Quarterly Progress Meeting - May 2017

Brook Trout Outcome

Stephen Faulkner, USGS
Brook Trout Action Team Lead

Goal: Brook Trout Outcome

Outcome: Restore and sustain naturally reproducing Brook Trout populations in Chesapeake Bay headwater streams, with an eight percent increase in occupied habitat by 2025.

What We Want

Identify the ask(s) to the Management Board up front! Use a picture to illustrate your point.

Setting the Stage:

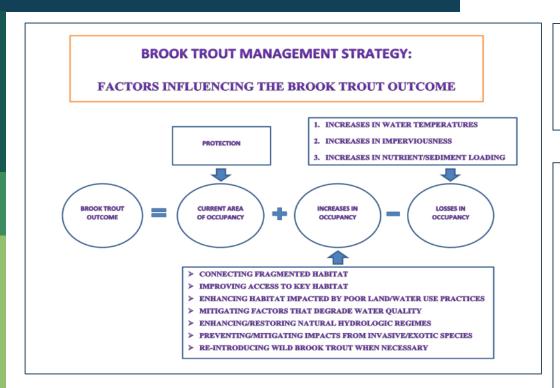
What are our assumptions?

Following the Decision Framework

BROOK TROUT MANAGEMENT STRATEGY: FACTORS INFLUENCING THE BROOK TROUT OUTCOME 1. INCREASES IN WATER TEMPERATURES 2. INCREASES IN IMPERVIOUSNESS INCREASES IN BROOK TROUT **CURRENT AREA** LOSSES IN OF OCCUPANCY OCCUPANCY OCCUPANCY OUTCOME CONNECTING FRAGMENTED HABITAT IMPROVING ACCESS TO KEY HABITAT > ENHANCING HABITAT IMPACTED BY POOR LAND/WATER USE PRACTICES > MITIGATING FACTORS THAT DEGRADE WATER QUALITY ENHANCING/RESTORING NATURAL HYDROLOGIC REGIME > PREVENTING/MITIGATING IMPACTS FROM INVASIVE/EXOTIC SPECIES RE-INTRODUCING WILD BROOK TROUT WHEN NECESSARY

Gaps

- 1. S&T How do changes in land use/climate/stressors affect Brook Trout?
- 2. S&T Monitoring/funding
- 3. Legislative/Public Engagement Creative or innovative ways to incentivize private landowner participation


Management Approaches

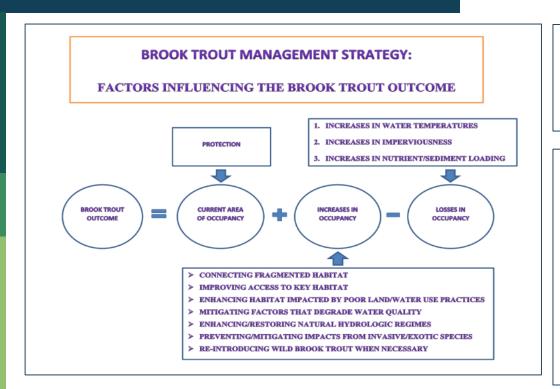
Identify and Communicate Priority Focal Areas for Brook Trout Conservation (1, 3)

- Target and conserve wild brook trout populations in subwatersheds with best potential for sustaining resiliency
- Communicate "best of the best" patches

Following the Decision Framework:

Gaps

- 1. S&T How do changes in land use/climate/stressors affect Brook Trout?
- 2. S&T Monitoring/funding
- 3. Legislative/Public Engagement Creative or innovative ways to incentivize private landowner participation


Management Approaches

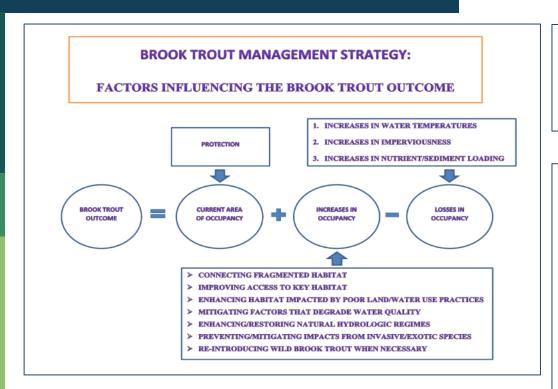
Consider Climate Change and Emerging Stressors in Determining Restoration Priorities (1, 2)

