Updated Climate Change Scenarios

Modeling Quarterly Review January 7, 2020

Richard Tian, UMCES, Lew Linker, EPA- CBPO and the CBP Modeling Team

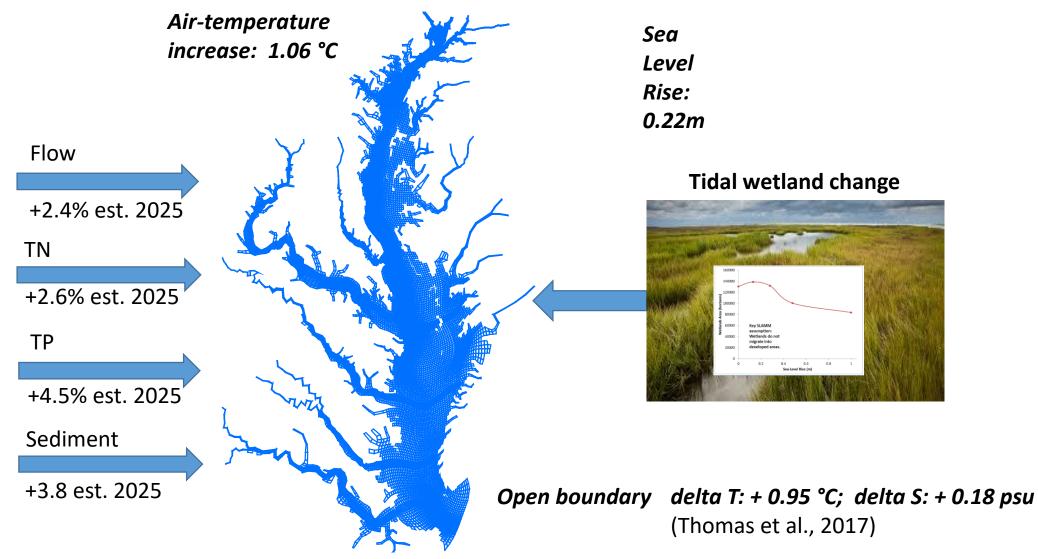
rtian@chesapeakebay.net Linker.lewis@epa.gov

Key Points in Assessment of 2025 Climate Change Risk – A Recap

- The PSC's December 2017 and July 2018 decisions were, "No change in the target loads set by the PSC until 2025, or unless PSC decides to do otherwise."
- Therefore, we have one CBP decisional model finalized in July 2018 and then used to generate WIP3 target loads for the CBP partnership which are now fixed until 2025 (unless adjusted by PSC).

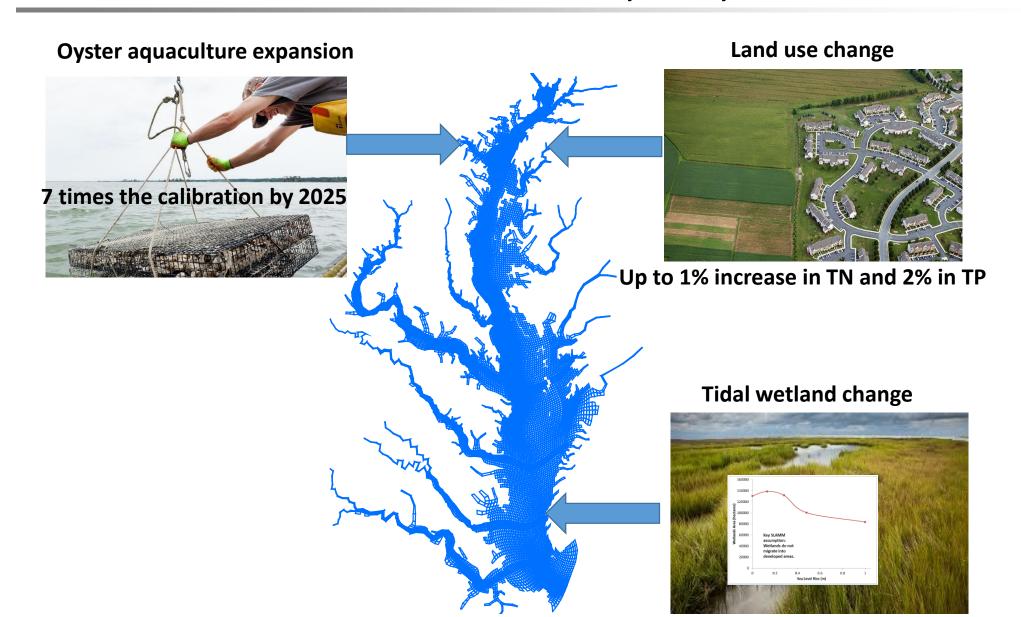
Key Points in Assessment of 2025 Climate Change Risk - Recap

- We also have a climate change analysis model completed in December 2018 that the CBP partnership will review over the next two years for technical policy sufficiency for adjusting the decisional model to address climate change risk in the 2022-2023 Milestones as directed by the PSC.
- The current climate change assessment (Dec. 2019 Jan. 2020) confirms the December 2017 climate change findings with a better model, providing better understanding of underlying processes, more specific findings on nutrient speciation, CSOs, wet deposition of nitrogen, etc.

