Ocean Acidification observations in Chesapeake Bay

Byron Kilbourne STAR meeting 28 July 2016

Outline

- Measurements for ocean acidification
- History of observations
- Planned work on Chesapeake Bay ocean acidification
- Role for the Chesapeake Bay Interpretive Buoy System

Measuring 'ocean acidification'

- Unlike physical conditions, marine chemistry observations are difficult to sample remotely
- Water samples are required
 - Ship time
 - Expensive and infrequent
 - Marine chemistry lab
 - Expensive gadgets and skilled technicians
- Autonomous observations of pH
 - o Partner institutions are working with two 'new' pH sensors to add to field samples
 - SeapHOx Sea-bird Electronics
 - University of Delaware deployment on Gooses Reef bottom sensor
 - SAMI-pH Sunburst Sensors
 - Virginia Institute of Marine Science deployment on York Spit

History of observations

- University of Delaware full-bay observations from 2013 to present
 - Multiple cruise per year aboard the
 - R/V Rachel Carson
 - R/V Hugh Sharp
 - Water samples at depth to determine
 - DIC
 - pCO2
 - Alkalinity
 - pH
 - As a bonus we get
 - Temperature
 - Salinity
 - Useful to calibrate other observations
- Climate scale variability requires time series long enough to resolve long-term changes
 - And the time required depends on interannual variability
 - But ten years will enable preliminary estimates of trends
 - Therefore University of Delaware needs funding for this program through (at least) 2023

Role for CBIBS

- Long-term deployment at Gooses Reef
 - University of Delaware Cai Lab
 - SeapHOx sensor on the bottom mount
 - SAMI sensor at the surface
- Long-term deployment at York Spit
 - Virginia Institute of Marine Science Shadwick Lab
 - SeapHOx sensor at the surface
- NOAA Pacific Marine Environmental Laboratory ocean acidification program
 - o Co-Pls Sutton, Cai, Wilson
 - Starting in 2017
 - Chemical sensor buoy to be deployed near the CBIBS First Landing station
 - Maintained by VIMS
 - Water samples analysed at University of Delaware
- CBIBS data provides context for these observations
 - CBIBS has observed wind, currents, and water quality since 2007*
 - And This (relatively) long time series helps understand the physical processes at work in Chesapeake Bay
 - But We could do a better job at the above stations to resolve vertical structure and dynamics
 - Therefore We need CBIBS through (at least) 2023 to better inform current ocean acidification studies

Cooperative efforts

- Designed new 'clamparatus' to attach chemical sensors to the sides of CBIBS buoys
 - Provides a space for partners to recover and deploy instruments from our sensors
 - CBIBS data provides context for other observations
 - Can be used for any autonomous instruments
- Work in progress on publications
 - Kilbourne and Cai Observations of rapid changes in benthic dissolved oxygen due wind-driven baroclinic flows in the Chesapeake Bay
 - Cai and Kilbourne
- Discussion of collaboration with VIMS researchers
 - Shadwick Physical forcings on pH and DO in the lower Chesapeake Bay
 - Forrest and Freidrichs Comparing observations and models of dissolved oxygen in Chesapeake
 Bay