- Add predictive layer for acid mine drainage-impacted streams and unconventional oil and gas (UOG) development
- Consider impact of invasive species on brook trout habitat
- Implement Trout Unlimited's (TU) Home River Initiatives

Following the Decision Framework:

Gaps

- 1. S&T How do changes in land use/climate/stressors affect Brook Trout?
- 2. S&T Monitoring/funding
- 3. Legislative/Public Engagement Creative or innovative ways to incentivize private landowner participation


Management Approaches

Refine and Apply Decision Support Tools (DST) (1, 2, 3)

- Apply pilot decision support tools to target stream restoration projects
- Host dialogue on varied brook trout angling regulations across states and in National Parks
- The Chesapeake Bay Commission will work collaboratively with the Bay Program partners to identify legislative, budgetary and policy needs

Following the Decision Framework:

Gaps

- 1. S&T How do changes in land use/climate/stressors affect Brook Trout?
- 2. S&T Monitoring/funding
- 3. Legislative/Public Engagement Creative or innovative ways to incentivize private landowner participation

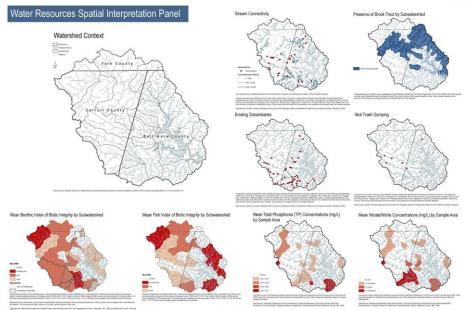
Management Approaches

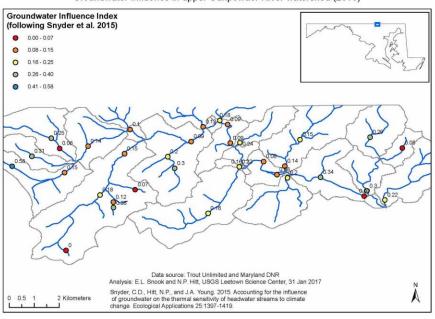
Continue/Expand Brook Trout monitoring efforts (1, 2, 3)

- Continue assistance to states in monitoring brook trout occupancy and develop indicator using this data
- Collect genetic information as potential census method for determining population viability and long-term restoration success

Progress:

Are we doing what we said we would do?


Identify and Communicate Priority Focal Areas for Brook Trout Conservation (1, 3)


- NY, PA, MD, VA, and WV have all identified at least two priority Brook Trout patches for conservation actions
- Coordinating with partners (EBTJV, AppLCC, NALCC, WVU, USGS, TU) on the development/application of spatially explicit DST
- Working with Healthy Watersheds, other GITs on overlay maps/cross-GIT mapping
- MD DNR and TU are finalizing a "best of the best" story template

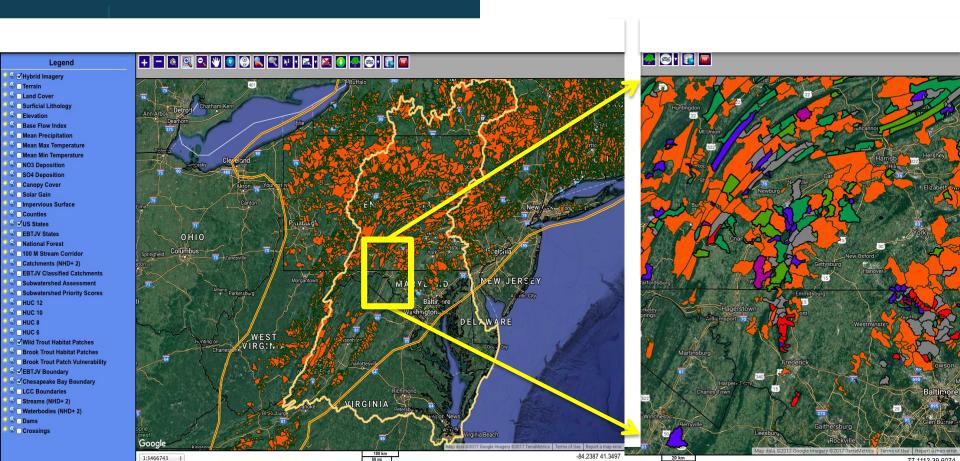
Upper Gunpowder Falls Brook Trout Conservation Partnership

Consider Climate Change and Emerging Stressors in Determining Restoration Priorities (1, 2)