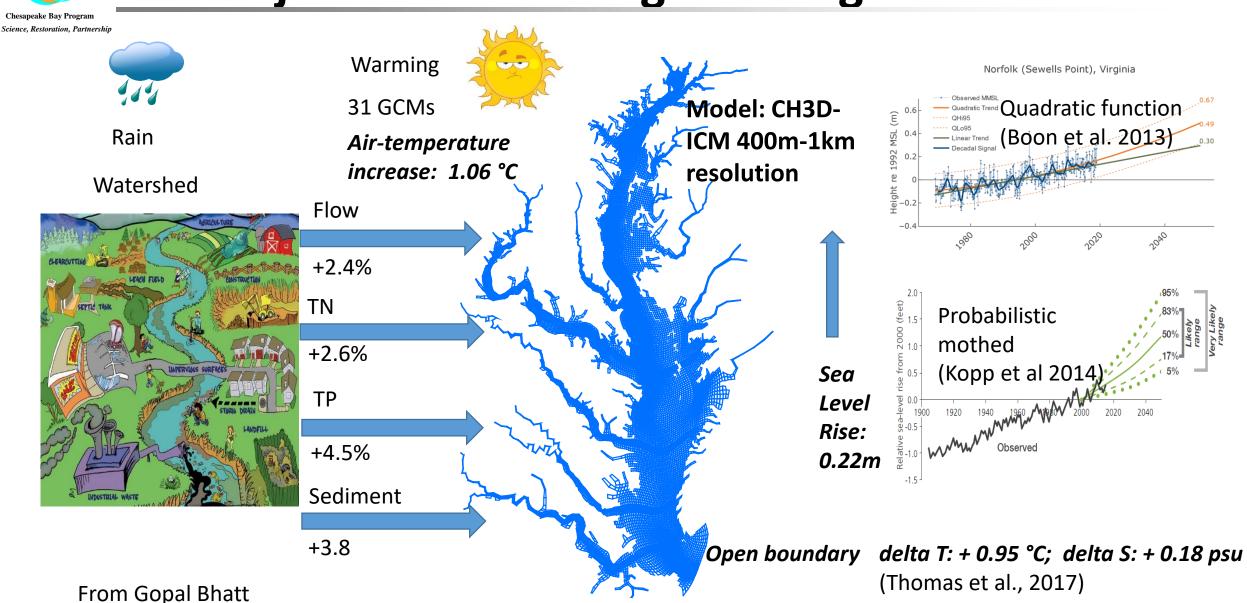


Key Points in Assessment of 2025 Climate Change Risk – What's Changed

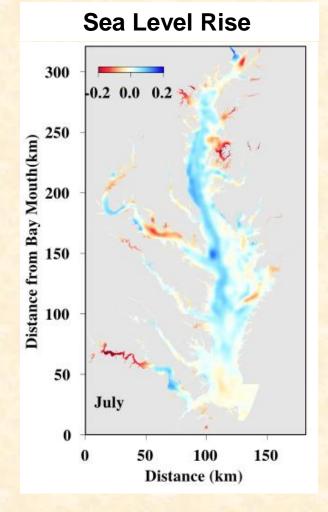
At our December 2019 meeting it was decided that there
would be a clear distinction between "climate change only"
forcing for the 2025, 2035, 2045, and 2055 series of
scenarios and the companion series of scenarios that
combine climate change forcing with estimated future land
use and estuarine practices in 2025, 2035, 2045, and 2055.

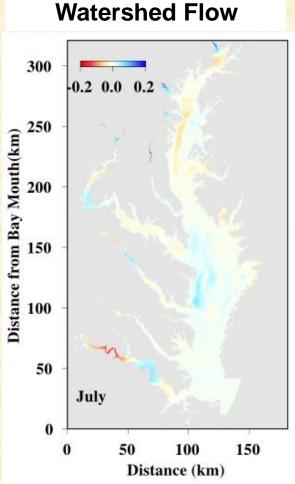


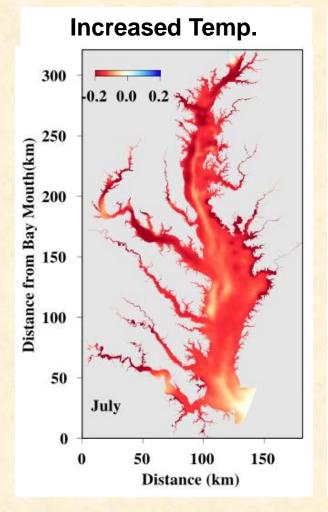
Current Climate Change Only Scenarios

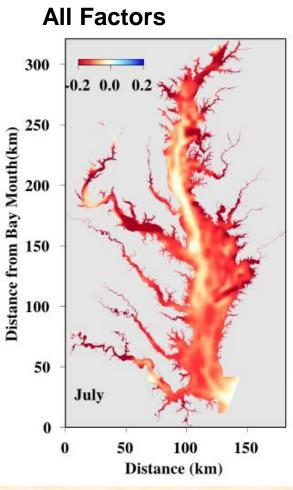


Scenarios for Estimated Future Land Use and Estuarine Practices for 2035, 2045, and 2055

