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Seagrass Habitat & Water
Clarity

« Chesapeake Bay water clarity
standards established to support
healthy seagrass
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* CBNERR-VA has monltored.shallow YA AN N
waters to assess water clarity for > S N AR ‘

20 years

* |n-situ observations are excellent,
but spatial & temporal gaps remain

« Satellites can help fill the gaps
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CBNERR-VA Monitoring Platforms

Fixed Stations Dataflow CBIBS Buoy
Near Bottom Surface Surface

Shallow water areas 2-3 sec measurements Floating buoy

15-min measurements 25 knots -> sample ever 6-min measurements

25m
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Verification Measurements

« Light Attenuation (Ky)

Secchi

Chlorophyll-a

1TSS |

Nutrients R N
Profile N A

Legend

@ Dataflow Verification Stations (York/Mobjack)
e Dataflow ~ Drone Match (06/25/2024)

® Dataflow (MOBPH, 10/22/2024)

* Dataflow (YRKMH, 10/23/2024)

o Dataflow (YRKPH, 10/23/2024)
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Water Clarity Assessments

Verification and Light Early 2000’s, York River
Atte n u at io n ( Kd ) - (A) In-Situ Verification Samples
Estimates

3.0-

func ( Turb, Chlor, Salin)

Kd =

1.0 3.0
Observed in-situ Kd

York River Polyhaline verification
stations

Kg ~ N(p., ‘72)
p = PBo + P1 - X/ Turbidity + B2 - Chlorophyll + B3 - Salinity
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Interpolation:

Kriging

[ vrePH boundary
l:l Land
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High : 8.0802

Lowy : 2.33422
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Kd Threshold

0-Im 1-2m

1.51 0.76

2.04 1.02

Polyhaline — Mesohaline: 22% PLL
Oligohaline - Tidal Fresh: 13% PLL [ i boméay [ et baumiery
[:] Land |: Land

Kd [ kd > threshold

High :2.13191 Il ¢ < threshold

Low : 1.47836
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. NERRS . CBIBS . Telemetered D Longterm “sentinel” locations s [ixed (Sentinel)

VA-DEQ VIMS Water Quality
/EPA/CBP Initiatives Past CMONs
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Remote sensing data can help fill gaps and assess water clarity

* Anchor satellite imagery with Fixed Station and Dataflow monitoring
programs

 Dataflow - 1000’s of verification measurements in a single day
* Fixed Stations - 100’s of verification measurements in a year

Hidden Layers
——

Output

(geeksforgeeks.org)
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Source: Vanhellemont, 2023

Methods
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Acquire imagery from Planet

* ~3 mresolution, 8 band

* Near daily coverage in
Chesapeake Bay since 2022

Coastal Blue Blue Greenl| Greenll Yellow Red Red Edge
444 nm 492 nm 533 nm 566 nm 612 nm 666 nm 707 nm
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Relative Spectral Response (1)

: . 0.6 0.7
Atmospheric correction Wavelength (um)
( AC O I_ I T E) -> 8 Su rf ace Fig. 3. SuperDove eight band relative spectral response function as provided by Planet.

reflectance bands FIY)? [ (BRI o o e oo
Match surface reflectance to Yo ) |

dataflow and fixed stations in-
situ datasets in space and time
Fit models to matched datasets
to estimate light conditions




Using Fixed Stations and CBIBS Buoy
to Estimate Turbidity From Satellite yi = XiB+e, e~N(0,0°)

Y; =log transformed turbidity

York Spit Claybank Sweet Hall
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Dataflow and Satellites

Mobjack 06-20-2024
Mobjack 05-21-2024
York 06-21-2024

York 05-22-2024
Upper York 03-09-2023

VITA, Esti, HERE, Garmin, USGS, EPA, NPS, Esri, HERE, NPS
Mewport Mews

Turbidity
(Log10 NTU)

