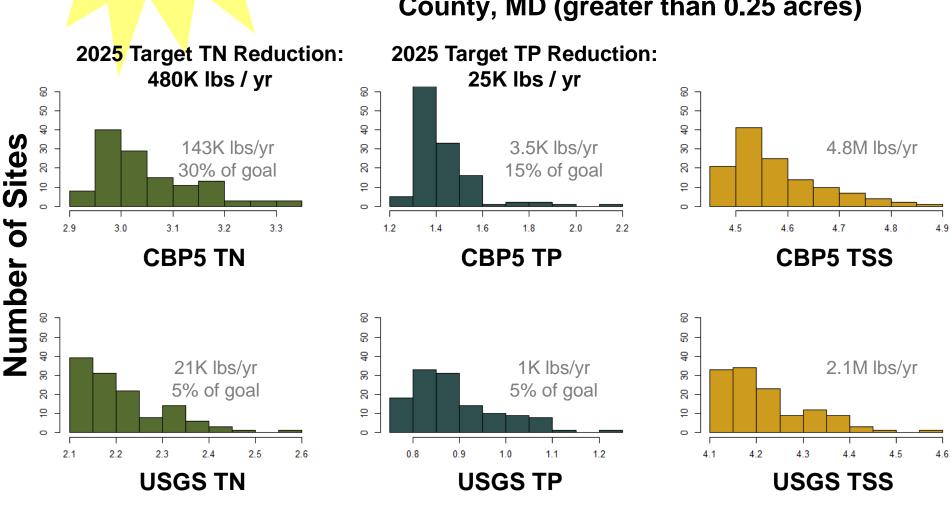
- MD DNR: 25% of local delivered load
- CBP4: 25% of load delivered by four acres

Chesapeake Bay Program A Watershed Partnership

Function of Watershed Position?

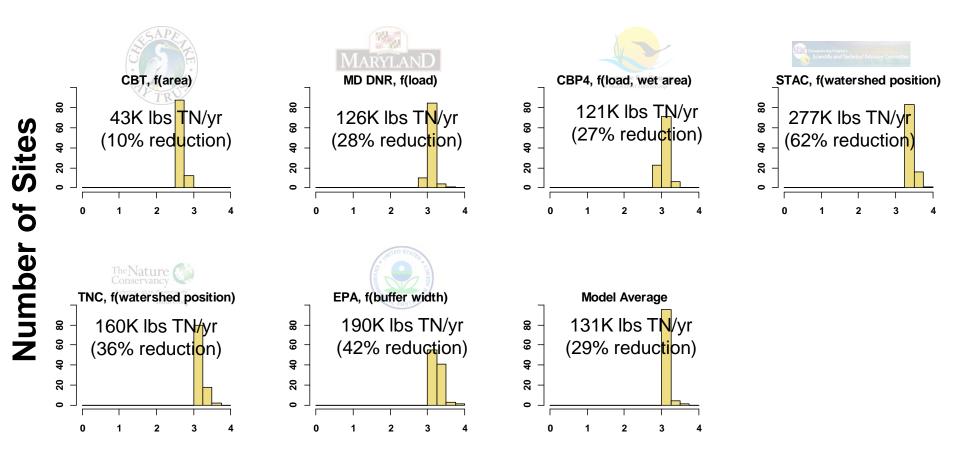

• STAC: 1 - exp^(-7.9 wetland:area)

TNC: Similar to STAC, inverse for TP, TS


Function of Wetland Width?

• EPA: 39.5 * rip.width.m^{0.1644} (for TN)

Assessing Model Uncertainty:

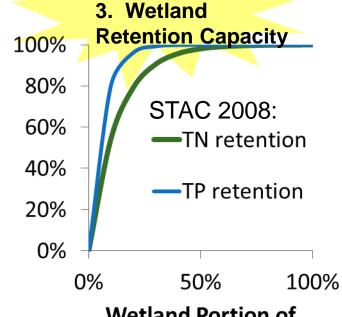

Potential Benefits of TOP 100 Riparian Buffer Restoration Opportunities in Frederick County, MD (greater than 0.25 acres)

Retention (10^x lbs / site / year)