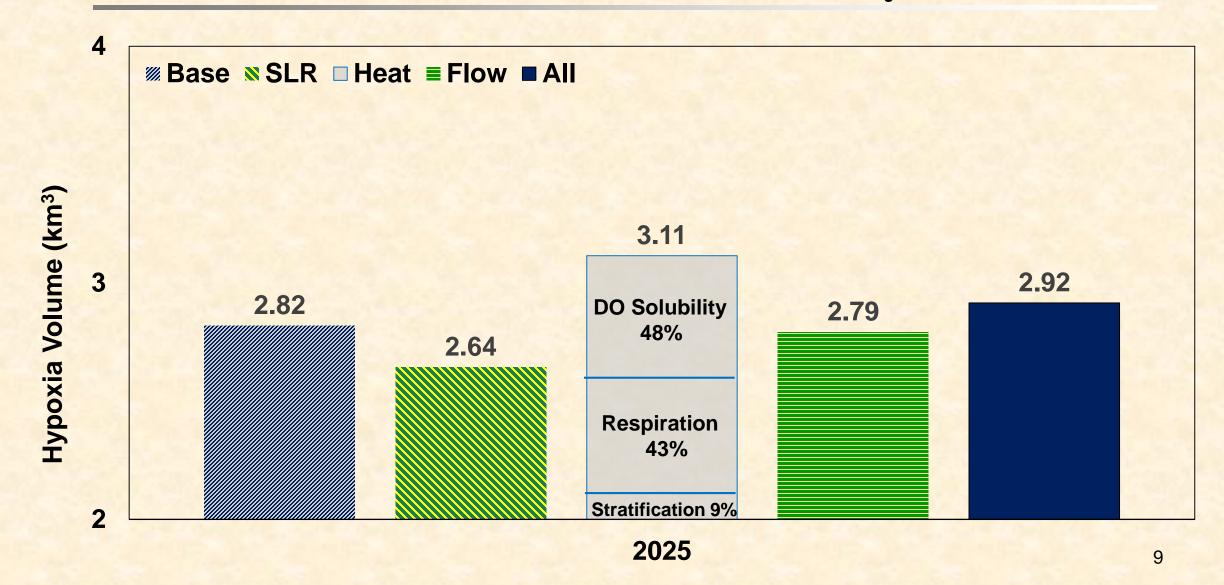

Major Climate Change Forcing for 2025



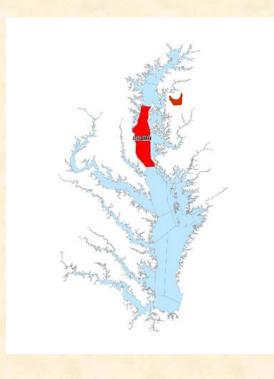



Bottom DO Change: 1995 to 2025

Keeping all other factors constant, sea level rise and increased watershed flow reduce hypoxia in the Bay, but the predominant influence are the negative impacts of increased water column temperature.



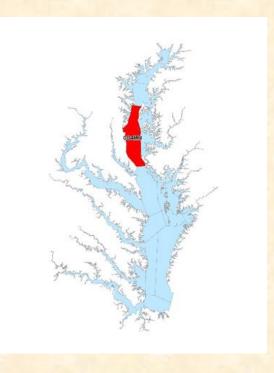
Summer (Jun.-Sep.) Hypoxia Volume (<1 mg/l) 1991-2000 In the Whole Bay



The CBP Climate Change Assessment

Achievement of <u>Deep Channel DO</u> water quality standard expressed as a incremental increase over the PSC agreed to (December 2017; July 2018) 2025 nutrient targets for growth and Conowingo Infill

		2025 Climate	2035 Climate	2045 Climate	2055 Climate	
		2025 Land Use	2025 Land Use	2025 Land Use	2025 Land Use	
		204TN	208TN	212TN	220TN	
		14.0TP	14.6TP	15.4TP	16.7TP	
		1993-1995	1993-1995	1993-1995	5 1993-1995	
СВ		DO Deep	DO Deep	DO Deep	DO Deep	
Segment	State	Channel	Channel	Channel	Channel	
CB3MH	MD	0.00%	0.00%	0.00%	0.00%	
CB4MH	MD	1.47%	3.15%	4.62%	7.31%	
CB5MH	MD	0.00%	0.00%	0.00%	0.00%	
CB5MH	VA	0.00%	0.00%	0.00%	0.00%	
POTMH	MD	0.00%	0.00%	0.00%	0.00%	
RPPMH	VA	0.00%	0.00%	0.00%	0.00%	
ELIPH	VA	0.00%	0.00%	0.00%	0.00%	
CHSMH	MD	0.01%	0.92%	1.08%	2.34%	



Achievement of Deep Water DO Water Quality Standard

Chesapeake Bay Program Science, Restoration, Partnership

Achievement of <u>Deep Water DO</u> water quality standard expressed as a incremental increase over the PSC agreed to (December 2017; July 2018) 2025 nutrient targets for growth and Conowingo infill