® 0.94-1.05
1.05 - 1.16
1.16 - 1.28
1.28 - 1.39

® 1.39-1.50
Turbidity Index
® 0.091




Stage 1: log(Kd) ~ log(Turb) + log(Chl-F) +Salt
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Water Clarity Acres as Percentage of Maximum Achieved
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CBPSEG n_yr first_ yr first_wca  last_wca change wca pct_change mean_wca

rppmh 2007 10029 11002 973 9.7 9359.5
rppoh 2007 0 45 45 Inf 98.0
rpptf 2007 196 1118 922 470.4 607.0
mobph 2010 20919 26463 5544 26.5 22896.5
yrkph 2003 20 2926 2906 14530.0 526.1
yrkmh 2003 0 218 218 Inf 36.3
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Lower James Dataflow (HRSD) (€©)HRSD

» 2 Segments: James Polyhaline (JMSPH) and ‘?’; JMSMH
Mesohaline (JMSMH) sampled since 2005

* Mar-Sep (noJune) - In situ water quality
 Kd, Turbidity, Salinity, Chlorophyll

2 Satellite Sources: Planet and Sentinel

e ChesROMS-ECB model (Friedrichs et al., VIMS,
2025) for surface salt .

 2017-2024 - overlap b/w in situ and satellite sources

e JMSPH: 41,211 observations across 25 unique days

* JMSMH: 16,015 matched observations across 28 JMSPH
unique days

* 128 Kd observations matched to in-situ/satellite

* 1179Kd observations matched to in-situ only

Hampton

Virginia Beach
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Observed vs Predicted Values
R2 = 0.506
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Seasonal Patterns in Predicted Water Clarity (Kd)

=B, B, |+

Month

)"

—_
—
|
<
£
—
©
X
3
°
©
@
=
o

—

Station BEd JMSMH EF JMSPH




Comparison of Raw vs Flow—Adjusted Kd Trends
Circles = Raw Kd (solid line), Triangles = Flow—Adjusted Kd (dashed line)
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In situ observations ] )
Typical in-

+  Dataflow (YSI, 1000s/day): Turb, Chl, Sal [N L LU DS St
+ Kd (5-10/day) rate

Revisit Archive

Planet
I ~ — 0
SupEibcye 3m near daily 2 years 25-45%
Se”t'zns 123, 10-20m 5 days 10 years ~8-12%
Poquoson *
Acolite Atmospheric Correction ECB Model Output
Hampton * * *

Band index for Band index for Salinit
Turbidity Chl y

Norfolk



Stage 1 Stage 2

Turbidity Model:

For satellite-matched observations, Stage-1 posterior
means are treated as noisy observations of the latent
Where: parameters:

log(Turb,) ~ N(ur,, 77'")

HT, = ar + Ba - Zdrg; + ﬁsensor;r * S€NSOI;

ﬁtn ~ N(fh Vﬂl‘(ﬁ'ﬂ- )

Chlorophyll Model: ﬁq ~ N(C;, Var (ﬁq )
log(Chl;) ~ N(uc,,75") fg ~ N(S;, Var(ig,))
Where:

Hc, = ac + ﬁn " Zndci, + ﬂsensorc * S€NSOT;

N\~ 2
Salinity Model: log(Kd;) ~ N(uk,, 0k,
Salt; ~ N(us,,7g') Where the mean is:
Where: puk, = ax + prTi + PcCi + PsSi + baaypi

Hs, = &S + P - Zmodel_salt,



Preliminary Bayesian Model Fit: R? = 0.441 | MAPE = 29.4% | n = 128
JMSMH & JMSPH
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VECOS

Virginia Estuarine & Coastal Observing System (VECOS)

aluls
- 22 years of monitoring

& 2 1 3 ) 5 1 3, O O 0 water quality observations

Data Dashboard

Virginia Estuarine & Coastal Observing System (VECOS)
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Data Filters

Basemap
@ swshing

@mptin
Currently Viewing

Vears Sampled Humber of Samples

The data dashboard provides access and visualization for all quality
controlled data.