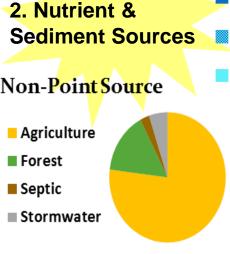
AWM Modeling Framework: Targeting Sensitivity<u>WETLAND RETENTION EFFICIENCY:</u>

Frederick County TN Reduction Goal: 480K lbs per year

CBP5 Predicted TN Retention (10^x lbs / year)

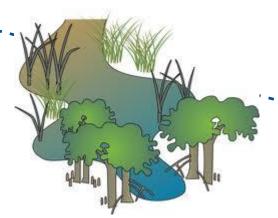


Watershed Modeling Framework: Key Information Gaps

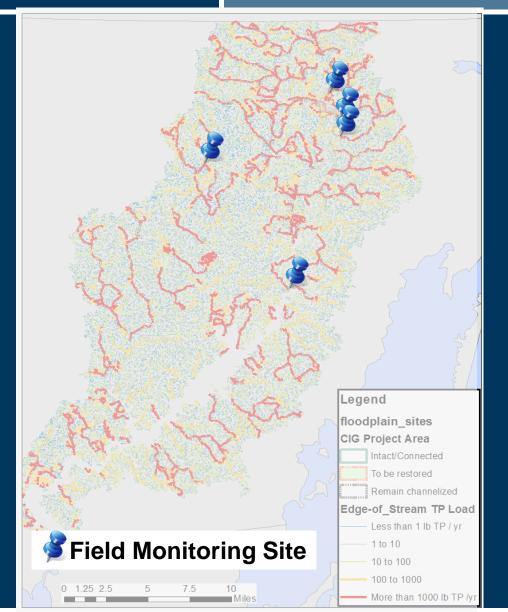


1. Location

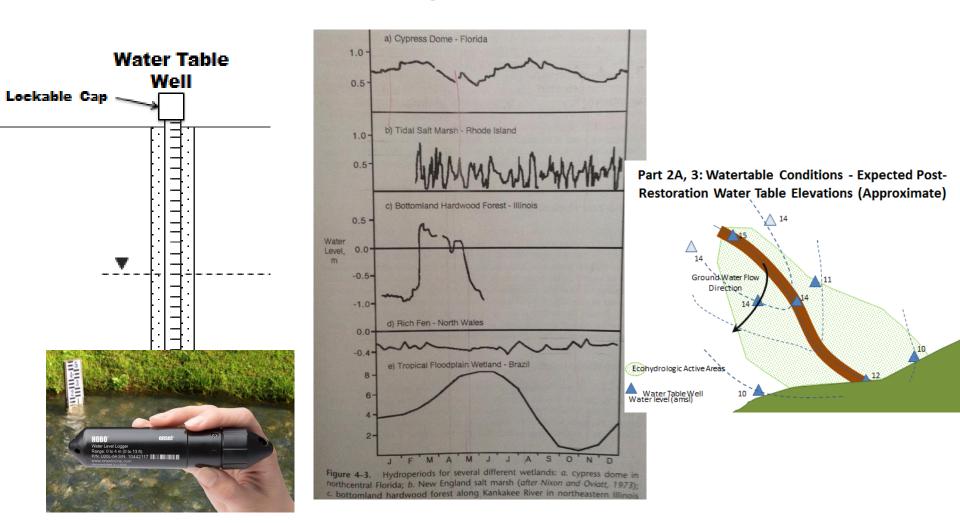
Predicted Stream Water Budget


Wetland Portion of the Watershed

Surface Water


Filtered

Groundwater `



Delmarva Science Consortium 3. Performance Assessment

Develop centralized database to combine field monitoring efforts and confront models (i.e., decision tools, scientific hypotheses)

Field Monitoring Priorities:

Results: Characterize timing, magnitude, duration, frequency, and rate of change in water level (aka hydrologic signature); map water table depth; and flow directions and flow rates. Relate water quality trends.