- Updated CB Brook Trout occupancy model to higher 1:24K scale and include UOG effects in Upper Susquehanna River Basin
- Distributed recent USGS-CBP research results documenting greater detrimental effects of higher stream temperatures on brook trout when brown trout are present
- Working with relevant partners on updated GIS layer of AMD-impacted streams
- Working with TU on updating Home River Initiative/other restoration projects

Refine and Apply Decision Support Tools (1, 2, 3)

- Working with partners (EBTJV, AppLCC, NALCC, WVU, USGS, TU) on the development/application of spatially explicit DST
- Summary document on brook trout angling regulations across states and in National Parks


Continue/Expand Brook Trout monitoring efforts (1, 2, 3)

- Coordinating with partners (EBTJV, AppLCC, NALCC, WVU, USGS, TU) on summarizing and updating monitoring data
- Evaluating genetic information as potential census method for determining population viability and long-term restoration success

Baseline - EBTJV 2015 Assessment

- Wild brook trout occupy 33,200 km² of habitat in the Chesapeake Bay watershed, including the streams they share with brown and/or rainbow trout (sympatric).
- Baseline Wild brook trout only (allopatric) streams 13,500 km² of allopatric or "" streams, which are comprised of 990 separate patches, or groups of contiguous catchments.
- Outcome 14,600 km²/79 patches of habitat occupied only by wild brook trout serves as our restoration goal.
- Progress Indicator EBTJV five-year brook trout census

Are we on track?

Discussion Question 2: Which actions were most critical in progress thus far?

- Achieving greater coordination and consensus among conservation partners
- Integrating the best available science into DST and guide restoration decisions
- Identifying and prioritizing "best of the best" areas within each state for both brook trout habitat conservation and restoration.
- Influencing Factors:
 - Scientific and Technical Understanding: Geographical focus areas, Refinement and coordination of use of decision support tools, Climate Change
 - Legislative Engagement: Policy maker awareness of Brook Trout issues
 - Partner Coordination: Coordinate with able partners to target ideal habitat for on the ground restoration.

Analysis

Discussion Question 3: Which management actions will be the most critical to your progress in the future?

- Identifying key decision-makers at federal, state, local levels to educate, engage
- Better coordination between DST and on-the-ground practitioners, projects
- Stronger engagement, participation among the partners
- Monitoring restoration progress/success
- Better cross-GIT goal coordination

Challenges:

Are our actions having the expected effect?

Challenges

Discussion Question 4: What scientific, fiscal or policy-related developments or lessons learned (if any) have changed your logic or assumptions about your Outcome?

- Unique challenges using the volunteer approach
- Recognizing state-specific needs
- Applying broad-based knowledge to local-level restoration projects
- Limited monitoring
- How to better articulate the non-TMDL benefits in a way that motivates partners to action without resorting to the TMDL stick
- Connect the drivers-stressors affecting corollary benefits based on science to conservation/restoration actions that benefit multiple outcomes.

Adaptations:

How should we adapt?

Discussion Question 5: What (if anything) would you recommend changing about your management approach at this time?

 Working with Action Team partners to revise work plan to address Challenges including cross-GIT collaboration

Agreement Goals and Outcomes

Sustainable Fisheries

- Blue Crab Abundance
- Blue Crab Management
- Oyster
- Forage Fish
- Fish Habitat

Vital Habitats Goal

- Wetlands
- · Black Duck
- Stream Health
- Brook Trout
- Fish Passage
- Submerged Aquatic Vegetation (SAV)
- Forest Buffer
- Tree Canopy

Water Quality Goal

- 2017 Watershed Implementation Plans (WIP)
- 2025 WIP
- Water Quality Standards
 Attainment and Monitoring

Toxic Contaminants Goal

Toxic Contaminants Research
 Toxic Contaminants Policy and
 Prevention

Healthy Watersheds Goal

· Healthy Waters

Stewardship Goal

- Citizen Stewardship
- · Local Leadership
- Diversity

Land Conservation Goal

- · Protected Lands
- Land Use Methods and Metrics Development Land Use Options Evaluation

Public Access Goal

• Public Access Site Development

Environmental Literacy Goal

- Student
- Sustainable Schools
- Environmental Literacy Planning

Climate Resiliency Goal

- Monitoring and Assessment
- Adaptation Outcome

What We Want

- Ideas on how to create incentives for state Action
 Team Members to be more engaged
- Guidance on communication/outreach to key decision-makers at federal, state, local levels to educate, engage in solutions
- Support for cross-GIT collaboration

Discussion