GO TO DATA DASHBOARD

Realtime Dashboard

CBNERR-VA Near Realtime Water Quality Monitoring
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e
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mmmmm

The realtime data dashboard provides access and visualization of recent
observations collected from our fixed stations equipped with telemetry.

GO TO REALTIME DASHBOARD

Data Applications

CBNERR-VA Data Application: Algal Blooms

Sweet Hall Marsh (PMK012.18)

Photo Credit: Vogelbein. Wolfgang. Yirginia Insfitute of =
Marine Science [
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? Eutrophication, typically driven by excess of nutrients leading to an overabundance of phytoplanklon, poses a current and growing threat

to coastal ecosystems, Impacting water quality,local economies, and public health. Monitaring these blooms, many of which can be

Our Data Applications provide environmental insights leaveraging our
near-realtime monitoring data.

GO TO DATA APPLICATIONS



Algal Blooms

CBNERR-VA Data Application: Algal Blooms

Sweet Hall Marsh (PMK012.18)

Phot Gredit: Vogelbein, Wollgang. Virginia lnsfitute of
Marine Science

9 Var 2028 My 2025 a2y Sep 2028 Nov 2025
9 —— Realtine Estimated Chia Doy 4 50(2003-2025) Dy Hean Esimated Cro (2003-2025)
9 Eutrophication, typically driven by excess of nutrients leading to an overabundance of phytoplankton, poses a current and growing threat
10 coastal ecasystems i quality, and public health. Monitoring these blooms, many of which can be

The Algal Blooms Data Application provides access to the latest data on Algal
Bloom events.

GO TO ALGAL BLOOM DATA APPLICATION

Eelgrass Heat Stress

CBNERR-VA Data Application: Eelgrass Heat Stress

Gloucester Point (YRK005,40)

CBNERR-VA monitars seagrass at the Goodwin Islands
reserve sitemonthly from April- October through the
National Estuarine Research Reserve's Systom Wide
‘Monitoring Program

]
/

Har 2025 Moy 2025 2025 Se0 2025 Mo 2025
=~ et Stress Threshok (28 °C) —— Dally Hean (2003:2025) - Dally Mean + 10 D (1003:2025) —— Reaitme Temp
near by the Chesapeake Bay National Estuarine Research Reserve in
Virginia at our Gloucester Point station. 28 *C marks th hreshold f

(eelgrass) growing in this system (Shields et al. 2019). When summer water exceed this threshold, eels

The Eelgrass Heat Stress Data Application provides access to the latest data on
Eelgrass heat stress events.

Marine Heat Waves

CBNERR-VA Data Application: Marine Heatwaves

Gloucester Point (YRK00S.40)

‘Suns#t on Anaspalis harber, Chesapeake Bay. US. E481 Cosst

‘estuaries coud experience marine heatwaves up 10. thIrd of
the year by the.and of the century (Harch ot al, 2025
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The Marine Heat Waves Data Application provides access to the latest data on
Marine Heat Wave events.

GO TO MARINE HEAT WAVES DATA APPLICATION

Speckled Trout Cold Stun

CBNERR-VA Data Application: Speckled Seatrout (Cynoscion nebulosus) Cold Stun

Gloucester Point (YRK005.40)

Photo Credit: Raver, Duane. US Fish and Wiidife
Servie

o, 8

The Cold Stun Watch dashboard helps identify periods where water temperature conditions are indicative of siress or mortality for
9 ‘Speckled (also Spotted)

, high freq Quality

The Cold Stun Watch application provides access to the latest data on Speckled
Trout cold stun events.

Acuff Center for Aquaculture Operations

Gloucester Point (YRK005.40)

21.6°C
Sty
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! 5 psu 99
?,4 mglL? Q
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This application provides recent information on aquaculture operations at the
Acuff Center.