		2025 Climate	2035 Climate	2045 Climate	2055 Climate
		2025 Land Use	2025 Land Use	2025 Land Use	2025 Land Use
		204TN, 14.0TP	208TN, 14.6TP	212TN, 15.4TP	220TN, 16.7TP
		1993-1995	1993-1995	1993-1995	1993-1995
СВ		DO Deep	DO Deep	DO Deep	DO Deep
Segment	State	Water	Water	Water	Water
СВЗМН	MD	0.01%	0.15%	0.16%	0.21%
CB4MH	MD	0.94%	1.61%	2.00%	2.66%
СВ5МН	MD	0.52%	1.01%	1.32%	1.66%
СВ5МН	VA	0.00%	0.00%	0.00%	0.00%
СВ6РН	VA	0.00%	0.00%	0.00%	0.00%
СВ7РН	VA	0.00%	0.00%	0.00%	0.00%
PATMH	MD	0.01%	0.02%	0.42%	2.66%
MAGMH	MD	1.66%	1.66%	1.91%	1.91%
SOUMH	MD	0.00%	0.00%	0.00%	0.00%
SEVMH	MD	0.00%	0.00%	0.00%	0.00%
PAXMH	MD	0.00%	0.00%	0.00%	0.00%
POTMH	MD	0.03%	0.15%	0.56%	0.81%
RPPMH	VA	0.00%	0.24%	1.48%	1.85%
YRKPH	VA	0.00%	0.00%	0.00%	0.00%
ELIPH	VA	0.00%	0.00%	0.00%	0.00%
SBEMH	VA	0.00%	0.00%	0.44%	3.12%
CHSMH	MD	0.00%	0.00%	0.00%	0.00%

Achievement of Open Water DO Water Quality Standard

Chesapeake Bay Program Science, Restoration, Partnership

		2025 Climate	2035 Climate 2025	2045 Climate	2055 Climate	
		2025 Land Use	Land Use	2025 Land Use	2025 Land Use	
СВ		204TN, 14.0TP 1993-1995	208TN, 14.6TP 1993-1995	212TN, 15.4TP 1993-1995	220TN, 16.7TP 1993-1995	
Segment	State	DO Open Water	DO Open Water	DO Open Water	DO Open Water	
CB1TF	MD	0.0%	0.0%	0.0%	0.0%	
CB2OH	MD	0.0%	0.0%	0.0%	0.0%	
СВЗМН	MD	0.0%	0.0%	0.0%	0.0%	
СВ4МН	MD	0.0%	0.0%	0.0%	0.0%	
CB5MH	MD	0.0%	0.0%	0.0%	0.0%	
CB5MH	VA	0.0%	0.0%	0.0%	0.0%	
СВ6РН	VA	0.4%	0.7%	1.0%	1.3%	
СВ7РН	VA	1.1%	1.8%	2.7%	3.9%	
CB8PH	VA	0.0%	0.0%	0.0%	O. 0%	ity of oxygen with temperature
вѕнон	MD	0.0%	0.0%	0.0%	0.0%	ny or oxygen war temperature
GUNOH	MD	0.0%	0.0%	0.0%	0.0%	
MIDOH	MD	0.0%	0.0%	0.0%	0.0%	
васон	MD	0.0%	0.0%	0.0%	O. 0%	•
PATMH	MD	0.0%	0.0%	0.0%	0.0%	* * * * * * * * * *
MAGMH	MD	0.0%	0.0%	0.0%	0.0%	*****
SEVMH	MD	0.0%	0.0%	0.0%	0.0%	*******
SOUMH	MD	0.0%	0.0%	0.0%	0.0%	5 10 15 20 25 30 35
RHDMH	MD	0.0%	0.0%	0.0%	0.0%	Temperature (°C)
WSTMH	MD	0.0%	0.0%	0.0%	0.0%	
PAXTF	MD	9.1%	9.1%	9.6%	10.5%	
WBRTF	MD	32.3%	32.3%	39.6%	54.6%	
PAXOH	MD	5.6%	8.2%	9.9%	11.7%	
PAXMH	MD	0.0%	0.0%	0.0%	0.0%	
POTTF	DC	0.6%	0.9%	1.2%	1.4%	
POTTF	MD	0.0%	0.0%	0.0%	0.4%	
ANATE	DC	7.0%	9.5%	12.3%	14.7%	
ANATE	MD	10.2%	16.0%	24.1%	29.3%	
PISTF	MD	0.0%	0.0%	0.0%	0.0%	
MATTF	MD	0.0%	0.0%	0.0%	0.0%	
POTOH1	MD	0.1%	0.2%	0.5%	0.8%	
POTMH	MD	0.0%	0.0%	0.0%	0.0%	
RPPTF	VA	0.0%	0.0%	0.0%	1.6%	
RPPOH	VA	0.0%	0.0%	0.0%	0.0%	
RPPMH	VA	0.0%	0.0%	0.0%	0.0%	
CRRMH	VA	9.8%	11.3%	11.3%	13.8%	
PIAMH	VA	0.0%	0.0%	0.0%	0.0%	
MPNTF	VA	25.7%	35.6%	39.9%	34.4%	
MPNOH	VA	2.1%	0.3%	0.0%	0.0%	11
PMKTF	VA	64.4%	74.6%	67.5%	62.9%	
PMKOH	VA	10.7%	9.9%	3.3%	1.9%	
YRKMH	VA	0.9%	0.2%	1.0%	2.8%	10
YRKPH	VA	0.0%	0.0%	0.0%	0.0%	
МОВРН	VA	0.0%	0.0%	0.1%	0.2%	hesapeake Bay Program
JMSTFL	VA	0.0%	0.4%	1.0%	1.0%	cience, Restoration, Partnersh