Delmarva Science Consortium

GOAL: Advance a more synthetic understanding of how agricultural bmp performance varies over space and time

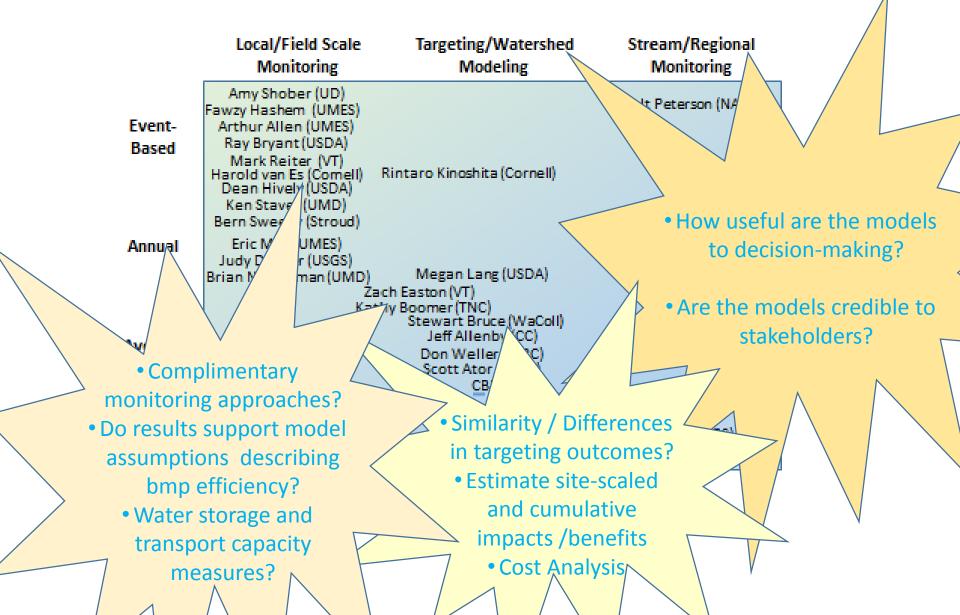
CHALLENGES:

- 1) Funding was provided for 40% of the request;
- 2) RFP stipulated no funding for modeling and evaluating outcomes;

Delmarva Science Consortium

Current Status:

- Sponsor annual or semi-annual (6 to 12 month) research symposium
- Facilitate Research Collaborations:
 - Invest in experimental field and small-watershed monitoring to measure and compare bmp outcomes (e.g., Upper Choptank)
 - 2. Coordinate watershed model comparison to evaluate uncertainty in our decision tools
 - Develop centralized BMP/natural filter database for water quality and habitat model validation (recognizing responsibilities to support landowners and managers).

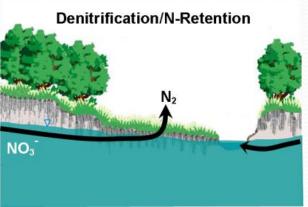

Delmarva Whole System Conservation Partnership: Geographic Targeting of Priority Practices

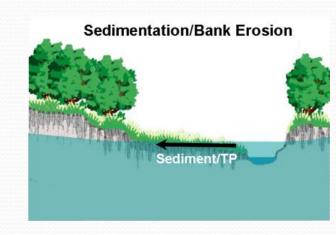
Delmarva RCPP Proposal – Perspective Science Partners:

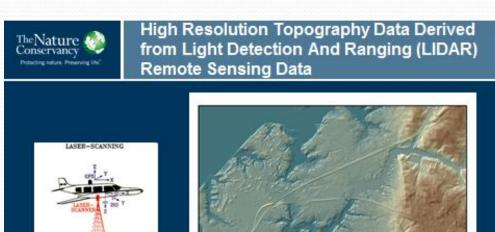
	Local/Field Scale Monitoring	Targeting/Watershed Modeling	Stream/Regional Monitoring
Event- Based	Amy Shober (UD) Fawzy Hashem (UMES) Arthur Allen (UMES) Ray Bryant (USDA) Mark Reiter (VT) Harold van Es (Cornell) Dean Hively (USDA) Ken Staver (UMD) Bern Sweeny (Stroud)	Rintaro Kinoshita (Cornell)	Walt Peterson (NASA) Doug Levin (WaCol)
Annual Average Annual		Megan Lang (USDA) Sch Easton (VT) Shy Boomer (TNC) Stewart Bruce (WaColl) Jeff Allenby (CC) Don Weller (SERC) Scott Ator (USGS)	Tom Fisher (UMCES) Tom Jordan (SERC)
Management	Peter Kleinman (USD	CBP Rich Batiuk (EPA)	USGS Scott Phillips (USGS)

Delmarva RCPP Proposal - Promoting Soil and Water Health: How Does BMP Performance Vary across Space and Time?