GO TO ACUFF CENTER FOR AQUACULTURE OPERATIONS DATA APPLICATION



VECOS Data Application: Algal Blooms

Gloucester Point (YRK005.40)
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Photo Credit: Vogelbein, Wolfgang. Virginia Institute of

Marine Science. 150

100

Estimated Chl-a (pg/L)

50

; 9 Mar 2025 May 2025 Jul 2025 Sep 2025 Nov 2025

—e— Realtime Estimated Chl-a Daily Mean £ SD (2003-2025) Daily Mean Estimated Chl-a (2003-2025)
ow eutrophicatic 1g Moderate eutro

phication (5-20 pg/L) Elevated eutrophication (20-40 ug/L)

B Hyper eutrophication (> 60 pg/L)
Richmond

9 Eutrophication, typically driven by excess of nutrients leading to an overabundance of phytoplankton, poses a current and growing threat to
coastal ecosystems, impacting water quality, local economies, and public health. Monitoring these blooms, many of which can be harmful due
to impacts on water oxygen levels or toxin production, is essential for managing coastal resources, but the complexity of environmental

Newport Q conditions along with the diversity of algal species, lead to detection and monitoring challenges due to highly temporal and spatial variability
irginia Beach of algal blooms. A key indicator of algal growth is the plant pigment chlorophyll, which serves as a measure of algal biomass. To track and
Chesapeake respond to bloom events effectively, we rely on advanced monitoring platforms that use in situ (on-site) water quality sensors capable of

measuring chlorophyll fluorescence in near-real-time.



§s’AgEagIe

RedEdge-Pdual

Two sensors. 10 bands. For enhanced data
comparison with satellites.

High-resolution multispectral and RGB composite drone sensor for
plants classification, weeds identification, environmental research and
conservation, and vegetation analysis of water bodies.

The dual solution features the RedEdge-P and the new RedEdge-P blue
cameras.

] RedEdge-P dual comparison
Benefits with Landsat 8 and Sentinel 2A satellites

© Obtain imagery comparable to Landsat and Sentinel satellite data at
an enhanced resolution.

) Monitor shallow water environments with the coastal blue band.
© Perform detailed analysis on chlorophyll efficiency and identify weeds.

© Conduct reliable time-series analysis even in varying light conditions.

@ Perform machine learning and Al applications such as early stage crop
counting.




* Anchoring Planet imagery with dataflow platforms shows promise
* Fills in-situ spatial and temporal monitoring gaps
* Opportunity to incorporate satellite data into water clarity assessment

Next Steps

* Model development to operationalize
* Bayesian and/or machine learning hierarchical models
* Uncertainty estimates for K
 Scale to additional tributaries and satellite platforms
 James River (HRSD partnership)
* Add Sentinel imagery
* Light conditions trends analysis of fixed station and dataflow data in
lower tributaries (Polyhaline and Mesohaline)
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Sampling—day distributions by month (side-by—side by station)
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Monthly Mean Predicted Water Clarity (Kd) with Standard Error
March - October data only
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Annual Mean Predicted Water Clarity (Kd) with Standard Error
March — October data only
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Methodology Challenges

Segments with low goals can easily pass the water clarity acres goal by having
one cruise with good clarity.

Segments with high SAV goals and moderate/high SAV, may not pass water
clarity acres due to insufficient remaining shallow water habitat due to the 2.5
multiplication factor.

Spatial interpolation and modelling error is not accounted for in methodology

Spatial and temporal monitoring constraints limit data coverage (1 cruise per
month)

Opportunity for development of Kd models by analyzing at a larger verification
dataset (space and time) instead of focusing on current segment could improve
models

Sampling can be biased to good weather

Opportunity to|integrate other existing datasets (ex. fixed stations, satellite)

Adapted From Trice & Parrish, 2022, STAC Advanced Monitoring Workshop
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