TANMH

VA

Achievement of Open Water DO Water Quality Standard

		2025 Climate	2035 Climate	2045 Climate	2055 Climate	
		2025 Land Use	2025 Land Use	2025 Land Use	2025 Land Use	
		204TN, 14.0TP	208TN, 14.6TP	212TN, 15.4TP	220TN, 16.7TP	
СВ		1993-1995	1993-1995	1993-1995	1993-1995	
Segment	State	DO Open Water	DO Open Water	DO Open	DO Open Water	
JMSTFU	VA	0.0%	0.0%	0.0%	0.0%	
APPTF	VA	-4.6%	-4.6%	-4.6%	0.0%	
IMSOH	VA	0.0%	0.0%	0.0%	0.0%	
СНКОН	VA	13.4%	22.4%	27.3%	29.4%	
JMSMH	VA	0.0%	0.0%	0.0%	0.0%	
JMSPH	VA	0.0%	0.0%	0.0%	0.0%	
WBEMH	VA	0.3%	0.3%	0.3%	0.3%	
SBEMH	VA	11.0%	19.0%	27.3%	30.8%	
EBEMH	VA	3.2%	6.2%	6.2%	6.2%	
ELIPH	VA	0.0%	0.0%	0.0%	0.1%	
NORTF	MD	0.0%	0.0%	0.0%		
C&Dcanal	MD/DE	0.0%	0.0%	0.0%		
вонон	MD	0.0%	0.0%	0.0%	Solubility of oxygen with t	emperature
ELKOH	MD	0.0%	0.0%	0.0%		
SASOH	MD	0.0%	0.0%	0.0%	¹⁵] •	
CHSTF	MD	0.0%	0.0%	0.0%	14	
CHSOH	MD	0.0%	0.0%	0.0%	13	
CHSMH	MD	0.0%	0.0%	0.0%	₹	
EASMH	MD	0.0%	0.0%	0.0%	(T)/Bu) uabkx0	
CHOTF	MD	0.0%	0.0%	0.0%	g 11	
сноон	MD	0.0%	0.0%	0.0%	6 10 -	
СНОМН2	MD	0.0%	0.0%	0.0%	6	
CHOMH1	MD	0.0%	0.0%	0.1%	9 8 8 -	e _{ea}
LCHMH	MD	0.0%	0.0%	0.1%	8 -	
FSBMH	MD	58.3%	14.3%	0.0%	7	
NANTF	DE	0.0%	0.2%	0.0%	0 5 10 15 20	25 30 35
NANTF	MD	0.7%	4.7%	0.7%	Temperature (°C))
NANOH	MD	0.4%	1.7%	0.0%		
NANMH	MD	0.0%	0.0%	0.0%	0.0%	
WICMH	MD	11.5%	11.7%	21.5%	28.2%	
MANMH	MD	4.1%	4.4%	4.0%	0.0%	
BIGMH	MD	0.0%	0.0%	0.0%	0.0%	
POCTF	MD	69.8%	77.5%	77.5%	77.5%	
РОСОН	MD	69.8%	77.5%	77.5%	77.5%	V
РОСОН	VA	69.8%	77.5%	77.5%	77.5%	Au .
POCMH	MD	0.0%	0.0%	0.0%	0.0%	
POCMH	VA	0.0%	0.0%	0.0%	0.0%	
TANMH	MD	0.0%	0.0%	0.0%	0.0%	Chesapeake Bay Pro
		0.070	0.070	0.070	0.070	Science Restoration Parts