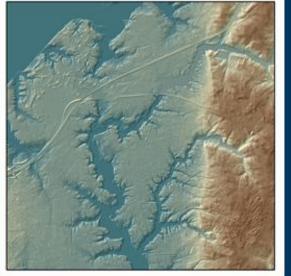
NRCS Programs and Practices

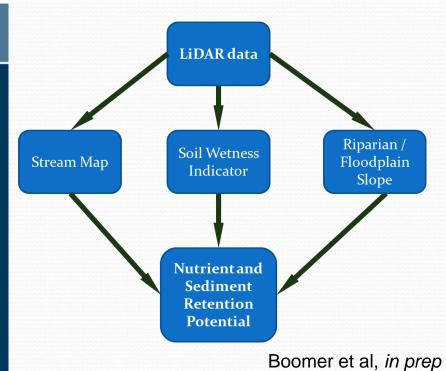

- Conservation Stewardship Program (CSP)
 - Five year agreement encompassing multiple practices such as split application, precision application, incorporation, enhanced efficiency fertilizer etc.
- Environmental Quality Incentive Program (EQIP)
 - Advanced nutrient management
 - Precision Agriculture
 - Grassed waterways
- Wetland Reserve Easement Program (WRE)
 - Permanent easements
 - Include restoration and rehabilitation (cropland and forested areas)

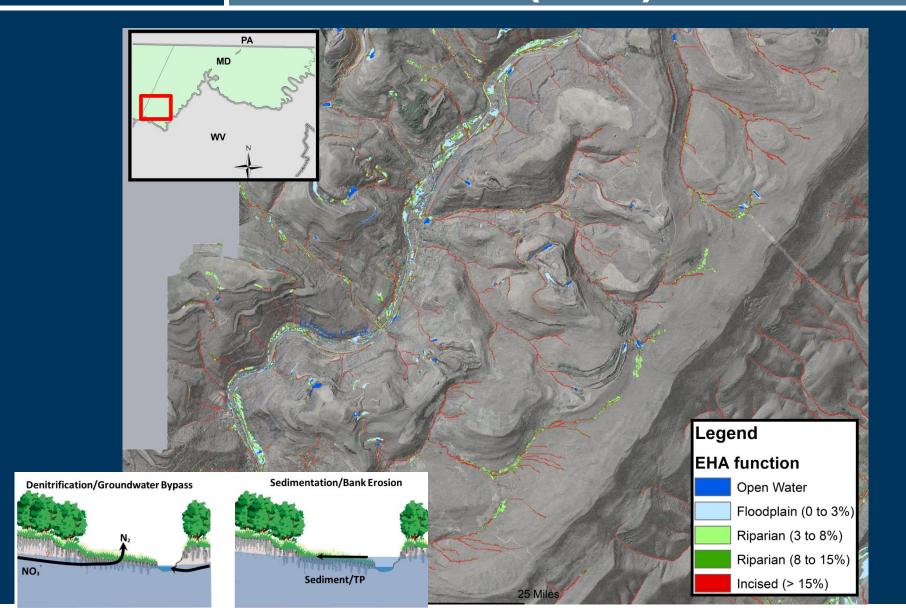

Other Programs to Fund Practices

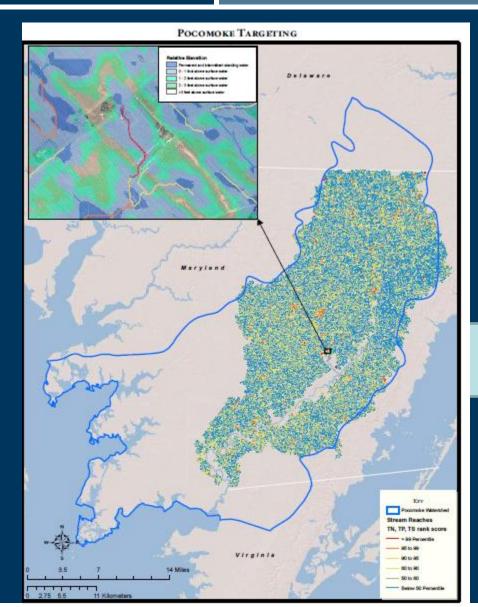

- CREP Wetlands and Buffers/ Structural Practices
 - Incentive covers costs plus bonus payment
 - 10 year restoration agreement
 - Must have cropping history
- NGOs Wetlands
 - Choptank Ducks Unlimited
 - Nanticoke TNC and DU
 - Pocomoke TNC
- Rural Legacy, REPI, and Private Funding for Easements
- Maryland Ag Cost Share
- Landowner Adoption