0.0%

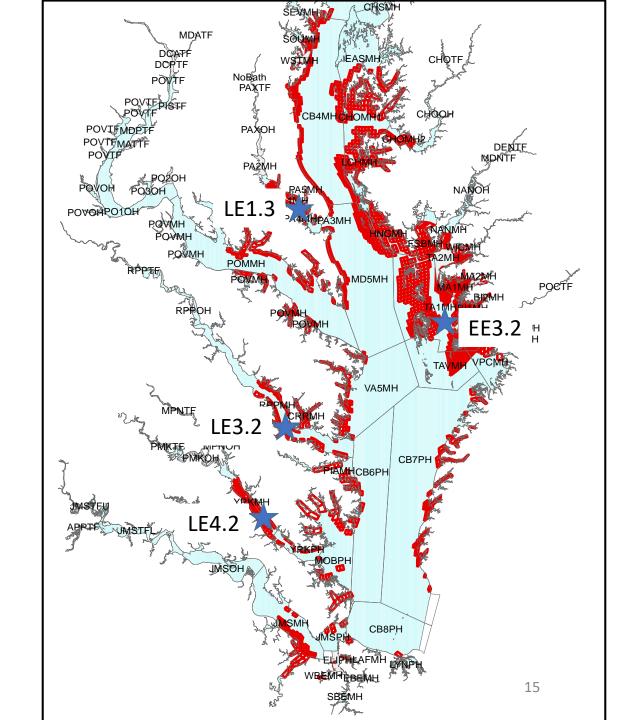
0.0%

0.0%

Science, Restoration, Partnership

0.0%

Sensitivity Runs With Land Use Change and Oyster Aquaculture Expansion

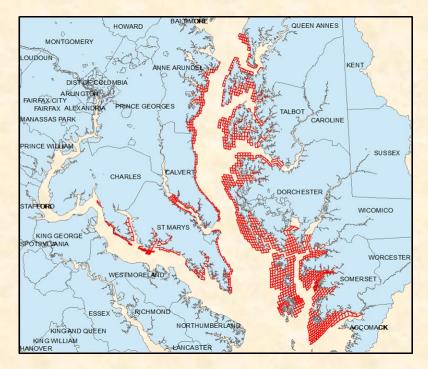

Chesapeake Bay Program
Science, Restoration, Partnership

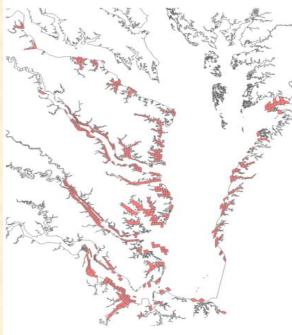
Oyster Aquaculture sites

- MD: Salinity ≥ 7 ppt, depth ≤ 12 ft.
- VA: Lease sites
- Sufficient phytoplankton and suspended solids

Model setup

- 392 million oysters harvested in 2025, equivalent to 468k lbs C in biomass.
- 78k lbs N and 8k lbs P reduction in nutrient loads (from soft tissue harvest).
- Oyster biomass in the water column is 1.5 times the annual harvest for aquaculture in cages (20% in MD and 80% in VA).
- Oyster biomass on the bottom is twice the annual harvest for bottom culture (80% in MD and 20% in VA).

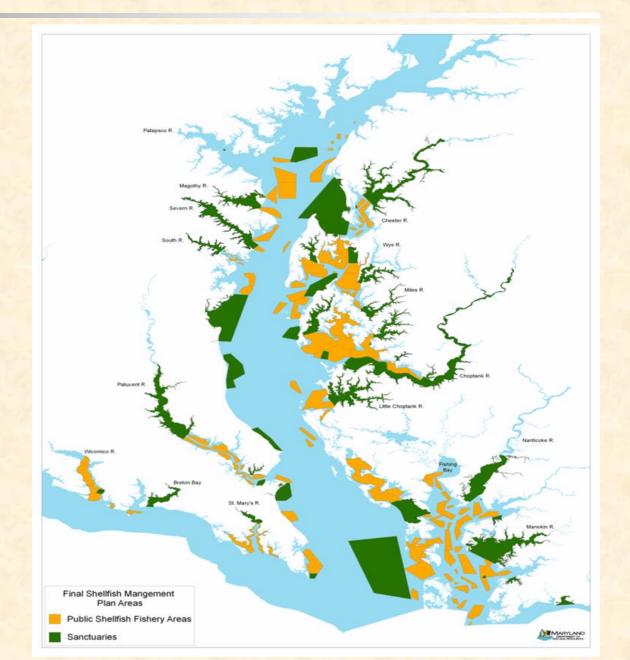




Aquaculture Oysters at 2025 Buildout Levels

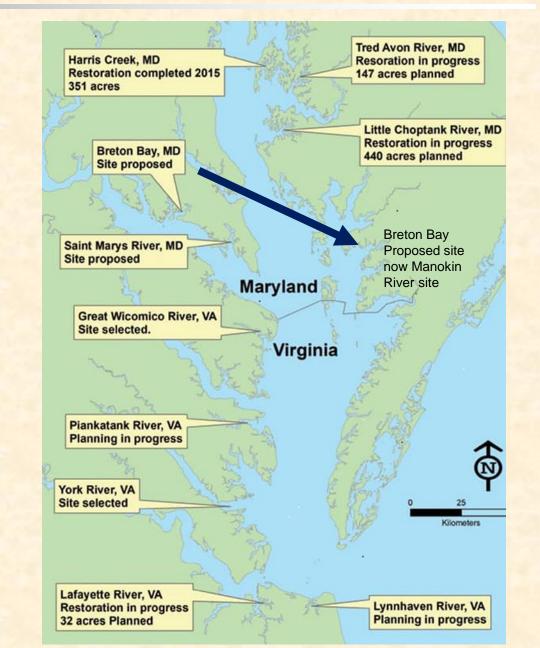
The 2017 WQSTM oyster module considers four populations:

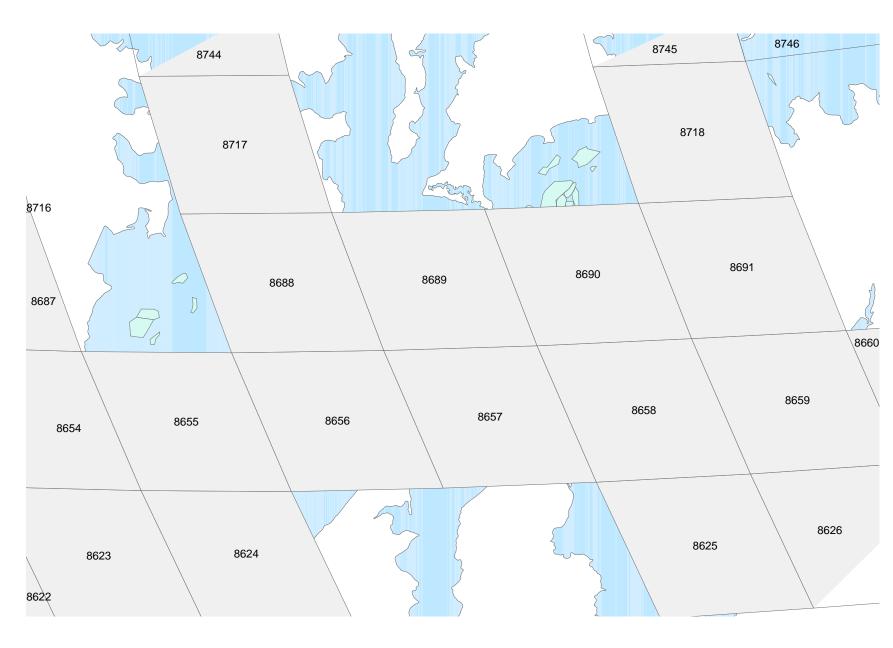
- Natural populations on reefs and subject to harvest
- Natural populations in sanctuaries and not subject to harvest
- Smaller areas within sanctuaries where oyster habitat is restored
- Aquaculture operations



Year	VA Biomass (kg DW)	VA Harvest (kg DW)	MD Biomass (kg DW)	MD Harvest (kg DW)
2005	3398	2124		
2006	11892	7433		
2007	16989	10618		
2008	25483	15927		
2009	32279	20174		
2010	56063	35039		
2011	79847	49904		
2012	93438	58399		
2013	103631	64770		
2014	134211	83882	40905	21529
2015	118921	74326	60612	31901
2016			64550	33974
2025	508032	317520	241315	127008

Oyster Sanctuaries Influence Included In Future Scenarios


The elimination of oyster mortality in sanctuaries increases oyster biomass slightly and makes DO Deep Channel and Deep Water standards easier to achieve for all CBP partners.


Habitat Restoration In Oyster Sanctuaries

Oyster sanctuary areas with habitat reconstruction are not in simulation and are handled by nutrient reduction recommendations of 2nd Expert Panel Report (in preparation for March 2020 Review by WQGIT).

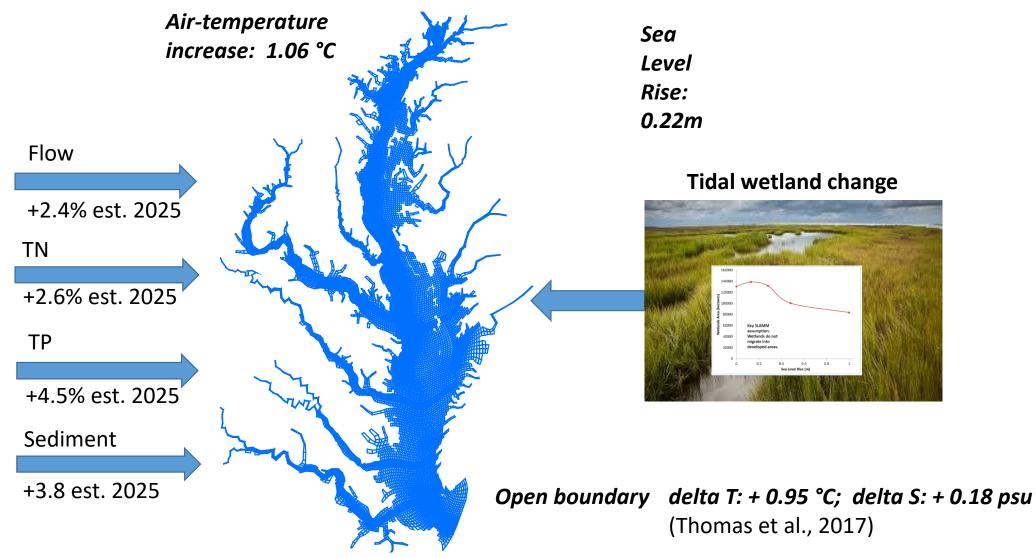
Little Choptank Sanctuary restoration sites

Restoration credited as BMP on watershed and has to be removed from the simulation