Mapping Restoration Opportunities:

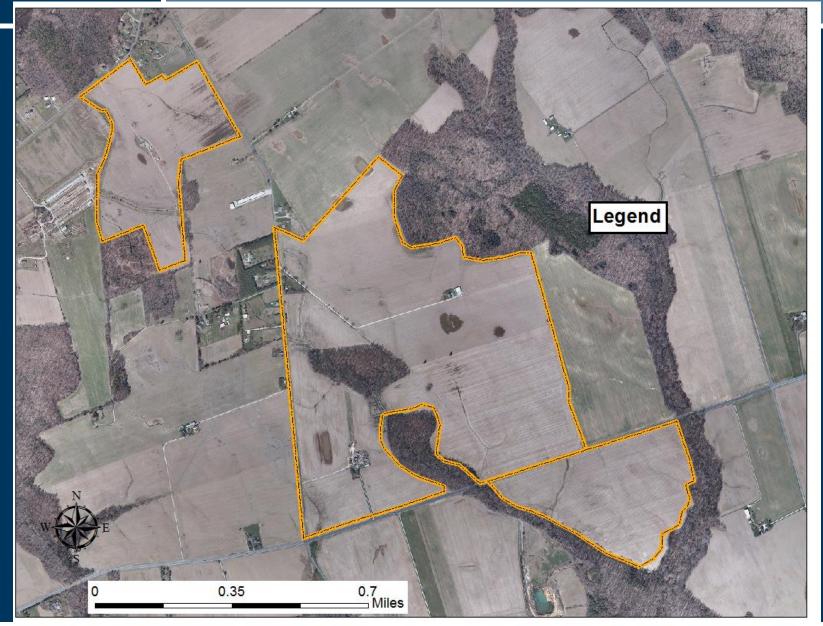


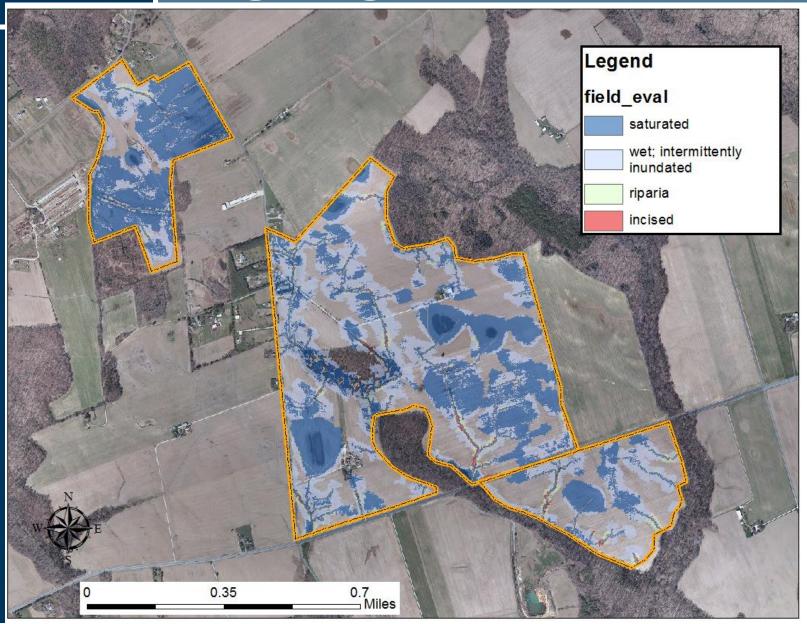






Predicted Eco-hydrologic Active Area (EHA) & Function


Delmarva RCPP Plans for Modeling / Decision-Making Support



Targeting In-Field Practices

Targeting In-Field Practices