Deep Channel DO Nonattainment Change With Oyster Aquaculture and Sanctuaries

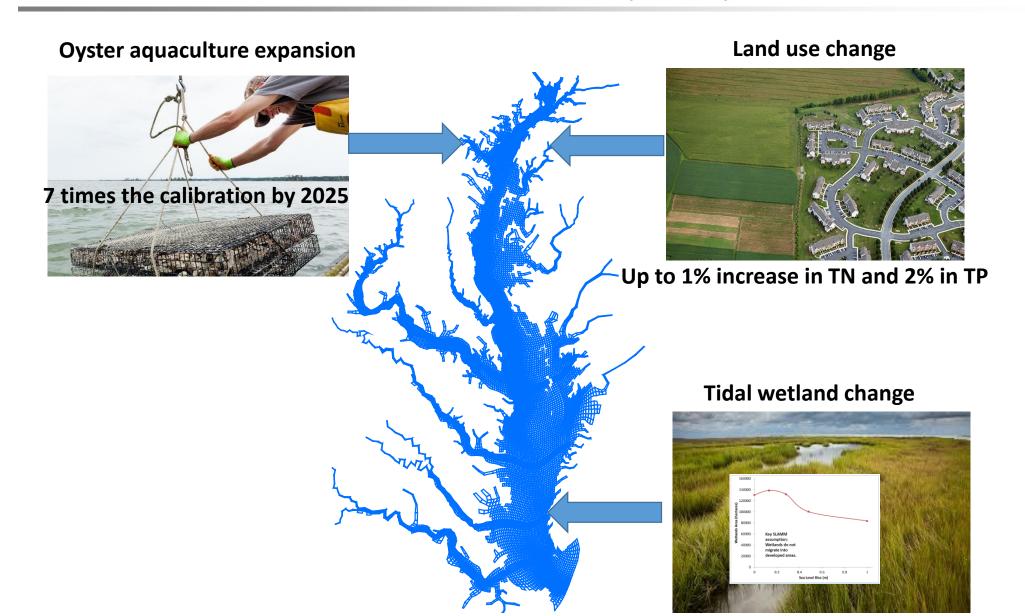
		2025 Scenario	2025 Scenario
		With Oyster	Without Oyster
		Aquaculture	Aquaculture
		1993-1995	1993-1995
CB Segment	State	DO Deep Channel	DO Deep Channel
СВЗМН	MD	0.00%	0.00%
СВ4МН	MD	9.36%	10.05% Delta DO
CB5MH_MD	MD	0.00%	0.00%
CB5MH_VA	VA	0.00%	0.00%
POTMH_MD	MD	0.00%	0.00%
RPPMH	VA	0.00%	0.00%
ELIPH	VA	0.00%	0.00%
СНЅМН	MD	1.09%	1.09%

20



Deep Channel DO Nonattainment Change With Land Use Only

CB Segment S	20	Compared to 0	2045 Climate 2 045 Land Use 2 Compared to 2 2045 Climate 2 025 Land Use 2	055 Land Use Compared to 2055 Climate
СВЗМН	MD	0.00%	0.00%	0.00%
CB4MH	MD	0.19%	0.70%	1.26%
CB5MH_ME	MD	0.00%	0.00%	0.02%
CB5MH_VA	VA	0.00%	0.00%	0.00%
POTMH_ME	MD	0.00%	0.00%	0.00%
RPPMH	VA	0.00%	0.00%	0.00%
ELIPH	VA	0.00%	0.00%	0.00%
CHSMH	MD	0.00%	0.00%	0.00%
EASMH	MD	0.01%	0.10%	0.46%



Current Climate Change Only Scenarios

Scenarios for Estimated Future Land Use and Estuarine Practices for 2035, 2045, and 2055

Deep Channel DO Estimates of 2025, 2035, 2045, and 2055 Climate Change Only Scenarios and Equivalent Scenarios with Full Land Use and Estuarine Practices

		2035 Climate	2035 Climate	2045 Climate	2045 Climate Only	2055 Climate	2055 Climate
		Only (2025 LU)	2035 Land Use	Only (2025 LU)	2045 Land Use	Only (2025 LU)	2055 Land Use
СВ		208TN	209TN	212TN	213TN	220TN	222TN
Segment	State	14.6TP	14.7TP	15.4TP	15.7TP	16.7TP	17.1TP
SLR		0.31m	0.31m	0.42m	0.42m	0.53m	0.53m
Delta T _{air}		1.39°C	1.39°C	1.70°C	1.70°C	1.96°C	1.96°C
CB3MH	MD	3.15%	2.70%	4.62%	4.57%	7.31%	7.94%
CB4MH	MD	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CB5MH	MD	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CB5MH	VA	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
POTMH	MD	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
RPPMH	VA	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
ELIPH	VA	0.92%	0.92%	1.08%	1.08%	2.34%	3.00%
CHSMH	MD	2.03%	1.54%	2.69%	2.75%	3.07%	3.20%

The CBP Climate Change Assessment

- The CBP has developed the tools to quantify the effects of climate change on watershed flows and loads, storm intensity, increased estuarine temperatures, sea level rise, and ecosystem influences including loss of tidal wetland attenuation with sea level rise.
- Future climate change analyses on estimated on a 2025 (short term), 2035, 2045, (moderate term), and 2055 (long term) conditions for CBP management decisions.
- Additional load reductions to address future climate risk will be incorporated into the 2022-2023 Milestone Assessment.

CBP Climate Change Assessment (continued)

- The 2025 full buildout of oyster aquaculture and oyster sanctuaries are estimated to improve water quality, but estimated 2035, 2045, and 2055 land use generally have higher nutrient loads and hypoxia. The combined simulation of estimated future land use and estuarine activities of oyster aquaculture and estimates a slight improvement in Deep Channel DO attainment in 2035 and 2045 compared to the Climate Change Only Scenarios.
- Applying 2025 full buildout of oyster aquaculture and oyster sanctuaries to the 2025 Climate Scenario will improve estimated Deep Channel DO attainment (from ~ 1.5% to ~ 0.8% nonattainment in CB4MH Deep Channel).